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Objective: Cognitive impairment is a detrimental complication of stroke that 
compromises the quality of life of the patients and poses a huge burden on 
society. Due to the lack of effective early prediction tools in clinical practice, 
many researchers have introduced machine learning (ML) into the prediction of 
post-stroke cognitive impairment (PSCI). However, the mathematical models for 
ML are diverse, and their accuracy remains highly contentious. Therefore, this 
study aimed to examine the efficiency of ML in the prediction of PSCI.

Methods: Relevant articles were retrieved from Cochrane, Embase, PubMed, and 
Web of Science from the inception of each database to 5 December 2022. Study 
quality was evaluated by PROBAST, and c-index, sensitivity, specificity, and overall 
accuracy of the prediction models were meta-analyzed.

Results: A total of 21 articles involving 7,822 stroke patients (2,876 with PSCI) were 
included. The main modeling variables comprised age, gender, education level, 
stroke history, stroke severity, lesion volume, lesion site, stroke subtype, white matter 
hyperintensity (WMH), and vascular risk factors. The prediction models used were 
prediction nomograms constructed based on logistic regression. The pooled c-index, 
sensitivity, and specificity were 0.82 (95% CI 0.77–0.87), 0.77 (95% CI 0.72–0.80), and 
0.80 (95% CI 0.71–0.86) in the training set, and 0.82 (95% CI 0.77–0.87), 0.82 (95% CI 
0.70–0.90), and 0.80 (95% CI 0.68–0.82) in the validation set, respectively.

Conclusion: ML is a potential tool for predicting PSCI and may be used to develop 
simple clinical scoring scales for subsequent clinical use.

Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_
record.php? RecordID=383476.
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1. Introduction

Stroke is a serious condition and a leading cause of death and long-term disability, which 
places a huge burden worldwide (1). Post-stroke cognitive impairment (PSCI) is a prevalent 
prognosis and cause of death following a stroke. Stroke patients have a higher incidence of 1-year 
cognitive impairment than non-stroke populations (2, 3). As society and economy progress, 
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more emphasis is placed on disease and health, especially cognitive 
impairment. Early identification and diagnosis of PSCI, as well as early 
prophylaxis and treatment, can help improve stroke patient’s prognosis 
and reduce social and economic burdens.

Clinical tools for early PSCI diagnosis in stroke patients are currently 
lacking. Researchers have tried to apply existing cognitive impairment 
risk prediction models constructed based on the general population to 
the prediction of PSCI, but their predictive performance was not ideal in 
stroke patients (4). As a result, researchers have shifted their focus to 
machine learning (ML) in the hopes of developing more accurate PSCI 
prediction models. ML is an emerging field in medicine that utilizes 
computer science and statistics to solve healthcare problems (5). In 
recent years, ML has been increasingly applied to stroke research, and it 
was shown that ML-based stroke image prediction can outperform 
existing prediction tools (6). However, the diversity in mathematical 
modeling and sensitivity of ML algorithms to factors such as patient 
sampling, missing data and sample size continue to fuel debates over the 
accuracy of these models in disease prediction.

The performance of existing stroke prediction models has been 
inconsistent due to the use of different types of ML (e.g., logistic 
regression or other alternative) and modeling variables. In these 
predictive models, there are differences in the types of machine 
learning utilized, with most researchers using logistic regression while 
some may consider it lacking and opt for alternative models. 
Furthermore, we  note discrepancies in the selection of modeling 
variables, which ultimately contributes to the uncertainty of their 
results. Unfortunately, evidence-based studies investigating the 
efficiency of ML in the prediction of PSCI are still lacking. As a result, 
the aim of this study is to examine the predictive accuracy of ML in 
PSCI and comprehensively summarize the modeling variables included 
in this prediction model in order to provide a useful reference for the 
subsequent development of simple clinical prediction tools.

2. Materials and methods

This study was conducted following the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses guidelines 
(Supplementary material) (7).

This study has been registered in PROSPERO (CRD42022383476).

2.1. Eligibility criteria

2.1.1. Inclusion criteria

 (1) Patients diagnosed with ischemic stroke or hemorrhagic stroke.
 (2) Randomized-controlled trials (RCTs), case–control studies, 

cohort studies, and case-cohort studies.
 (3) Complete construction of a ML prediction model for PSCI.
 (4) Studies without external validation are also included.
 (5) Different studies published using the same data set.
 (6) Studies reported in English.

2.1.2. Exclusion criteria

 (1) Meta-analysis, review, guidelines, and expert opinions.

 (2) Only risk factor analysis was performed and lacks a complete 
ML model.

 (3) Missing outcome measures (ROC, c-statistic, c-index, 
sensitivity, specificity, accuracy, recovery rate, accuracy rate, 
confusion matrix, diagnosis table, F1 score, and 
calibration curve).

 (4) Validation of the maturity scale only.
 (5) Study on the accuracy of single-factor prediction models.

