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Objective: To investigate correlates in hippocampal subfield volume and verbal 
and visual memory function in patients with temporal lobe epilepsy (TLE), mild 
amnestic cognitive impairment (MCI) and heathy participants (HP).

Methods: 50 right-handed participants were included in this study; 11 patients 
with temporal lobe epilepsy (TLE), 18 patients with mild amnestic cognitive 
impairment (MCI) and 21 healthy participants (HP). Verbal memory performance 
was evaluated via the verbal memory test (VLMT) and visual memory performance 
via the diagnosticum for cerebral damage (DCM). Hippocampal subfield volumes 
of T1-weighted Magnetic Resonance Imaging (MRI) scans were computed with 
FreeSurfer version 7.1. Stepwise correlation analyses were performed between 
the left hippocampal subfield volumes and learning, free recall, consolidation 
and recognition performance scores of the VLMT as well as between right 
hippocampal subfield volumes and visual memory performance.

Results: The volume of the left subicular complex was highly correlated to 
learning performance (β  =  0.284; p  =  0.042) and free recall performance in 
the VLMT (β  =  0.434; p  =  0.001). The volume of the left CA3 subfield showed a 
significant correlation to the consolidation performance in the VLMT (β  =  0.378; 
p  =  0.006) and recognition performance in the VLMT (β  =  0.290; p  =  0.037). There 
was no significant correlation identified between the right hippocampal subfields 
and the visual memory performance.

Conclusion: The results of this study show verbal memory correlates with 
hippocampal subfields and support the role of left subiculum and left CA2/CA3 in 
verbal memory performance.
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1. Introduction

The hippocampus is a structurally and functionally complex 
brain structure which is mainly involved in episodic, semantic and 
spatial memory processes (1). The dominant, most often left 
hippocampus is mostly involved in the verbal memory performance 
while the non-dominant, right hippocampus is involved in spatial 
and visual memory performance (2–4). Although the underlying 
pathomechanisms differ, the hippocampal formation and its 
subfields are affected in many neurological and psychiatric 
conditions such as Alzheimer disease (AD), mild amnestic cognitive 
impairment (MCI), schizophrenia, temporal lobe epilepsy (TLE) as 
well as in normal aging, causing visual and verbal memory 
decline (5–11).

Histopathological and neuroimaging studies have demonstrated 
correlations between memory performance with neural density and 
volumes of hippocampal substructures (5–8). The evolution of high-
field brain magnetic resonance imaging (MRI) and advanced automatic 
segmentation techniques enable the accurate measurement of 
hippocampal subfield volumes (12) and subsequently in vivo 
correlations of memory performance with hippocampal atrophy 
patterns (13). In the present study, it was our aim to identify 
neuropsychological specific rather than disease-specific correlations 
between verbal and non-verbal memory performance and hippocampal 
subfield volumes. Therefore, we conducted the analyses in different 
populations known to develop deficits in verbal and non-verbal 
memory function such as in patients with temporal lobe epilepsy (TLE) 
or mild cognitive impairment (MCI) as well as in elderly healthy 
participants (HP).

2. Materials and methods

2.1. Study population and design

Eleven patients with temporal lobe epilepsy (TLE), 18 patients with 
mild cognitive impairment (MCI) and 21 healthy participants (HP) were 
included in the study. All participants were recruited in the Department 
of Neurology, Christian Doppler University Hospital Salzburg, Austria 
and received a multimodal neuropsychological evaluation and a three-
dimensional (3D), T1-weighted MRI scan. The TLE diagnosis was based 
on neurological assessment by experienced epileptologists, including 
video-EEG examination for up to five days. There was no evidence of 
hippocampal sclerosis in the included TLE population. The MCI 
diagnosis was based on Petersen’s criteria (14). All MCI patients reported 
subjective amnestic complaints corresponding to the level three of the 
global deterioration scale for aging and dementia (15). All TLE and MCI 
patients did not have any neuropsychiatric comorbidities and all 
recruited HP did not have any history of neurological or psychiatric 
diseases. From the initial sample, four participants were excluded from 
the analysis due to motion artifacts on the MRI scan. Two left-handed 
subjects were excluded from the analysis to avoid atypical hemispheric 
representation (16). One additional participant did not agree to submit 
neuropsychological data and two participants did not complete the DCS, 
leaving a sample size of a total of 50 participants. The study was approved 
by the local ethics committee (Ethics Commission Salzburg/
Ethikkommission Land Salzburg; approval number 415-E/1429) and all 
participants gave written informed consent.

