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Myelin oligodendrocyte glycoprotein (MOG) is expressed on the outermost 
layer of the myelin sheath in the central nervous system. Recently, the clinical 
concept of MOG antibody-associated disease (MOGAD) was established based 
on the results of human MOG-transfected cell-based assays which can detect 
conformation-sensitive antibodies against MOG. In this review, we summarized the 
pathological findings of MOGAD and discussed the issues that remain unresolved. 
MOGAD pathology is principally inflammatory demyelination without astrocyte 
destruction, characterized by perivenous demyelination previously reported in 
acute disseminated encephalomyelitis and by its fusion pattern localized in both 
the white and gray matter, but not by radially expanding confluent demyelination 
typically seen in multiple sclerosis (MS). Some of demyelinating lesions in 
MOGAD show severe loss of MOG staining compared with those of other myelin 
proteins, suggesting a MOG-targeted pathology in the disease. Perivascular 
cuffings mainly consist of macrophages and T cells with CD4-dominancy, which 
is also different from CD8+ T-cell-dominant inflammation in MS. Compared to 
aquaporin 4 (AQP4) antibody-positive neuromyelitis optica spectrum disorders 
(NMOSD), perivenous complement deposition is less common, but can be seen 
on myelinated fibers and on myelin degradation products within macrophages, 
resembling MS Pattern II pathology. Thus, the pathogenetic contribution of 
complements in MOGAD is still debatable. Together, these pathological features 
in MOGAD are clearly different from those of MS and AQP4 antibody-positive 
NMOSD, suggesting that MOGAD is an independent autoimmune demyelinating 
disease entity. Further research is needed to clarify the exact pathomechanisms 
of demyelination and how the pathophysiology relates to the clinical phenotype 
and symptoms leading to disability in MOGAD patients.
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1. Introduction

Myelin oligodendrocyte glycoprotein (MOG) is a glycoprotein 
(consisting of 218 amino acids) expressed in oligodendrocytes and 
is characterized by its distribution in the outermost layer of the 
myelin sheath (1). MOG is composed of multiple splicing variants 
(2, 3), all of which have extracellular immunoglobulin variable 
domains and thus belong to the immunoglobulin superfamily (4). 
Because of these structural features, MOG has a long history of 
research as an autoantigen that can induce inflammatory 
demyelinating pathology in the central nervous system (CNS) 
(5–9), and is one of the best-studied antigens in experimental 
autoimmune encephalomyelitis (EAE) (10–12). Therefore, 
autoantibodies against MOG have long been considered a potential 
cause of human inflammatory demyelinating diseases, particularly 
multiple sclerosis (MS). However, the discovery of clinically 
relevant MOG antibodies in human disease has not been successful 
until recently. Previous results on the detection of MOG antibodies 
by enzyme-linked immunosorbent assay (ELISA) or Western blot 
were confusing due to the low specificity (13). This is because the 
antigen is linear in ELISA or denatured in Western blot such that 
the three-dimensional structure of native MOG was lost; the issue 
was resolved when the conformation-sensitive MOG antibody 
became detectable by human MOG-transfected cell-based assays 
(CBAs) (14–16). As a result, MOG antibodies have been found in 
patients with optic neuritis, acute myelitis, neuromyelitis optica 
spectrum disorders (NMOSD) without aquaporin 4 (AQP4) 
antibodies (17, 18), acute disseminated encephalomyelitis (ADEM) 
(19, 20), and brainstem (21–23) and cerebral cortical encephalitis 
(24–26). In contrast, typical MS patients are essentially negative for 
MOG antibodies (27, 28). Consequently, patients with MOG 
antibodies came to be  recognized as belonging to a group with 
inflammatory demyelinating conditions distinct from MS, and the 
international diagnostic criteria of MOG antibody-associated 
disease (MOGAD) were recently published (29).

In this review, we summarized the histopathological findings of 
MOGAD in published studies. In particular, we  outlined the 
pathologies typically found in MOGAD and the issues that remain 
unresolved because of inconsistent results in previous studies. We also 
discussed the unique pathogenesis of MOGAD by comparing it with 
MS and AQP4 antibody-positive NMOSD (AQP4 + NMOSD).

