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Purpose: Neurite orientation dispersion and density imaging (NODDI) provides 
measures of neurite density and dispersion through computation of the neurite 
density index (NDI) and the orientation dispersion index (ODI). However, NODDI 
overestimates the cerebrospinal fluid water fraction in white matter (WM) and 
provides physiologically unrealistic high NDI values. Furthermore, derived NDI 
values are echo-time (TE)-dependent. In this work, we propose a modification of 
NODDI, named constrained NODDI (C-NODDI), for NDI and ODI mapping in WM.

Methods: Using NODDI and C-NODDI, we investigated age-related alterations in 
WM in a cohort of 58 cognitively unimpaired adults. Further, NDI values derived 
using NODDI or C-NODDI were correlated with the neurofilament light chain 
(NfL) concentration levels, a plasma biomarker of axonal degeneration. Finally, 
we investigated the TE dependence of NODDI or C-NODDI derived NDI and ODI.

Results: ODI derived values using both approaches were virtually identical, 
exhibiting constant trends with age. Further, our results indicated a quadratic 
relationship between NDI and age suggesting that axonal maturation continues 
until middle age followed by a decrease. This quadratic association was notably 
significant in several WM regions using C-NODDI, while limited to a few regions 
using NODDI. Further, C-NODDI-NDI values exhibited a stronger correlation with 
NfL concentration levels as compared to NODDI-NDI, with lower NDI values 
corresponding to higher levels of NfL. Finally, we confirmed the previous finding 
that NDI estimation using NODDI was dependent on TE, while NDI derived values 
using C-NODDI exhibited lower sensitivity to TE in WM.

Conclusion: C-NODDI provides a complementary method to NODDI for 
determination of NDI in white matter.
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Introduction

Postmortem histological investigations have shown that 
cerebral tissue undergoes continuous microstructural and 
architectural changes throughout the lifespan (1–3). It has been 
suggested that axonal degeneration is among the main sequelae 
of aging as well as several age-related disorders, with concomitant 
motor and cognitive declines (4–12). Therefore, it is indispensable 
to characterize changes in axonal density that occur with 
normative aging to identify alterations arising from pathological 
manifestations. Whilst providing insights into cerebral gray 
matter (GM) and white matter (WM) maturation and 
degeneration, histological investigations cannot be performed in 
real-time on living subjects precluding longitudinal evaluations 
of brain aging, correlative studies with physical and cognitive 
performance, or interventions.

Magnetic resonance imaging (MRI), particularly diffusion 
tensor imaging (DTI), has been extensively used to investigate 
brain maturation and degeneration, suggesting complex and 
nonlinear trajectories of the DTI-based indices with age in WM 
and GM (13–31). Although DTI-indices are sensitive to the 
fraction of intracellular water, a proxy of axonal density, they are 
also sensitive to other tissue properties, such as fiber crossing and 
fanning, while lacking specificity to different diffusion tissue 
compartments. To overcome this difficulty, the neurite 
orientation dispersion and density imaging (NODDI) MRI 
technique has been introduced, providing measures of neurite 
density and dispersion through computation of the orientation 
dispersion index (ODI) and the neurite density index (NDI) (32). 
NODDI has been extensively used in clinical and preclinical 
studies of aging, neurological disorders, and cognitive function 
(33–54). However, NODDI-based studies of axonal density and 
dispersion with normative aging remain limited, and with 
disparate results. Indeed, Billiet and colleagues and Chang and 
colleagues observed higher NDI values with age in several 
cerebral WM regions (43, 44), Merluzzi and colleagues’ observed 
lower NDI values in different cerebral WM structures (46), while 
Qian and colleagues, Lawrence and colleagues, and Beck and 
colleagues have recently shown a complex regional association 
between NDI and age, with several cerebral structures exhibiting 
inverted U-shaped relationships (6, 7, 55). These observations 
suggest an increase in axonal density until middle age followed 
by a loss afterwards (6, 7). It remains unclear whether this 
discrepancy is due to differences in cohort characteristics or the 
experimental implementation of NODDI, including variations in 
echo-time (TE) (56).

NODDI is based on a multicompartmental model of water 
diffusion incorporating intracellular water, that is, water within 
neurites, extracellular water, and a compartment consisting of less 
restricted water from the cerebrospinal fluid (CSF) volume. Although 
NODDI has gained rapid popularity, criticisms were raised for its 
overestimation of the isotropically diffusing water fraction (fiso) of the 
CSF compartment and for providing unrealistically high NDI values 
in WM (32, 56, 57). Newly, Gong and colleagues have shown that 
derived NDI values from NODDI are dependent on the echo time 
(TE) (56). These drawbacks, hampering result interpretation and 
precluding multisite comparisons, are believed to be  due to the 

underlying assumption in the original NODDI signal model where all 
compartments are considered to have similar transverse relaxation 
(T2) values (56, 57). Indeed, in recent works, Bouyagoub and 
colleagues have suggested rescaling fiso using predetermined T2 values 
of the CSF and intra/extracellular water compartments (57), while 
Gong and colleagues proposed a multi-echo time NODDI 
(MTE-NODDI) approach incorporating several NODDI scans 
performed at different TEs (56). Although these compelling advanced 
approaches have led to plausible NDI values in WM, they require a 
lengthy extension of the total scan time making them hardly practical 
in clinical setting.