2.2. Neuropsychological evaluation

All participants underwent a multimodal neuropsychological 
evaluation including verbal and non-verbal memory performance 
assessment using the verbal memory test (VLMT) (17) and the 
diagnosticum for cerebral damage (DCM) (18), respectively. The 
T-values of the four scales of VLMT in learning performance, free recall, 
consolidation performance and recognition were entered in the analysis. 
Here, a list of 15 nonrelated words is initially verbally presented by the 
examiner five times. The participant is asked each time to repeat as many 
words as possible. The correctly recalled words represent the learning 
performance of the VLMT. Afterwards, an interference list of 15 words 
is verbally presented by the examiner and the participant is asked to 
recall the words of the first list. Without any other presentation, the 
participant is asked to recall the initial list with a 30-min delay which 
refers to free recall performance. The consolidation performance 
represents the difference of the recalled words after the 30-min delay in 
relation to the number of words remembered after the fifth repetition of 
the initial list presentation. Finally, the recognition performance refers 
to the ability of the participant to recognize the words of the first list from 
a larger list of verbally presented words. For the non-verbal performance, 
the percentile summary score of the DCM was entered in the analysis.

2.3. MRI acquisition

All three-dimensional (3D), T1-weighted MRI scans of the 
participants were performed with a 3T Siemens (Erlangen, Germany) 
Magnetom TrioTim syngo MR B17 scanner, a 12-channel head coil 
and the following parameters: sagittal orientation, 192 slices per slab, 
256 mm FoV read at 93.8%phase, voxel dimension 1 × 1 × 1 mm, 
repetition time (TR) 2,300 ms, echo time (TE) 2.91 ms, inversion time 
(TI) 900 ms, flip angle (FA) 9°.

2.4. Estimation of the hippocampal 
subfields and image quality control

The hippocampal subfield volumes were computed with the 
open-source software FreeSurfer version 7.1 (v.7.1)1 (19, 20). 
Briefly, each 3D T1-weighted scan was pre-processed using the 
FreeSurfer recon-all script, which automatically generated a 
surface reconstruction and segmentation.2 The hippocampal 
subfield volumes were computed with the subfield segmentation 
pipeline (12), which can be  found at https://surfer.nmr.mgh.
harvard.edu/fswiki/HippocampalSubfields. The detailed output 
volumes are presented at https://surfer.nmr.mgh.harvard.edu/
fswiki/HippocampalSubfieldsAndNucleiOfAmygdala. The 
pipeline shows a good test–retest reliability and reliability across 
vendor platforms and field-strengths and has been applied in 
several neurocognitive studies, which examine hippocampal 
pathologies including patients with TLE and MCI (21). All raw 
MR data were controlled for quality and motion artifacts before 

1 https://surfer.nmr.mgh.harvard.edu/

2 https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all
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segmentation. Inspection of all the cortical and subcortical 
results after the general segmentation with the recon-all script 
and inspection of the results after the subfield segmentation were 
performed in each step, respectively. No manual correction was 
required, after visual inspection of each output for significant 
segmentation errors.

2.5. Correction for total brain volume

All subfield volumes were corrected for total brain volume before 
the analysis. For the correction, we used a covariance approach (13, 22, 
23) using a normal collective of 256 healthy subjects, who received 3D 
T1-weighted MPRAGE scans (FOV 256 × 256 × 176 voxel, voxel 
dimension 1 × 1 × 1 mm, TR 1900 ms, TE 2.52 ms, TI 900 ms. FA 9°, BW 
170 Hz/pixel) on a 3T Trio scanner (Siemens, Erlangen, Germany) at the 
Center for Brain Imaging in Marburg, Germany. Briefly, we calculated 
the slope β of the linear regression between each structure and the total 
brain volume for all control subjects of the normal collective. The 
correction of each volume was computed using the following equation: 
Volcorr = Volorig − β (TBVorig − TBVmean) in which Volcorr is the 
corrected volume of the structure, Volorig is the original volume of the 
structure, β is the slope of the linear regression, TBVorig is the original 
total brain volume of the subject and TBVmean is the mean total brain 
volume for all control subjects. For the total brain volume (TBVorig), 
the measure “BrainSegVolNotVent” in the FreeSurfer segmentation 
output was used. The segmentation results were corrected for total brain 
volume to minimize the effect of age and gender (24, 25).