2. Histopathological features of 
MOGAD

2.1. Patterns of demyelination

The pattern of demyelination seen in well-known inflammatory 
demyelinating diseases can be classified into “confluent demyelination” 
in MS, “perivenous demyelination” in ADEM and “concentric 
demyelination” in Balo’s disease (Figure  1) (30, 31). “Confluent 
demyelination” is characterized by fusion and enlargement of 
perivascular demyelinating lesions with well-defined borders, 
resulting in the formation of large plaques, and the lesions may 
occasionally exhibit a map-like morphology (Figure 1A). On the other 
hand, “perivenous demyelination” is the one with indistinct borders 
around a single small vessel with inflammatory cell infiltration, and 

often multifocal (Figure 1B). Perivenous demyelination is considered 
useful in the pathological differentiation of ADEM from MS (32). 
However, it should be  noted that we  may miss “perivenous 
demyelination” because it can be very small, and the activity of myelin 
phagocytosis by macrophages is sometimes scarce, requiring careful 
observation (Figure 2).

The pathology of MOGAD is characterized by a mixture of 
perivenous and confluent demyelinating lesions (Figure 1D) (33, 34), 
and their proportions may depend on the timing of tissue sampling 
and disease severity (Tables 1, 2) (24, 33–47). The median time to 
tissue sampling in our study (one month) (33) was shorter than that 
in Höftberger et  al. (seven months) (34) (Table  1), and the 
demyelination patterns in the two studies were different (90% of the 
lesions in our cases had perivenous demyelination, while 50% of the 
lesions in Höftberger’s study had a transitional pattern [a combination 
of perivenous and confluent demyelinations]). However, it is 
important to mention that among confluent demyelinating lesions, 
slowly expanding lesions (SELs) typically seen in the subacute to 
chronic stage of MS (Figure 3) (48) are rarely observed in MOGAD 
patients (34) or AQP4 + NMOSD patients (49). SELs are characterized 
by the accumulation of activated macrophages/microglia at the lesion 
edge with iron deposition (50), which is thought to be involved in the 
progression of MS (51–53). In other words, demyelinating lesion 
formation in MOGAD patients is characterized by simultaneous 
development of multiple perivascular inflammatory demyelination 
and its fusion to form confluent demyelination, which is different 
from radial expansion of the lesions in MS.

2.2. Distribution of demyelinating lesions

Demyelinating lesions in MOGAD patients are found mainly in 
the white matter but also in the subpial cortex to cortico-medullary 
junction and deep gray matter (Figure 4) (33, 34, 47). Within these 
lesions, CD68-positive macrophages/microglia widely infiltrate the 
cortex (Figure 4). The frequency of cortical demyelination is reported 
to be higher in MOGAD patients with cerebral involvement than in 
MS patients (34), which is compatible with the high incidence of 
cortical involvement in MOGAD patients, evidenced by conditions 
such as ADEM and cerebral cortical encephalitis (29). In addition, 
inflammatory cells infiltrate around meningeal vessels adjacent to 
subpial demyelinating lesions (33, 34, 45, 47). In cerebral cortical 
encephalitis of MOGAD patients, brain MRI scans often show 
contrast enhancing effects in the meninges which may reflect such 
inflammation around the meningeal vessels (47).

2.3. Preferential loss of specific myelin 
component(s)

When evaluating demyelinating lesions, it is important to identify 
primarily damaged myelin component(s) by immunohistochemistry 
to assess the type and stage of the disease (48, 54). Our study and 
several previous case reports indicated that some demyelinating 
lesions found in patients with MOGAD showed MOG-dominant 
myelin loss especially in the early-stage (Figure 5) (33, 37, 42, 46), and 
some myelin-laden macrophages localized at the perivascular space 
showed MOG-dominant phagocytosis (33). In addition, 
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FIGURE 1

Various types of demyelination. (A) Confluent demyelination (SPMS). (B) Perivenous demyelination (ADEM). (C) Concentric demyelination (Balo’s 
disease). (D) Mixed pathology of confluent and perivenous demyelination (MOGAD). (A–D) Klüver-Barrera staining. ADEM, acute disseminated 
encephalomyelitis; MOGAD, myelin oligodendrocyte glycoprotein antibody-associated disease; SPMS, secondary progressive multiple sclerosis.