In this work, we  propose a modification of NODDI that 
requires no extension of the acquisition time. Our approach is 
based on the modification of the NODDI signal model such that 
fiso is provided as an input (i.e., constrained) value in each voxel. 
This bicomponent model simplifies the tricomponent model used 
in the original NODDI. We named this approach: constrained 
NODDI (C-NODDI). Unlike MTE-NODDI, C-NODDI assumes 
identical T2 values for both the intra and extra-cellular waters, in 
line with Bouyagoub and colleagues’ original formulation (57). 
Indeed, this assumption is supported by extensive evidence from 
previous relaxometry studies, demonstrating that the relaxation 
times of these two compartments are close (58–61). Using the 
original NODDI and C-NODDI approaches, we investigated age 
and sex-related microstructural alterations in WM in a cohort of 
58 cognitively unimpaired adults. Further, we  compared the 
correlations between NDI derived values using NODDI or 
C-NODDI with the neurofilament light chain (NfL) concentration 
levels, a plasma biomarker of axonal degeneration (62–66), 
obtained from a subset of 43 participants included in our study 
cohort. Finally, we investigated the sensitivity of derived NDI and 
ODI values using NODDI or C-NODDI to TE in two participants 
from diffusion imaging data acquired at different TEs.

Materials and methods

Participants

Participants underwent a battery of cognitive tests and those with 
cognitive impairment, metallic implants, neurologic, or significant 
medical disorders were excluded (67). The final cohort consisted of 58 
cognitively unimpaired volunteers (mean ± standard deviation of 
Mini-Mental State Examination (MMSE) = 29.2 ± 1.0) ranging in age 
from 21 to 83 years (45.4 ± 18.3 years), including 31 men 
(42.9 ± 17.5 years) and 27 women (48.3 ± 19.1 years). Age and MMSE 
did not differ significantly between men and women. The distribution 
of the number of participants per age decade and sex is shown in 
Figure 1. Experimental procedures were performed in compliance 
with our local Institutional Review Board, and participants provided 
written informed consent.

Data acquisition

All experiments were performed with a 3T whole body Philips 
MRI system (Achieva, Best, The Netherlands) using the internal 

https://doi.org/10.3389/fneur.2023.1205426
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Alsameen et al. 10.3389/fneur.2023.1205426

Frontiers in Neurology 03 frontiersin.org

quadrature body coil for transmission and an eight-channel phased-
array head coil for reception. Diffusion-weighted images (DWI) were 
acquired using a single-shot EPI sequence with repetition time (TR) 
of 10 s, echo time (TE) of 67 ms, three b-values of 0, 700, and 2000 s/
mm2, with the two later encoded in 32 diffusion-weighting gradient 
directions, field-of-view (FoV) of 240 mm × 208 mm × 150 mm, 
acquisition matrix of 120 × 120 × 50, and acquisition voxel size of 
2 mm × 2 mm × 3 mm. Images were acquired with SENSE factor of 2 
and reconstructed to a voxel size of 2 mm × 2 mm × 2 mm. The total 
acquisition time was ~16 min.

Finally, to evaluate the effect of TE on NDI and ODI derived using 
NODDI or C-NODDI, DW images were acquired from the brains of two 
participants at four different TEs of 78, 90, 100 or 120 ms. Here again, 
three b-values of 0, 700, and 2000 s/mm2 were acquired, with the two 
later encoded in 32 diffusion-weighting gradient directions sampling the 
same q-space, FoV of 240 mm × 208 mm × 150 mm, acquisition matrix of 
120 × 120 × 50, and acquisition voxel size of 2 mm × 2 mm × 3 mm.

The C-NODDI signal model

Signal model
NODDI is a multicompartmental signal model of water diffusion 

incorporating intracellular water, extracellular water and CSF water 
volumes (32). Assuming that each of these three compartments 
exhibits unique transverse and longitudinal relaxation times and 
diffusion coefficient, the signal model can be expressed as:
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(1)

where S is the measured signal at a given combination of TE, 
repetition time (TR) and b-value; S0 is the signal at TE = 0 ms with 
TR = +∞ and b-value = 0 s/mm2; fin, fex and fiso are, respectively, the 
fractions of the intracellular, extracellular and CSF water pools; T in2, , 
T ex2,  and T iso2,  are, respectively, the transverse relaxation times of the 
intracellular, extracellular and CSF water pools; T in1, , T ex1,  and T iso1,  
are, respectively, the longitudinal relaxation times of the intracellular, 
extracellular and CSF water pools; and SD in, , SD ex,  and SD iso,  are, 
respectively, the signal attenuation due to water diffusion of the 
intracellular, extracellular and CSF water pools. When long TR is 
applied (e.g., TR > > T1), the T1 effect is mitigated so that Eq. 1 can 
be reduced to:
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Furthermore, it has previously been shown that 
T T Tin ex in ex2 2 2, , , /≈ =  (58–61), in which case Eq. 2 can be reduced to:

FIGURE 1

Upper panel: number of participants per age decade and sex within the study cohort. Lower panel: visualization of the white matter ROIs used in our 
analysis. (1) Frontal lobes (FL), (2) parietal lobes (PL), (3) occipital lobes (OL), (4) cerebellum (CRB), (5) corpus callosum (CC), (6) internal capsules (IC), (7) 
forceps (FR), (8) corona radiata (CR), (9) cerebral peduncles (CP), (10) longitudinal fasciculus (LF), (11) thalamic radiation (TR), (12) temporal lobes (TL), 
(13) fronto-occipital fasciculus (FOF).
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 A f S f S F Sin D in ex D ex iso D iso= + +, , ,  (3)

where A S Sb= =/ 0  is the measured normalized diffusion-
weighted signal, with S S TE T in exb=0    = 0 2exp(- / ), /  representing 
the T2-weigthed image obtained at b-value of 0 s/mm2, and 
F f TE T TE Tiso iso iso in ex= +   .exp(- / / ), , /2 2  In voxels with no CSF 

contamination such as the deep WM regions, Fiso = 0  so that Eq. 3 
can be reduced to A f S f Sin D in in D ex= + −( ), ,1 , in which case, der ived  
NDI (i.e., fin) values are expected to be relatively independent of T2 
and, therefore, are also relatively independent of the choice of 
TE. However, in regions with CSF contamination, i.e., Fiso > 0 , which 
must be estimated.

It must be  emphasized that C-NODDI relies on the strong 
assumption that the transverse relaxation times of the intracellular and 
extra-cellular waters exhibit similar values. However, separation in 
relaxation times between intracellular and extracellular water 
compartments remains an open area of investigation. While 
relaxometry-based studies consistently indicate minimal differences 
in these transverse relaxation times despite employing different 
acquisition strategies and fitting approaches (58–60, 68), some 
diffusion-relaxometry-based studies suggest the potential for 
discrepant values (56, 69).

NDI and ODI mapping
In the original NODDI approach, Fiso is derived along with 

NDI and ODI (32). We modified the NODDI MATLAB toolbox1 
so that Fiso is instead provided as a known input parameter. This 
strategy allows a reduction of the number of unknown parameters 
to be estimated (Eq. 3), thus restricting the parameter space and 
improving the fitting stability of the C-NODDI signal model 
(70–73). Here, the Fiso map is computed from the T2-weigthed 
image obtained at b-value of 0 s/mm2 using the hidden Markov 
random field model and the expectation–maximization algorithm 
(74), known as FAST in the FSL software (75). FAST segments a 
structural image of the brain into different tissue classes, 
including WM, GM and CSF/Fiso, providing, in each voxel, 
estimates of the fractions of these tissue compartments. Extensive 
work has previously been conducted to evaluate the accuracy of 
FAST for tissue segmentation (76–78). The derived Fiso map is 
then used as an input to calculate NDI and ODI using our 
modified NODDI approach, C-NODDI. All MATLAB codes are 
available upon request from the corresponding author.

For each participant, corresponding NDI and ODI maps were 
generated using NODDI and C-NODDI. Specifically, all DW 
images were registered to the b0 image and corrected for motion 
and eddy current distortion artifacts using the Artefact Correction 
in Diffusion MRI (ACID) toolbox2 (79). The co-registered DW 
images were then used to calculate NDI and ODI using NODDI or 
C-NODDI.

1 https://www.nitrc.org/projects/noddi_toolbox

2 http://diffusiontools.com/

Regions-of-interest determination

For each participant, using FSL, the DW image obtained with 
b of 0 s/mm2 was nonlinearly registered to the Montreal 
Neurological Institute (MNI) standard space and the derived 
transformation matrix was then applied to the corresponding NDI 
and ODI maps. Fourteen WM regions of interest (ROIs) were 
defined from MNI encompassing the whole brain (WB), frontal 
lobes (FL), parietal lobes (PL), temporal lobes (TL), occipital lobes 
(OL), cerebellum (CRB), corpus callosum (CC), internal capsules 
(IC), cerebral peduncle (CP), corona radiata (CR), thalamic 
radiation (TR), fronto-occipital fasciculus (FOF), longitudinal 
fasciculus (LF), and forceps (FR), as shown in Figure 1. All ROIs 
were eroded to reduce partial volume effects and imperfect image 
registration using the FSL tool fslmaths. Finally, the mean NDI and 
ODI values within each ROI were calculated.