2.2. Search strategy

Relevant articles were systematically searched in Cochrane, 
Embase, PubMed, and Web of Science from the inception of each 
database to 5 December 2022 using MeSH and entry terms without 
restriction on language or region. The detailed retrieval process is 
outlined in Supplementary material.

2.3. Literature screening and data 
extraction

Retrieved articles were imported into Endnote for management, 
and duplications were deleted. The titles and abstracts were screened 
to exclude irrelevant studies, and the full texts of the remaining 
records were downloaded and checked for eligibility. Data were 
collected from the included studies using a customized data 
extraction form. The collected data comprised title, first author, year 
of publication, author country, type of study, source of patient, type 
of stroke, diagnostic criteria for cognitive impairment, length of 
follow-up, number of PSCI cases, total subject number, training set, 
validation set, type of model used, imputation method for missing 
value, variable screening, and modeling variables. Two independent 
researchers (YY and HY) performed the literature screening and data 
extraction, and subsequently cross-checked their results. Any 
disagreement was resolved by a third researcher (XSL).

2.4. Risk of bias assessment

The Prediction model Risk Of Bias Assessment Tool (PROBAST) 
was employed to evaluate the quality of the included studies. The 
PROBAST consists of four domains, namely participants, predictors, 
outcome, and analysis (8). The four domains contain 2, 3, 6, and 9 
specific questions, respectively. Each question has three options: yes/
probably yes (Y/PY), no/probably no (N/PN), and no information 
(NI). If a domain has at least one N/PN, it is rated as high risk. To 
be  graded as low risk, a given domain must have Y/PY for all 
questions. When all domains are at low risk, the overall risk of bias is 
low; alternatively, when at least one domain is assessed as high risk, 
the overall risk of bias is high (9). Two researchers (XSL and DDY) 
independently evaluated the risk of bias in the included studies and 
subsequently cross-checked their results. Any disagreement was 
resolved by a third researcher (BYW).

2.5. Outcome measures

The primary outcome was the C-index, which can be used to 
reflect the overall accuracy of ML models. However, this indicator 
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alone may not fully reflect the predictive accuracy of ML models 
in PSCI because the percentage of PSCI patients and non-PSCI 
patients in the included literature is severely unbalanced. Therefore, 
sensitivity and specificity were included as complementary 
outcome measures to evaluate the predictive accuracy of ML 
in PSCI.

2.6. Data synthesis and statistical analysis

The c-index and accuracy of ML models were meta-analyzed. If a 
95% confidence interval (CI) and standard error were missing for the 
c-index, they were estimated using the methods by Debray (10). Given 
the differences in modeling variables and parameters, the c-index was 
pooled using a random effects model while sensitivity and specificity 
were pooled by a bivariate mixed effects model. In systematic reviews 
based on machine learning, heterogeneity is difficult to avoid. 
According to the Cochrane tool, percentages of around 25% (I2 = 25), 
50% (I2 = 50), and 75% (I2 = 75) are deemed to represent low, medium, 
and high levels of heterogeneity, respectively (11). The sensitivity and 
robustness of the results were evaluated using the leave-one-out 
method. Publication bias was qualitatively assessed using a funnel plot 
and quantitatively assessed by Egger’s regression test (value of p). All 
meta-analyses were conducted in R4.2.0 (R development Core Team, 
Vienna, http://www.R-project.org). A p < 0.05 was considered 
statistically significant.

3. Results

3.1. Study selection

The literature screening process is illustrated in Figure  1. 
We identified a total of 5, 053 unique records. After reviewing the full 
texts of 41 reports, 21 studies were ultimately included (12–32).

3.2. Characteristics of included studies

Of the 21 eligible studies, 10 were conducted in China (12, 13, 17, 
19, 21, 25, 26, 28, 29, 32), 2 in Norway (14, 27), 1 in Australia (20), 2 in 
German (15, 16), 2  in the Republic of Korea (18, 30), 1  in the 
Netherlands (14), 1  in France (23), 1  in the UK (24), and 1  in 
Singapore (31). These studies were published between 2015 and 2023, 
predominantly in 2021–2023 (n = 17) (12–27, 32).

Of the 7,822 subjects in the included studies, 2,876 developed 
PSCI. The subject cohort size ranged from 72 to 22,950. The diagnostic 
criteria used in the included studies were Mini-Mental State 
Examination (MMSE) (33), Montreal Cognitive Assessment (MoCA) 
(34) (n = 5) (20, 21, 28, 29, 31), MMSE (n = 6) (12–14, 18, 24, 32), 
MoCA (n = 6) (17, 19, 22, 25–27), Center of Cancelation (CoC) (35) 
(n = 1) (15), Global Deterioration Scale (GDS) (36) (n = 1) (16), 
Informant Questionnaire on Cognitive Decline in the Elderly 
(IQCODE) (37) (n = 1) (23), and vascular dementia criteria of the 
AHA/ASA scientific statement (38) (n = 1) (30). The duration of 
follow-up was predominantly 3 to 12 months, and was 36 years in only 
one study (23). The incidence of PSCI during follow-up was 
12.5%–66.1%.