FIGURE 2

Perivenous demyelination in MOGAD. A demyelinating lesion was seen around small vessels with inflammatory cell infiltration. There were a small 
number of macrophages that phagocytosed myelin debris (insert in B). (A) MBP, (B) MOG (blue)/CD68 (brown). MBP, myelin basic protein; MOG, 
myelin oligodendrocyte glycoprotein; MOGAD, MOG antibody-associated disease.
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oligodendrocytes are relatively preserved in MOGAD demyelinating 
lesions (33, 37, 38, 44). These findings support that MOGAD actually 
targets MOG and that its demyelination process may initially occur 
on the surface of the myelin sheath. However, Höftberger et  al. 
reported no MOG dominant myelin loss in their study (34), and it 
remains to be clarified what this difference originated from. On the 
other hand, some reports indicated that preferential loss of myelin 
associated glycoprotein (MAG) could occur in MOGAD patients 
although the incidence was very low (34, 40). Since MAG is expressed 
in the innermost layer of the myelin sheath and is most distant from 
the oligodendrocyte cell body, preferential loss of MAG is thought to 
reflect oligodendrocyte damage (distal oligodendrogliopathy) (55). 
This finding is seen in patients with MS pattern III lesions (56); Balo’s 
disease (57); AQP4 + NMOSD (58); and ischemic tissue damage such 
as cerebral infarction (59). Since MOG is also expressed at the surface 
of oligodendrocytes, depending on the concentration or characteristics 
of MOG antibodies, some oligodendrocytes may be  damaged by 
MOG antibodies.

2.4. Characteristics of inflammatory cell 
infiltration

The cellular infiltrate in inflammatory demyelinating lesions is 
composed mainly of myelin phagocytosing macrophages at the sites 
of demyelination and T-cell clusters in the perivascular space 
(perivascular cuffing). Infiltrating cells in the lesions of MOGAD are 
essentially similar (Tables 1, 2), but a characteristic feature of MOGAD 
is CD4+ T-cell-dominant infiltration in the demyelinating lesions (33, 

34), which is different from the dominance of CD8+ T-cell infiltrates 
in MS lesions (60, 61). Some of those CD4+ T cells in MOGAD might 
be reactive to MOG epitopes. However, it should be noted that the 
timing of the sampling of specimens should be  considered. In 
AQP4 + NMOSD, the main subpopulation of T cells infiltrated in the 
lesions changes from CD4 in the acute phase to CD8 in the chronic 
phase of the disease (49). Most of the CNS tissue specimens of 
MOGAD patients examined in the published studies were obtained 
in the acute phase, and the pathological findings in the chronic phase 
have not been examined. Therefore, the characteristics of T cells 
infiltrating the lesion may reflect differences in the stage of the disease 
rather than pathogenesis, and further detailed verification is required 
in the future. However, it is known that the levels of T helper 17 
(Th17)-related cytokines are markedly elevated in the cerebrospinal 
fluid (CSF) of patients during the acute phase of MOGAD and 
AQP4 + NMOSD when compared with those of MS patients and 
control subjects (62). Thus, in the acute phase, T-cell subpopulations 
infiltrating the lesions are different between MOGAD and MS patients.

B cells are seen in small numbers in the perivascular space, but are 
less frequent than T cells (33, 34). Additionally, ectopic lymphoid 
follicles, as reported in MS (63, 64), have not been detected in 
MOGAD patients. However, occasionally B-cell aggregates may 
be seen in the leptomeninges (47). In MOGAD patients, intrathecal 
production of MOG antibodies seems to occur more frequently than 
in AQP4 + NMOSD patients (65–68), suggesting that B cells 
infiltrating the CNS produce MOG antibodies and contribute to the 
pathogenesis of the disease. In addition, CXCR4 is upregulated in B 
cells in patients with MOGAD (69), and its ligand, CXCL12, is known 
to be elevated in the CSF (70). Thus, CXCL12/CXCR4 may contribute 

TABLE 1 Comparison of clinical findings and pathology of MOGAD in two studies of more than 10 patients.

Reference Takai et al. (33) Höftberger et al. (34)

Clinical findings

Patients, n 11 24 (Autopsy 2)

Age (year) 29 (9–64)* 10 (1–66)*

Female/Male (female %) 6/11, 55% 13/22, 59%

Diagnosis

ADEM-like: 6/11

LE: 3/11

CCE: 2/11

ADEM-like: 11/18

NMOSD: 1/18

Myelitis: 2/18

ON: 2/18

CCE: 1/18

BS: 1/18

Time from attack to biopsy (month) 1 (0.5–96)* 7 (0–516)*

Total follow up period (month) 33 (12–180)* 43 (3–516)*

Pathology

Demyelination pattern

Perivenous (ADEM-like) 91% 21%

Confluent (MS-like) 2% 29%

Transitional (perivenous + confluent) 7% 50%

MOG-dominant myelin loss 37% 0%

Astrocytopathy 0/11 (0%) 0/17 (0%)

CD4-dominant T-cell infiltration 10/11 (91%) +

Complement deposition 2/11 (18%) 8/8 (100%)

*Median (range). ADEM, acute demyelinating encephalomyelitis; BS, brain stem lesion; CCE, cortical encephalitis; LE, leukoencephalopathy; NMOSD, neuromyelitis optica spectrum 
disorders; MOG, myelin oligodendrocyte glycoprotein; MOGAD, MOG antibody-associated disease; MS, multiple sclerosis; ON, optic neuritis.
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TABLE 2 Summary of the clinical and pathological findings of MOGAD in case reports.