Analyses

Differences in Fiso

In this analysis, we compared derived Fiso maps using NODDI or 
FAST. Derived Fiso maps were shown for a representative example. The 
goal here is to demonstrate the overestimation of Fiso from NODDI, 
and to evaluate the performance of FAST in Fiso determination.

Differences in NDI and ODI
In this analysis, we  compared NDI and ODI maps derived 

using NODDI or C-NODDI. Average NDI and ODI maps by age 
intervals over the adult lifespan for a representative axial slice were 
calculated. Furthermore, to investigate the effects of age and sex on 
NDI and ODI, multiple linear regression analysis was applied using 
the mean NDI or ODI derived from NODDI or C-NODDI within 
each ROI as the dependent variable and sex, age, and age2 as the 
independent variables, after mean age centering. In all cases, the 
interactions between sex and age or age2 were found to 
be  nonsignificant and were therefore omitted from the 
parsimonious model. Further, for each ROI, Pearson correlation 
analysis was conducted to examine the discrepancy between ODI, 
or NDI, values derived using NODDI or C-NODDI. For all 
analyses, the threshold for statistical significance was p < 0.05 after 
correction for multiple ROI comparisons using the FDR method 
(80, 81). FDR correction was conducted across ROIs for each 
MRI metric.

Correlations of NDI and NfL
In this analysis, we  assessed the correlations between NDI 

derived using NODDI or C-NODDI and NfL which represents a 
plasma biomarker of axonal degeneration (62–66). NfL was 
measured from 43 participants of our study cohort (age: 50 [SD 18]). 
Blood for plasma biomarker measurement was collected at the time 
of MRI. Plasma was separated, aliquoted and stored at −80°C using 
standardized protocols. EDTA plasma was used to measure NfL 
using the Quanterix Single Molecule Array (Simoa) Neurology 
4-Plex E assay on the HD-X Instrument (Quanterix Corporation). 
NfL was used as the dependent variable and NDI as the independent 
variables while accounting for age and sex as relevant covariates. The 
regression model is given by:
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 NFL NDI age sexi NDI i age i sex i~ ,β β β β0 + × + × + ×

where β  is the regression coefficients and i is the index of ith 
subject. NfL values were log-transformed to remove the skewness of 
their distributions. Further, to facilitate results interpretation, the NfL 
and NDI indices were Z-scored by calculating the mean (μ) and 
standard deviation (σ) separately for NfL and NDI variables in the full 
study sample using the formula z = (x – μ)/σ.

Effect of TE
To investigate the effect of TE on derived NDI and ODI values 

using C-NODDI or NODDI, parameter maps as well as mean values 
calculated over a large WM region encompassing the cerebral lobes, 
at each TE, were displayed for two participants.

Results

Figure 2 shows representative Fiso maps derived using NODDI or 
FAST/FSL. It is readily seen that th Fiso map derived using NODDI 
exhibits abnormally high Fiso values, especially within several WM 
regions, with values reaching over 0.25 (i.e., 25%) in several voxels. In 
contrast, derived Fiso values using the hidden Markov random field 
model and the expectation–maximization algorithm, the FAST 
algorithm as implemented in FSL, are within the physiologically 
expected ranges with values near zero in the deep WM regions.

Figure 3 shows representative average NDI and ODI maps for 
different age intervals corresponding to young, middle, late middle 
and late adulthood. Visual inspection indicates increases in NDI 
values from early adulthood through middle age (i.e., 40–59 years), 
followed by lower NDI values in several brain regions, consistent with 
progressive increases in axonal density followed by reductions at older 
ages. Furthermore, we note that different regions exhibit different 

patterns in the association of NDI with age. In contrast, the ODI maps 
exhibit low regional variations with age. Remarkably, NDI maps 
derived from NODDI exhibit values that exceed 0.7 (i.e., 70%) in 
several cerebral WM structures, while the NDI values derived using 
C-NODDI are considerably lower. Moreover, ODI maps derived using 
NODDI and C-NODDI were virtually identical. Indeed, our 
quantitative comparison, presented in Figure 4, indicates weak to 
moderate regional Pearson correlation between the NDI values 
derived using NODDI and those derived using C-NODDI for all ROIs 
investigated, in agreement with visual inspection (Figure  3). In 
contrast, strong regional correlations were observed between the ODI 
values derived from the two NODDI approaches.