2.5.1. Statistical analysis
In the next step, the relationship between corrected subfield 

volumes and neuropsychological variables was examined. The analyses 
were performed with the IBM SPSS Statistics program version 26.0. To 
determine whether the volumes of certain hippocampal subfields were 
related to neuropsychological outcomes, regression analyses were 
computed separately for the left and right hippocampal subfield 
volumes. To avoid problems of multicollinearity, stepwise regression 
methods were used in entering the predictors. For verbal memory, 
T-values of learning performance, free recall, consolidation performance 
and recognition of the VLMT were used as outcome variables and all 
subfields of the left hippocampi were entered into the regression 
analyses as predictors. For figural memory, the percentile ranks of the 
DCS served as outcome measure and all subfield volumes of the right 
hippocampi were entered into the regression analysis as predictors. The 
following subfields were entered into regression analyses: subiculum, 
presubiculum, and parasubiculum added to subicular complex (SUB) 
(8, 26), cornu ammonis 1 (CA1), cornu ammonis 2/3 (CA2/CA3), 
cornu ammonis 4 (CA4), granule cells in the molecular layer of the 
dentate gyrus (GC-ML-DG), molecular layer, hippocampal amygdala 
transition area (HATA), fimbria, hippocampal tail and hippocampal 
fissure. One-way analysis of variance (ANOVA) was used to compare 
the age among groups.

2.6. Data availability statement

Anonymized data can be  made available to any qualified 
investigator upon request.

3. Results

3.1. Study population, demographics, and 
clinical characteristics

A total of 50 participants (58% women, n = 29) was included in 
this study. The age of the participants was significantly different among 
groups [F(2, 47): 8.01; p < 0.001], primarily due to the younger age of 
TLE patients. The median disease duration of epileptic seizures was 
16 years (range 3–51 years) in the TLE group, and the median duration 
of amnestic symptoms was 12 months (range 6–24 months) in the MCI 
group. The patients’ characteristics are presented in Table 1.

3.2. Relation of hippocampal subfield 
volumes to neuropsychological data

3.2.1. Verbal memory
A stepwise linear regression was computed using T-values of the 

learning performance as outcome variables and subfields of the left 
hippocampi as predictor variables. The regression model was 
statistically significant [R2 = 0.08 (adjusted R2 = 0.062), F(1, 50) = 4.37; 
p = 0.042]. The volume of the left subicular complex was a significant 
predictor of learning performance in the VLMT (β = 0.284; p = 0.042) 
while no other subfield volumes were significant predictors 
(ps > 0.369).

The regression model using T-values of the free recall performance 
as outcome variable and subfields of the left hippocampi as predictor 
variables was statistically significant [R2 = 0.189 (adjusted R2 = 0.172), 
F(1, 50) = 11.61; p = 0.001]. The volume of the left subicular complex 
was a significant predictor of free recall performance in the VLMT 
(β = 0.434; p = 0.001) while no other subfield volumes were significant 
predictors (ps > 0.112).

A stepwise linear regression using T-values of the consolidation 
performance as outcome variable and subfields of the left hippocampi 
as predictor variables was statistically significant [R2 = 0.143 (adjusted 
R2 = 0.126), F(1, 50) = 8.34; p = 0.006]. The volume of the left CA2/CA3 
subfield was a significant predictor of consolidation performance in 
the VLMT (β = 0.378; p = 0.006) while no other subfield volumes were 
significant predictors (ps > 0.177).

Finally, the regression model using T-values of the recognition 
performance as outcome variable and subfields of the left hippocampi 
as predictor variables was statistically significant [R2 = 0.084 (adjusted 
R2 = 0.066), F(1, 50) = 4.59; p = 0.037]. The volume of the left CA2/CA3 
subfield was a significant predictor of recognition performance in the 
VLMT (β = 0.290; p = 0.037) while no other subfield volumes were 
significant predictors (ps > 0.284) (Figures 1, 2).

TABLE 1 Demographics of the study population.

Sample
All 

participants
TLE MCI HP

N 50 11 18 21

Median age (years) 60 49 66.5 61

Age range (years) 23-76 26–59 50-76 23-74

N women 29 8 9 12

N, number; TLE, temporal lobe epilepsy; MCI, mild cognitive impairment; HP, healthy 
participants.
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3.2.2. Figural memory
A stepwise linear regression was computed using percentage rank 

of the non-verbal memory test DCS as outcome variable and subfields 
of the right hippocampi as predictors. The regression model was 
not significant.

4. Discussion

The development of more accurate measurement methods of 
hippocampal subfield volumes enables the in vivo identification 
of neuroanatomical correlates of specific memory functions. In 
this study, participants with reduced left subicular complex 
volumes showed significantly reduced learning and 30-min free 
recall performance. Left subiculum volumes have already been 
associated with verbal memory functions (7, 10, 27–29). Previous 
studies have shown that selective subiculum atrophy patterns are 
correlated with the immediate and delayed recall performance of 
MCI and Alzheimer patients (7, 27) and can be considered as a 
marker of conversion to early stages of Alzheimer disease (7, 30, 
31). Similar findings in elderly healthy populations and epilepsy 
patients have demonstrated an association between reduced 
subiculum volumes and verbal free recall performance decline 
(10, 28, 29).