A

Clinical findings Reference

Case Age Sex Clinical phenotype Antibody other than MOG Author

1 49 F Rel.TDL (open ring) nr Konig et al. (35)

2 71 M Blt.ON, MY, multiple brain lesions AQP4 Di Pauli et al. (36)

3 66 F Rel.myelitis + TDL (open ring) - Spadaro et al. (37)

4 63 F CIS - Jarius et al. (38)

5 67 F Rel.LETM + TDL (multiple) - Wang et al. (39)

6 49 M ADEM (MY + multiple brain lesion) nr Körtvélyessy et al. (40)

7 34 M ADEM (MY + multiple brain lesion) nr

8 28 F Blt.ON + TDL (infiltrative) - Zhou et al. (41)

9 25 F ADEM + ON -

10 29 F CCE + Blt.ON - Ikeda et al. (42)

11 46 M CCE + ON - Fujimori et al. (24)

12 47 M ADEM (diffuse) - Komatsu et al. (43)

13 45 M TDL (infiltrative) - Shu et al. (44)

14 6 F TDL (infiltrative) -

15 37 F CCE + MY - Papathanasiou et al. (45)

16 40 M CCE + multiple brain/brain stem lesion P/C-ANCA

17 52 F TDL (lymphoma) - Uzura et al. (46)

18 17 M CCE + ON + MY - Valencia-Sanchez et al. (47)

19 35 F CCE -

B

Pathological findings

Case Material
Demyelination 
pattern

Oligodendrocyte
Damaged 
myelin 
component

Astrocytopathy Site of complement deposition
IgG 
deposition

Infiltrating 
inflammatory 
cells

Astrocyte 
morphology

AQP4-
loss

Myelin
Inside 
macrophage

Perivascular

1 Biopsy (Brain) Nr Nr Nr Nr Nr Nr + Nr Nr M, T

2 Autopsy Confluent Preoligodendrocyte
MOG = MBP > CNP 

ase
Loss + Nr Nr + Nr CD3, CD8, low B,

3 Biopsy (Brain) Confluent Preserved MOG > PLP Reactive − + + −
Diffuse with 

fiber
M, T (CD8)

(Continued)
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TABLE 2 (Continued)