Figures 5, 6 show, respectively, quantitative results for the NDI and 
ODI values calculated using NODDI or C-NODDI from all participants 
as a function of age for the indicated 14 WM regions. These results 
show, in agreement with Figures 3, 4, increasing NDI until middle age 
followed by decreases afterward in most examined ROIs, with the 
best-fit curves displaying regional variation. Remarkably, the quadratic 
effect of age on NDI derived using C-NODDI was readily observable in 
almost all ROIs, as compared to the NDI results derived using NODDI 
which was limited to a few. Furthermore, in agreement with Figures 3, 
4, ODI values derived using either NODDI approach exhibited similar 
regional trends that were, overall, constant with age with limited ROIs 
exhibiting either increasing or decreasing trends. In agreement with 
visual inspection, statistical analysis indicates that the quadratic effect 
of age, age2, on NDI derived using C-NODDI was significant (p < 0.05) 
in several ROIs, while this effect on NDI derived using NODDI was 
limited to a few ROIs (Table 1). For both NODDI approaches, the 
quadratic effect of age on ODI was not significant. In contrast, the effect 
of age on NDI-C-NODDI was significant in almost all ROIs, while the 
age effect on NDI-NODDI was observed in only three ROIs. For both 
NODDI approaches, the effect of age on ODI was only significant in 
very limited cerebral regions. In addition, the effect of sex on NDI or 
ODI was, overall, not significant. Finally, in all ROIs, the NDI-C-
NODDI results exhibited peak values at younger ages, as compared to 
the NDI results derived using NODDI.

Our multiple regression between NDI and NfL indicates 
stronger correlations between NDI-C-NODDI vs. NfL as 
compared to NDI-NODDI vs. NfL, with lower NDI values 
corresponding to higher NfL concentration levels in all ROIs 
investigated (Figure  7). We  also note that the negative trend 
between NDI and NfL was observed in all brain regions except in 
the cerebral peduncles (data not shown).

Finally, Figures 8, 9 show, respectively, examples of derived NDI 
and ODI maps and mean parameter values calculated over the whole 
WM region using NODDI or C-NODDI at several TEs using DWI 
data acquired from the brains of two participants. Visual inspection 
and quantitative analysis indicate that derived NDI estimates using 
NODDI are TE-dependent exhibiting increased values with TE 
increases. In contrast, the NDI maps and mean values calculated using 
C-NODDI exhibit lower dependence on TE. However, although the 
majority of the white matter regions exhibited relatively lower 
dependence on TE, some regions showed substantially increased 
values with TE. Further, it is readily seen that the ODI maps calculated 
using NODDI or C-NODDI are similar and with mean values virtually 
constant as a function of TE. Moreover, we note that derived NDI and 
ODI maps exhibit some regional differences across TEs; this is due to 
differences in signal-to-noise ratio due to differences in TEs leading 

FIGURE 2

Representative maps of the fraction of the isotropic diffusion 
component Fiso, that is, the cerebrospinal fluid fraction, derived using 
NODDI (left) or using the FAST algorithm as implemented in the FSL 
software (right). Results are shown for three representative slices. It is 
readily seen that the NODDI approach overestimates Fiso, especially 
in the white matter regions.
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to signal drops at higher TEs, as well as to some persisting 
image misregistration.

Discussion and conclusion

In this work, we introduced a modification of the NODDI signal 
model, C-NODDI, to overcome documented problems with the 
original NODDI approach. Specifically, this modification addresses 
the overestimations of the CSF and NDI fractions in WM. Our results 
show that C-NODDI provides lower NDI estimates as compared to 
NODDI and confirm that NODDI provides high NDI values in 
several WM structures with values over 70% at several cerebral 
structures in agreement with previous reports (56, 57). NDI values 
derived from C-NODDI were regionally 20–40% lower than those 
derived using NODDI; this agrees with Bouyagoub and colleagues’ 
results (57). However, unlike their approach which requires a 
substantial extension of the total acquisition time, our approach does 
not require additional acquisition time. Indeed, C-NODDI is based 
on prior estimation of the signal fraction of the CSF. In this proof-of-
concept work, we showed that this fraction can be estimated using 
the T2-weigthed image acquired at b-value of 0 s/mm2 and the hidden 

Markov random field model and the expectation–maximization 
algorithm; this allows reduction of the fitting parameter space of the 
NODDI model (74). Indeed, the NODDI signal model incorporates 
several parameters to be estimated. Parameter estimation in high 
dimensional problems, that is, those for which the number of 
parameters to be estimated is large, is complicated by the presence of 
local minima and saddle points (73). This problem becomes more 
acute with the flatness of the least-squares residual surfaces seen with 
increasing model complexity exhibiting higher sloppiness, that is, 
different parameter combinations leading to virtually equivalent 
signal behavior (70–72). However, both NODDI and C-NODDI 
signal models are just approximations of the underlying biology so 
that further histological validations are required to assess their 
reliability and accuracy. We  note that the CSF fraction can 
be estimated using different approaches, including the free-water 
estimation (FWE) diffusion approaches from the same NODDI 
dataset, or using FAST from various other structural contrast-
weighted images that are routinely acquired in clinical studies (82, 
83), or from single shell diffusion (82, 84, 85). A thorough comparison 
of all these techniques is still needed, especially in the context of their 
applications to neurodegeneration. Nevertheless, the existing FWE 
diffusion approaches provide only an estimate of the apparent free 