The subiculum is considered the main output formation of the 
hippocampus with projections to several cortical and subcortical 
regions such as prefrontal and entorhinal cortex, amygdala, nucleus 
accumbens and hypothalamus, receiving input mainly from CA1 and 
the entorhinal cortex (26). Due to these extensive connections, the 
presubiculum and subiculum are considered to be mostly involved in 
memory retrieval rather than in memory encoding (32, 33). During 
short memory retrieval, the subiculum has been shown to be activated 
before the hippocampus, which indicates its role in the retrieval of 
recently acquired information (34, 35).

Reduced CA2/CA3 volumes were significantly correlated 
with lower consolidation and recognition performance, while 
there were no associations identified between DG and CA1 
volumes and the four scales of VLMT. The results of previous 
studies concerning the above mentioned subfields vary; Mueller 
et al. (36) have previously shown associations of CA3/dentate 
gyrus (DG) with encoding/early retrieval and CA1 with 
consolidation performance and late retrieval. Coras et al. (6) have 
demonstrated significant correlations of declarative memory 
performance and neural density of CA3/CA4 or DG and less to 
CA1. Other studies on patients with selective CA3 atrophy caused 
by leucine-rich glycine-inactivate-1 antibody-complex limbic 
encephalitis (LGI1-antibody-complex LE) have shown significant 
associations with CA3 atrophy and impaired recent and remote 

FIGURE 1

Figure showing relationship between (A) learning performance and subicular complex volumes, (B) free recall performance and subicular complex 
volumes, (C) consolidation performance and CA2/CA3 volumes and (D) recognition performance and CA2/CA3 volumes.
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autobiographical episodic memory. Although autobiographical 
episodic memory has not been tested by the VLMT in this study 
population, these results indicate the role of CA3  in episodic 
memory consolidation (37, 38). Finally, controversial findings 
have also been shown regarding the role of CA1 in verbal memory 
performance; some studies have reported correlations between 
CA1 neural density (39) and volumes (28, 36) with immediate 
and delayed verbal memory recall as well as long-term memory 
consolidation (8), while other studies have shown opposite 
findings (6, 7).

Concerning the figural memory, there were no significant 
correlates with the right hippocampal subfields and the non-verbal 
memory test DCS. Previous studies have demonstrated correlations of 
figural memory with different hippocampal subfield volumes and 
visual memory recall such as presubiculum (40), CA4 (41), subiculum 
and CA1 volumes (28). The discrepancy of the results in the above-
mentioned studies indicates the need of larger scale samples to further 
investigate figural memory correlates.

This study has some limitations. First, although high resolution 
MRI and advanced segmentation methods have contributed to 
greater accuracy in measuring the hippocampal subfield volumes, 
these might differ from the real subject’s subfield volumes. Moreover, 
the results should be interpreted with caution due to the small sample 
size, different age range and disease duration of the included patients. 

Finally, we aimed to study a mixed population in order to identify 
non-disease specific but rather neuropsychological specific correlates; 
however, the different disease pathomechanisms might influence the 
hippocampal subfield volumes differently, possibly affecting the 
correlations identified.

5. Conclusion

The findings of this study support previous evidence that 
hippocampal subfields play an important role in specific memory 
functions. Identifying neuroanatomical correlates of verbal 
memory can be useful for applying more targeted therapies. In 
epilepsy patients, for instance, techniques like stereo-
encephalography and highly selective laser surgery techniques 
might contribute to preserving unaffected mesiotemporal 
substructures crucial for verbal performance resulting into both 
seizure freedom and good postsurgical neuropsychological 
outcome in some cases. Moreover, the estimation of specific 
hippocampal atrophy patterns might enable the clinical 
monitoring of verbal memory performance in patients with  
MCI or Alzheimer’s disease as well as the prediction of 
postoperative verbal memory outcome in patients with temporal 
lobe epilepsy.

FIGURE 2

Example of FreeSurfer subfield segmentation results of a healthy participant. CA1, cornu ammonis 1; CA2/3, cornu ammonis 2/3; CA4, cornu ammonis 
4; GC-ML-DG, granule cells in the molecular layer of the dentate gyrus; HATA, hippocampal amygdala transition area; HP, hippocampal.
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