B

Pathological findings

Case Material
Demyelination 
pattern

Oligodendrocyte
Damaged 
myelin 
component

Astrocytopathy Site of complement deposition
IgG 
deposition

Infiltrating 
inflammatory 
cells

Astrocyte 
morphology

AQP4-
loss

Myelin
Inside 
macrophage

Perivascular

4 Biopsy (Brain) Nr Preserved Even Reactive − Nr + Nr Macrophage CD4 = CD8, B

5 Biopsy (Brain) Confluent Nr Nr Reactive Nr Nr Nr Nr Nr M, T, low B

6 Biopsy (Brain) Confluent Apoptosis MAG > MOG Nr Nr + + Nr + M,T (CD8), B

7
Biopsy (Brain) Confluent Preserved Even Nr Nr Nr Nr + Nr

M (rim), T 

dominant, CD8

8 Biopsy (Brain)
Confluent Nr Nr Reactive − Nr Nr Nr Nr M, T (CD4), low B

9 Biopsy (Brain)

10 Biopsy (Brain) Perivenous, subpial Preserved MOG > MAG, MBP Reactive − − − − − M, T (CD4 > CD8), 

low B

11 Biopsy (Brain) No demyelination Nr Nr Nr Nr Nr Nr Nr Nr M, T, B

12 Biopsy (Brain) Perivenous, confluent Preserved MOG > MAG, MBP Reactive − + + − Diffuse M, T (CD4 > CD8), 

low B

13 Biopsy (Brain) Confluent Preoligodendrocyte Nr Reactive Decrease − Minor − Nr M, T (CD4 > CD8), 

low B

14 Biopsy (Brain) Confluent Preoligodendrocyte Nr Reactive Decrease − Minor − Nr M, T (CD4 > CD8), 

low B

15 Biopsy (Brain) Nr Nr Nr Nr Nr Nr Nr Nr Nr M, T, B

16 Biopsy (Brain) Perivenous, confluent Nr Nr Nr Nr Nr Nr Nr Nr T, B

17 Biopsy (Brain) Perivenous, confluent Preserved MOG > MAG, MBP Reactive − − − − Perivenous M, T, low B

18 Biopsy (Brain) Perivenous, subpial Nr even Nr Nr − − − Nr M, T (CD4 > 8)

19 Biopsy (Brain) Subpial Nr Nr Nr Nr Nr Nr Nr Nr M, T (CD4 = 8), B*

(A) ADEM, acute disseminated encephalomyelitis; ANCA, anti-neutrophil cytoplasmic antibody; AQP4, aquaporin 4; Blt., bilateral; CCE, cerebral cortical encephalitis; CIS, clinically isolated syndrome; F, female; LETM, longitudinally extensive transvers myelitis; M, 
male; MOGAD, myelin oligodendrocyte glycoprotein antibody-associated disease; MY, myelitis; ON, optic neuritis; P/C, perinuclear/cytoplasmic; Rel., relapsing; TDL, tumefactive demyelinating lesion. *, **Same patient in case11* and case7** in reference (33). (B) 
Nr, not reported; MAG, myelin associated glycoprotein; MOG, myelin oligodendrocyte glycoprotein; MBP, myelin basic protein; CNP, 2′,3’-Cyclic-nucleotide 3′-phosphodiesterase; PLP, Proteolipid protein; M, macrophage; T, T cells; B, B cells. +, present; −, absent. 
*Focal meningeal B-cell agglutination without features of ectopic B-cell follicles.
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to the chemotaxis of B cells and other inflammatory cells in MOGAD 
patients (71).

2.5. Deposition of humoral immunity and 
complement activity

Since MOG antibodies are mainly composed of those in the IgG1 
subclass (27, 72), complement-mediated cytotoxicity (CDC) has been 

considered to contribute to the pathogenesis of MOGAD. In fact, both 
in vitro and in vivo, it has been reported that MOG antibody-induced 
cytotoxicity and demyelination can occur in a complement-mediated 
manner (72–74). Indeed, some previous case reports on biopsied 
brain lesions in MOGAD patients showed the deposition of 
complement components on myelin fibers and myelin debris 
phagocytosed by macrophages, and the authors concluded that the 
lesions were probably caused by humoral immune-mediated 
demyelination, such as MS pattern II lesions (37, 38, 40, 56). This type 
of MS lesion is histologically characterized by extensive confluent 
demyelination with tissue deposition of humoral immune factors such 
as complements and immunoglobulins (22). However, the 
histopathological findings of complements in MOGAD patients 
remain debatable, as the reported results have been inconsistent (33, 
34). In our study, only 2 of 11 MOGAD patients showed tissue 
deposition of complement, which was much less frequent and dense 
than in AQP4 + NMOSD patients with perivascular deposition of 
activated complements (C9neo) in all acute lesions (33). However, 
Höftberger et al. concluded that active complement deposition was 
observed in all 8 patients they evaluated (34) (Table 2). This difference 
may be due to the clinical severity, timing of tissue sampling or inter-
individual variability in the severity of MOG-IgG-related cytotoxicity 
other than complement activation, such as antibody-dependent 
cellular phagocytosis (ADCP) and antibody-dependent cellular 
cytotoxicity (ADCC) (75, 76). However, a recent in vitro study 
demonstrated that MOG antibodies elicited much less complement 
activation than AQP4 antibodies (77). AQP4 has two isoforms, M1 
and M23, that differ in their transcription start sites (78). AQP4-M1 
and M23 are coexpressed in the CNS, and M23 is known to form large 
well-ordered assemblies called orthogonal arrays of particles (OAPs) 
(78) and is reported to be more highly expressed in the optic nerve 
and spinal cord, where NMOSD lesions are more likely to occur (79). 

FIGURE 3

Slowly expanding lesion in SPMS. A large well-demarcated 
demyelinating lesion was seen with peripheral infiltration of myelin 
phagocytosed macrophages (insert). MBP (blue)/CD68 (brown). MBP, 
myelin basic protein; SPMS, secondary progressive multiple sclerosis.