FIGURE 3

NDI and ODI maps represented as averaged participant maps calculated over four age intervals. Results are shown for a representative slice. NDI and 
ODI maps derived (A) using the original NODDI approach, and (B) using the C-NODDI approach. While the ODI values derived using both approaches 
are virtually identical, C-NODDI provides substantially lower NDI values than those derived using NODDI.
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water fraction due to the impact of the differential T2 weighting of the 
intra/extra and CSF/free water compartments. While MTE-NODDI 
provides CSF fraction maps that are TE-independent and with values 
that are relatively lower than those derived using NODDI (Figure 10), 
their determination is still based on the Fiso maps derived using 
NODDI at each TEs. Therefore, further investigations are needed to 
assess its reliability. Finally, we note that C-NODDI is in principle 
similar to a recently introduced technique, DLpN, where the CSF is 
used as a prior (84). A direct comparison between DLpN and 

C-NODDI as well as the association of derived NDI values with NfL 
is of interest and represent a potential direction of the current work.

We investigated the association between NDI or ODI, derived 
using NODDI or C-NODDI, and age in several cerebral WM structures 
in a healthy adult population spanning a wide age range. Our results 
revealed widespread WM microstructural differences as a function of 
age, as well as regional variations between the NDI or ODI measures 
and age. Specifically, NDI exhibited quadratic, inverted U-shaped, 
regional trends with age; this agrees with Beck and colleagues’ and our 

FIGURE 4

Pearson correlations between NDI, or ODI, derived values using C-NODDI and NODDI in the 14 WM ROIs studied. The coefficient of determination is 
provided with * indicating significant correlation. While derived ODI values using NODDI or C-NODDI were virtually identical exhibiting very high 
correlation coefficients, the NDI values derived using these two approaches were substantially different with NODDI exhibiting higher NDI values in 
several WM regions. WB, whole brain; FL, frontal lobes; PL, parietal lobes; TL, temporal lobes; OL, occipital lobes; CRB, cerebellum; CC, corpus 
callosum; IC, internal capsules; CP, cerebral peduncle; CR, corona radiata; TR, thalamic radiation; FOF, fronto-occipital fasciculus; LF, longitudinal 
fasciculus; FR, forceps.
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recent results (6, 7) and to some extent with Cox and colleagues’ and 
Laurence and colleagues’ observation in a large sample sizes derived 
from the UK Biobank (55, 86). We attribute this finding to a continuous 
maturation of axons with an increase in axonal density until middle 
age, followed by a phase of neurodegeneration and consequence axonal 
loss at older ages. Interestingly, the quadratic effect of age, age2, on NDI 
was significant (p < 0.05) in several regions investigated using 
C-NODDI, while this inverted U-shaped association was limited to 
only a few cerebral regions using the original NODDI approach. 
Although this observation indicates the potential higher sensitivity of 

C-NODDI to capturing differences in neurite density with age, further 
comparison between NODDI and C-NODDI in larger cohorts is still 
required to confirm or infirm this finding. We  note that other 
investigations have shown either higher or lower NDI values with age 
in WM (43, 44, 46). This discrepancy is likely due to differences in the 
characteristics of the study cohorts as well the instability of 
NODDI. Indeed, Billiet’s and Chang’s studies, although incorporating 
wide age ranges, possess only a limited number of subjects over 60 years 
old, while Merluzzi’s cohort included only subjects over 45 years old. 
These limitations may have precluded the detection of the quadratic 

FIGURE 5

Regional NDI values derived using NODDI (top plots) or C-NODDI (bottom plots) as a function of age. Although most regions investigated exhibit 
inverted U-shaped trends of NDI with age, these quadratic trends were more noticeable and significant for the NDI-C-NODDI results (see Table 1). WB, 
whole brain; FL, frontal lobes; PL, parietal lobes; TL: temporal lobes; OL, occipital lobes; CRB, cerebellum; CC, corpus callosum; IC, internal capsules; 
CP, cerebral peduncle; CR, corona radiata; TR, thalamic radiation; FOF, fronto-occipital fasciculus; LF, longitudinal fasciculus; FR, forceps. * indicates 
p  <  0.05 while ** indicates p  <  0.01.
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association between NDI and age, that Beck, Lawrence and we have 
observed (6, 7, 55). This issue may have been exacerbated by differences 
in the experimental implementation of NODDI given its high 
sensitivity to TE (56). Further, ODI exhibited non-consistent regional 
trends with age, with most WM regions exhibiting constant trends 
while other, but limited, regions exhibited either increasing or 
decreasing trends. The literature regarding differences in ODI with age 
remains sparse, necessitating further detailed investigations (6, 43, 44, 
46). Finally, our results revealed that elevated concentration levels of 
NfL were associated with lower NDI values suggesting a role of axonal 
degeneration in neuroinflammation. This association was stronger 
between NDI derived using C-NODDI and NfL, suggesting that 

NDI-C-NODDI could represent a reliable imaging biomarker of 
axonal integrity. Further studies in larger cohorts and using NfL 
concentrations derived from CSF are still required.