FIGURE 4

Subpial demyelination in MOGAD. (A) Myelin fibers were widely lost in the subpial cortex. Perivenous demyelination was observed at the cortical-
medullary junction. (B) CD68 positive macrophages/microglia were diffusely infiltrated the demyelinated cortex. (A) MBP, (B) CD68. MBP, myelin basic 
protein; MOGAD, myelin oligodendrocyte glycoprotein antibody-associated disease.
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The formation of OAPs allows AQP4 to be densely expressed on the 
cell surface, facilitating AQP4 antibody clustering on the cell 
membrane. The classical complement activation pathway is initiated 
by the binding of C1q to the Fc portion of IgG, but requires bivalent 
or multivalent binding (80). Thus, complement components are more 
likely to be  activated when IgG is densely bound on the plasma 
membrane, and in fact, the presence of OAPs significantly enhanced 
complement-mediated cytotoxicity by the presence of AQP4 
antibodies (81). On the other hand, MOG constitutes a quantitatively 
minor component (0·05%) of the myelin sheath (1), and MOG 
antibodies require bivalent binding when binding to MOG, making it 
difficult for them to assemble on the cell membrane, and resulting in 
low C1q binding ability (82). It is necessary to study in detail whether 
the amount and characteristics of MOG antibodies affect the degree 
of complement activation following binding to AQP4.

3. Comparison between MOGAD and 
MS

The dominant pattern of demyelinating lesions (perivenous 
demyelination) in MOGAD is similar to that of ADEM rather than 
MS. The characteristics of infiltrating T cells also differ in MOGAD 
and MS, as noted above (Table 3). However, we cannot rule out the 
possibility that some patients with MOGAD may have a pathology 
similar to MS since previous studies on MOG-EAE have demonstrated 
that the ratios of myelin antigen-specific lymphocytes and 

autoantibodies to myelin could influence the dominance of perivenous 
or confluent demyelination (8, 85). Additionally, there is a report that 
MOG antibodies purified from two MOGAD patients (whose MOG 
antibodies were capable of binding to rodent MOG) and administered 
intrathecally to EAE subjects induced by MOG-specific T cells did not 
produce demyelinating lesions with deposition of activated 
complement, but in the presence of MBP-specific T cells, 
demyelinating lesions similar to MS pattern II developed (86). These 
findings suggested that T cells in some cases of MOGAD may 
recognize myelin protein(s) other than MOG and activate 
complements. Thus, further investigations are needed to confirm 
whether this is the case in the human pathology of MOGAD. However, 
it should be noted that MS Pattern II is a pathological classification 
proposed before the discovery of conformation-sensitive MOG 
antibodies and includes many brain biopsy samples from cases with 
atypical or fulminant cerebral lesions for MS (56). Jarius et al. found 
that only one of the 13 cases with MS Pattern II pathology was positive 
for MOG antibodies and suggested its limited involvement (38). 
Therefore, it may include other inflammatory demyelinating 
pathologies than MS and MOGAD and require further verification.

4. Comparison between MOGAD and 
AQP4 + NMOSD

The fundamental difference in the pathologies of the two diseases 
is that the main target of immune attack is myelin in MOGAD but is 

FIGURE 5

Characteristics of demyelinating lesions in MOGAD. (A,B) Loss of MOG staining was more evident than MAG staining. (C) Oligodendrocytes were well 
preserved in the demyelinating lesion. (D) Axonal enlargement was present, suggesting neuroaxonal alteration but axonal staining was relatively 
preserved compared to demyelination. (E,F) Activated astrocytes with dense AQP4 staining were observed. (A) MOG, (B) MAG, (C) TPPP, (D) NF, 
(E) GFAP, (F) AQP4. AQP4, aquaporin 4; GFAP, glial fibrillary acidic protein; MAG, myelin associated glycoprotein; MBP, myelin basic protein; MOG, 
myelin oligodendrocyte glycoprotein; MOGAD, MOG antibody-associated disease; NF, neurofilament; TPPP, tubulin polymerization promoting 
proteins.
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astrocytes in AQP4 + NMOSD (62). In previous pathological studies 
of MOGAD, there has been no astrocytic damage except in patient 
doubly positive for AQP4 and MOG antibodies (36). In the 
demyelinating lesions in MOGAD, astrocytes are essentially activated 
and AQP4 is also strongly stained on immunohistochemistry images 
(Figure 5), although two cases of partially decreased AQP4 expression 
in MOGAD with tumefactive brain lesions have been reported 
(Table  2) (44). The pathological process starts in the perivascular 
regions in both MOGAD and AQP4 + NMOSD, but they show distinct 
features of demyelinating lesions: in MOGAD, MOG is predominantly 
lost with relatively preserved oligodendrocytes, whereas in 
AQP4 + NMOSD, MAG is preferentially damaged, and 
oligodendrocytes are lost, but MOG is relatively preserved (Figure 6). 
The immunohistochemical staining pattern of activated complement 
deposition also differs: a rosette-like staining around blood vessels is 
seen in AQP4 + NMOSD (49, 87, 88), while in MOGAD, perivascular 
complement deposition is much less (Figure  7) but stained on 