In all ROIs, NDI calculated using C-NODDI exhibited peak 
values at much younger ages compared to NDI calculated using 
NODDI, with differences ranging from ~6 to ~10 years. This indicates 
that axonal maturation continues until the early fifth decade of age. 
This finding agrees with results derived using sensitive MRI measures 
of axonal density, including relaxation times and DTI indices, all 
indicating that WM tissue maturation continues until the late fourth 
decade to the early fifth decade of age (15, 16, 18, 87). Interestingly, 
recent studies have shown that myelination continues until the early 

FIGURE 6

Regional ODI values derived using NODDI (top plots) or C-NODDI (bottom plots) as a function of age. Results were very similar for both approaches. 
WB, whole brain; FL, frontal lobes; PL, parietal lobes; TL, temporal lobes; OL, occipital lobes; CRB, cerebellum; CC, corpus callosum; IC, internal 
capsules; CP, cerebral peduncle; CR, corona radiata; TR, thalamic radiation; FOF, fronto-occipital fasciculus; LF, longitudinal fasciculus; FR, forceps.
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fifth decade of age as well (17, 88, 89). It has been shown that axonal 
activity is an important contributing factor in myelin modulation (90, 
91). Moreover, aside from acting as an electric insulator, 
oligodendrocytes, the cells that produce myelin, provide substantial 
metabolic support to axons (92). Given this physiological coupling 
between axons and myelination, it is plausible that axonal maturation 
and myelin maturation follow similar patterns and peak at similar 
ages. However, further investigations on larger cohorts, in addition to 
longitudinal studies, are required to derive definite conclusions 

regarding whether the maturation and myelination pattern of axons 
are mechanistically associated or represent two independent 
neurological processes. These studies are crucial for the development 
of specific interventions supporting myelin maintenance, axonal 
regeneration, or both simultaneously.

Using data acquired from three participants at different TEs, 
we confirmed Gong and colleagues’ observation that the NDI estimates 
are dependent on TE, with NDI values increasing with TE (56). However, 
derived NDI values using C-NODDI exhibited a relatively lower 

TABLE 1 Significance of each coefficient incorporated into the linear regression analysis of NDI or ODI derived using NODDI or C-NODDI, and the year 
of apparent maximum NDI in each ROI.

NODDI C-NODDI

NDI ODI NDI ODI

Age Sex Age2 Year of 
max NDI

Age Sex Age2 Age Sex Age2 Year of 
max NDI

Age Sex Age2

WB – – ** 50.8 – – – ** – ** 42.3 – – –

FL – – ** 48.9 – * – ** – ** 41.1 * – –

OL – – – NA – – – ** – ** 41.8 – – –

PL – – * 50.5 – * – ** – ** 44.6 * – –

TL – – * 50.3 – – – ** – ** 44.0 – – –

CRB * – – NA – – – * – – NA – – –

CC – – – NA – – – ** – – NA – – –

IC – – – NA * – – * – – NA ** – –

CP * – – NA – – – - – – NA – – –

CR – – – NA * – – ** – – NA ** – –

TR – – – NA * – – * – – NA ** – –

FOF – – ** 49.9 – – – ** – * 40.6 – – –

LF – – – NA – – – ** – – NA – – –

FR * – – NA – – – ** – – NA – – –

NA indicates “not applicable” for a nonsignificant age2 term. * Indicates p < 0.05, ** indicates p < 0.01, and – indicates non-significant effects. All p-values presented are obtained after FDR 
correction. WB, whole brain; FL, frontal lobes; PL, parietal lobes; TL, temporal lobes; OL, occipital lobes; CRB, cerebellum; CC, corpus callosum; IC, internal capsules; CP, cerebral peduncle; 
CR, corona radiata; TR, thalamic radiation; FOF, fronto-occipital fasciculus; LF, longitudinal fasciculus; FR, forceps.