myelinated fibers and in myelin degradation products within 
macrophages (Figure 7; Tables 2, 3) (37, 38, 40). Despite these different 
patterns of demyelination, MOGAD and AQP4 + NMOSD share some 
clinical features, such as optic neuritis and longitudinally extensive 
myelitis (18, 89), and cytokine profiles (upregulation of Th17-related 
cytokines) in the CSF (62) as autoantibody-associated CNS diseases.

5. Conclusion

Recently, the international diagnostic criteria for MOGAD have 
been proposed (29), and certain pathological features of the disease 
have been clarified (29), indicating that MOGAD is a disease entity 
distinct from MS and AQP4 + NMOSD. In fact, published articles on 
MOGAD have been rapidly increasing in recent years, and a few 
international clinical trials for relapsing MOGAD have 
already begun.

TABLE 3 Comparison of the major pathological findings of acute lesions in MOGAD, MS, and AQP4 + NMOSD.

Disease MOGAD MS AQP4 + NMOSD

Primary target Myelin > Oligodendrocyte Myelin, Oligodendrocyte Astrocyte

Histopathology

Lesion distribution Mainly in WM, the cerebral cortex and 

deep GM can also be involved

Mainly in periventricular and juxtacortical 

WM, (cerebral cortex in the progressive 

phase)

Both WM and GM, mainly in the spinal 

cord and optic nerves

Pattern of demyelination Perivenous > Confluent or Transitional* Confluent (SEL in the progressive phase) Secondary in the astrocyte lytic lesions, 

Distal oligodendrogliopathy

Lesion edge Ill-defined ~ sharply defined Sharply defined Sharply defined

Damaged myelin proteins MOG > or = others MAG > others (in Pattern III) or Even (in 

the other patterns)

MAG > others

Oligodendrocyte Relatively preserved Partially loss ~ regenerate Loss

Astrocyte Reactive Reactive Loss

AQP4-loss None ~ Mild None ~ Mild Severe

Axon Preserved Relatively preserved, (degenerated in the 

progressive phase)

Damaged in various degrees

Site of complement deposition Myelin, inside macrophage Myelin, inside macrophage (in MS Pattern 

II)

Vasculocentric (rim/rosette pattern)

Cellular infiltration

Macrophage Most conspicuous in the PVS and 

parenchyma

Most conspicuous in parenchyma, 

especially at the lesion edge

Most conspicuous in the PVS and 

parenchyma

T cells CD4 dominant in the PVS CD8 dominant in the PVS CD4 dominant in the PVS

(CD8 dominant in the chronic phase)

B cells A small number in the PVS, occasional 

aggregates in the leptomeninges

A small number in the PVS (Ectopic 

lymphoid follicles in the progressive phase)

A small number in the PVS

Neutrophil/Eosinophil Mild ~ Moderate Rare Mild ~ Marked

Fluid pathology

Cell damage marker MBP elevated, GFAP not elevated MBP elevated, GFAP not elevated (elevated 

in the progressive phase) (83, 84)

MBP elevated, GFAP remarkably 

elevated

Cytokine profile Marked elevation of Th17-related cytokines 

relative to MS

Marked elevation of Th17-related 

cytokines relative to MS

AQP4, aquaporin 4; GFAP, glial fibrillary acidic protein; GM, gray matter; MAG, myelin associated glycoprotein; MBP, myelin basic protein; MOG, myelin oligodendrocyte glycoprotein; 
MOGAD, MOG antibody-associated disease; MS, multiple sclerosis; NMOSD, neuromyelitis optica spectrum disorders; PVS, perivascular space; SEL, slowly expanding lesion; WM, white 
matter. *Perivenous + Confluent.
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Considering the currently available data of the histopathological 
studies of MOGAD and some basic research with MOG antibodies, 
the immunopathological process in MOGAD may be summarized as 

follows. Initially, the breakdown of immune tolerance leads to the 
generation of MOG-reactive T cells that stimulate the production of 
MOG antibodies from B cells in the periphery. Triggered by infection, 

FIGURE 6

Characteristics of astrocytopathic lesions in AQP4 + NMOSD. (A,B) Loss of MAG staining was more evident than MOG staining. (C) Numerous 
oligodendrocytes were lost in the lesion. (D) Axonal enlargement was present, suggesting neuroaxonal alteration, but axonal staining was relatively 
preserved compared to demyelination and astrocyte loss. (D–F) Astrocytes were almost completely lost in the lesion. (A) MOG, (B) MAG, (C) TPPP, 
(D) NF, (E) GFAP, (F) AQP4. AQP4: aquaporin 4, GFAP, glial fibrillary acidic protein; MAG, myelin associated glycoprotein; MBP, myelin basic protein; 
MOG, myelin oligodendrocyte glycoprotein; MOGAD, MOG antibody-associated disease; NF, neurofilament; NMOSD, neuromyelitis optica spectrum 
disorders; TPPP, tubulin polymerization promoting proteins.

FIGURE 7

Comparison of the deposition pattern of activated complements in MOGAD and AQP4 + NMOSD. (A) Only mild perivascular depositions of 
complements were seen in MOGAD even in the active lesion where perivascular cuffing was evident. (B,C) In active demyelinating lesions, 
complement staining was detected on myelin debris phagocytosed by macrophages (red arrow). (D) Multiple rosette-like stainings of complement 
deposition were seen in the NMOSD lesion. (D–F) Perivascular complement depositions were seen within AQP4-loss lesions. (A,C,D,F) C9neo. 
(B) MBP/CD68, (E) AQP4. AQP4, aquaporin 4; MBP, myelin basic protein; MOGAD, myelin oligodendrocyte glycoprotein antibody-associated disease; 
NMOSD, neuromyelitis optica spectrum disorders.
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vaccination, or other stimuli, these MOG-reactive T cells are 
activated and penetrate the blood–brain barrier (BBB) into the CNS 
and aggregate at the perivascular space of the meninges and 
parenchyma (perivascular cuffing). MOG antigens in the CNS 
further activate these cells which are primarily CD4-positive T cells 
and promote a Th17-dominant cytokine milieu in the CNS and the 
BBB disruption. As a result, more MOG antibodies enter the 
CNS. Then the autoantibodies target myelins, especially MOG, to 
demyelinate the nerve fibers from the surface of myelin sheath via 
CDC (noted as deposition of activated complements), ADCC (in 
cooperation with infiltrating granulocytes), ADCP (seen as myelin 
phagocytosed macrophages), and other mechanisms. A fraction of 
the demyelinating lesions may exhibit MOG-dominant loss, 
suggesting a MOG-targeted pathology, and some oligodendrocytes 
may also be damaged. But compared to the remarkable CDC to cause 
astrocytolysis in AQP4 + NMOSD, the pathological role of CDC for 
demyelination may be less in some cases of MOGAD. These events 
probably occur simultaneously around multiple blood vessels 
(perivenous demyelination) in the white and gray matters. 
Subsequently, broken MOG and other myelin components are 
phagocytosed by macrophages (myelin-laden macrophages in the 
parenchyma and perivascular space), further enhancing antigen 
presentation and activating MOG-reactive CD4-positive T cells that 
induce the activation and infiltration of cytotoxic effector T cells 
against myelins and B cells that produce MOG antibodies 
intrathecally. These cellular and humoral immune responses are 
augmented through the interaction with proinflammatory cytokines/
chemokines, which further exacerbates the disease state resulting in 
fusion of the lesions to form extensive demyelination (confluent 
demyelination). This confluent demyelination in MOGAD may 
develop by a different mechanism from that of the radial expansion 
of MS lesions.

However, we  should investigate further details of the 
pathophysiology of MOGAD by means of various technologies 

including molecular immunology, omics, advanced imaging, 
neurophysiological tests, therapeutic response and artificial 
intelligence as well as conventional histopathological analyses. 
Furthermore, the histopathological studies in MOGAD to date have 
been derived from brain biopsies, and we should clarify whether the 
lesion characteristics are similar in other CNS regions, such as the 
optic nerve and spinal cord. Studies on how differences in the 
histopathologic findings may affect the severity and clinical phenotype 
in patients with MOGAD are also needed. These studies are expected 
to contribute to a better understanding and management of MOGAD.
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