FIGURE 7

Representative correlation plots between neurodegeneration biomarker, NfL, and NDI values derived using NODDI (left plot) or C-NODDI (right plot) 
from the whole brain, frontal lobes, occipital lobes, parietal lobes, or temporal lobes. Line of fit (in blue), confidence interval lines (red), and the 
regression coefficient (βNDI) and significance (pNDI) of the NDI variable were displayed.
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dependence on TE in several WM structures. We believe that the artificial 
overestimation of the CSF fraction using NODDI is a leading factor of the 
strong underlying TE-dependency observed previously, particularly in 
WM. It is important to note that certain WM regions still exhibited 
TE-dependency in C-NOODI, with relatively higher values observed at 
increasing TE. Thus, further examination of the effect of T2s on derived 

diffusion parameters is required as well as a comprehensive comparison 
of these approaches under different experimental designs, including in 
terms of different ranges and numbers of TEs and b-values. Furthermore, 
in perfect agreement with Bouyagoub’s and Gong’s results (56, 57), 
we found that ODI values derived using NODDI or C-NODDI were 
virtually identical, as expected. Since the calculation of ODI does not 

FIGURE 8

NDI and ODI maps derived using NODDI or C-NODDI from DWI data acquired at different TEs from the brains of two different participants. Results are 
shown for a representative slice for each of the participants.

FIGURE 9

Mean NDI values and ODI values calculated from a large WM region encompassing the cerebral lobes, derived using NODDI or C-NODDI as a function 
of TE. It is readily seen from this quantitative analysis that the NDI values derived using NODDI increase with TE, while derived ODI values using either 
approach are relatively similar between both approaches with, overall, constant or decreasing trends as a function of TE, in agreement with the visual 
inspection (Figure 8).
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incorporate signal fractions, it remains insensitive to differences in the 
CSF variation.

There are various techniques available to estimate NDI or ODI 
from single-shell or multishell DTI data (56, 69, 93–95). One of these 
techniques is the NODDI-DTI which assumes null CSF fractions in 
the WM (95). This contrasts with C-NODDI that uses the isotropic 
water fraction as a known pre-determined parameter. Interestingly, 
unlike C-NODDI, NODDI-DTI provides NDI values that are similar 
to those derived using NODDI. However, NODDI-DTI provides a 
unique approach to approximate NDI values from single-shell DTI, 
which has been used before by our group to reduce the scan time 
needed for whole-brain aggregate g-ratio mapping (30). However, it 
is important to acknowledge that all these methods are based on 
model simplifications, biophysical assumptions, fixed parameters, or 
complex fitting approaches, which may lack validation, stability, or 
clinical practicality (96, 97). However, there is a great deal of research 
currently toward further validation of these assumptions especially in 
preclinical research for more accurate determination of NDI or 
ODI. While challenging, more work must be conducted to make these 
techniques truly translatable to clinical investigations (98, 99). 
We  believe that our approach introduced here for physiologically 
plausible NDI value and the validation against NfL opens the way for 
further developments to improve the NODDI modeling.

Our work has limitations. Although our cohort spans a wide age 
range, it does not include participants under the age of 20 due to the 
inclusion and exclusion criteria of the BLSA and GESTALT studies. 
Including younger participants may influence the shape of the NDI or 
ODI age-related trends and the assessment of their respective maxima 
with respect to age (100). With our current dataset being cross-
sectional, our results could be further validated through longitudinal 
studies; such work is underway. In addition, the NODDI and C-NODDI 
implementations are based on several assumptions and fixed values for 
certain diffusivity parameters to improve the stability of the signal 
model. Further analyses are needed to investigate the effects of these 
fixed parameters on the NODDI and C-NODDI outcomes. Moreover, 
our acquisition protocol included only one image at b-value of 0 s/mm2. 
However, it has been shown that several b0 images are critical for an 
accurate determination of diffusion parameters (101). We also note that 
NODDI and C-NODDI assume similar transverse relaxation times 
between the intracellular and extracellular water compartments. This 
assumption is based on extensive relaxometry-based as well as 
diffusion-relaxometry-based work (58–61, 102). Although our results 
showing lower dependence of TE for C-NODDI derived NDI values in 

different brain regions support our assumption of relatively similar T2s 
between the intra- and extra-cellular water compartments, other 
regions exhibit dependence to TE in agreement with previous work 
suggesting that these compartments exhibit different T2s (56, 103). 
While our investigation has not yielded a definitive conclusion on this 
assumption, this observation highlights the complexity of brain 
microstructure and the potential limitations of a “one assumption fits 
all” approach given the fact that all these methods are simplifications 
based on biophysical assumptions that are often not validated or fitting 
approaches that are unstable which could lead to spurious results. 
We remain dedicated to further exploring this intriguing discrepancy 
within the existing literature. Finally, our method was applied to 
cognitively unimpaired individuals with further investigations required 
in the context of neurodegeneration and cognitive impairment. This is 
a proof-of-concept study, and further validation is warranted by 
acquiring data from different sites and scanners, as well as through 
post-mortem studies.
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FIGURE 10

Representative maps of the fraction of the isotropic diffusion 
component (Fiso), that is, the cerebrospinal fluid fraction, derived 
using MTE-NODDI (left) or using the FAST algorithm as implemented 
in the FSL software (right). Results are shown for a representative 
slice.
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