3.3. Characteristics of included prediction 
models

There were 31 models in the included studies, which were 
constructed based on logistic regression (LR) nomogram (n = 18) (12, 
14–16, 18, 19, 22, 25, 26, 29–32), random forest (n = 1) (20), ridge 
regression (n = 1) (23), LASSO regression (n = 1) (21), mixed effects 
model (n = 3) (24), support vector machine (SVM) classifier (n = 3) 
(27), and decision trees (n = 3) (28) (Table 1). Modeling variables were 
selected using a multivariate approach. In the training set, 15 models 
reported c-index and 13 models reported sensitivity and specificity. In 
the validation set, 10 models reported c-index and 7 models reported 
sensitivity and specificity. The main modeling variables used in the 
included studies were age, gender, education level, stroke history, 
stroke severity, lesion volume, lesion site, stroke subtype, and vascular 
risk factors (Table 2).

3.4. Risk of bias assessment

The high risk of bias in the included studies was attributed to the 
limited sample size, retrospective cohort study, and lack of validation 
set. Therefore, these attributes should be  improved in subsequent 
model construction. The results of the risk of bias assessment are 
summarized in Figure 2.

3.5. Meta-analysis

Meta-analysis showed that the training set had a c-index of 0.82 
(95% CI 0.77–0.87, n = 15), sensitivity of 0.77 (95% CI 0.72–0.80, 
n = 13), and specificity of 0.80 (95% CI 0.71–0.86, n = 13). Subgroup 
analysis of the training set showed that the c-index was 0.81 for LR 
(95%CI 0.74–0.88, n = 12), 0.80 for mixed effects model (95%CI 0.76–
0.81 n = 1), 0.88 for SVM classifier (95%CI 0.84–0.92 n = 1), and 0.84 
for decision trees (95%CI 0.77–0.92 n = 1; Figures 3, 4).

The c-index, sensitivity, and specificity of the validation set were 
0.82 (95% CI 0.77–0.87, n = 10), 0.82 (95% CI 0.70–0.90, n = 7), and 
0.76 (95% CI 0.68–0.82, n = 7), respectively. Subgroup analysis of the 
validation set showed that the c-index was 0.80 for LR (95%CI 0.75–
0.85, n = 8) and 0.89 for LASSO regression (95%CI 0.84–0.93 n = 2; 
Figures 5, 6).

The follow-up period or the meta-regression based on study 
design showed that there were no significant differences in the c-index 
between the training and validation sets, even considering the 
variations due to different study designs or changes in follow-up time 
(Figures 7–10; Tables 3, 4).

3.6. Sensitivity analysis and publication bias

Sensitivity analysis indicated that the results of both the training 
and validation sets were robust (Supplementary Figures S1, S2). 
However, the asymmetry in the funnel plot and the results of Egger’s 
regression test suggest that publication bias may be present in the 
training set (p = 0.056 for Egger’s regression test), and publication bias 
is clearly present in the validation set (p = 0.005 for Egger’s regression 
test; Supplementary Figures S3–S6). There were fewer independent 
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validation cohorts in the included literature, and the presence of 
multiple independent validation cohorts in the same study may have 
contributed to publication bias.

4. Discussion

Our meta-analysis of 21 original studies demonstrated that ML 
may be  an ideal tool for predicting PSCI. The training set had a 
c-index of 0.82 (95% CI 0.77–0.87) and sensitivity and specificity of 
>70%, indicating considerable predictive accuracy in 
PSCI. Furthermore, the accuracy of the validation set was not 
significantly lower than that of the training set, indicating that the ML 
model has good applicability. Currently, LR is the preferred model in 
clinical practice because it is simple for generating highly accessible 
nomograms, such as the nomogram on lymph node metastasis 
developed by the Sloan-Kettering Cancer Center (39–41). In our 
study, LR was also the preferred model among researchers as it 
exhibited comparable c-index performance to other ml algorithms 
while achieving higher sensitivity and specificity. As a result, 

we conclude that LR demonstrates satisfactory predictive ability for 
PSCI in this study.

We found that LR is the primary type of model utilized for 
predicting stroke. LR is a classification algorithm that aims to establish 
the relationship between features and probability of specific outcomes 
(42). ML is commonly used to address issues encountered in clinical 
practice, with supervised learning and unsupervised learning being 
the most common approaches. Supervised learning primarily focuses 
on diagnosing and predicting disease prognosis or progression, which 
involves the process of training, validation, and testing. The training 
process involves inserting predictive factors into the model and using 
the model’s inherent parameter calculation rules (e.g., maximum 
likelihood estimation, iteration) to estimate the optimal model 
parameters. Selection of modeling variables (feature selection 
methods) is crucial for the training process and has been a subject of 
ongoing debate due to their diversification. Furthermore, validation 
and testing are crucial for a completed model as they reflect the 
model’s robustness. Unfortunately, in actual research, most studies 
lacked effective external validation. The original studies included in 
our analysis predominantly utilized a supervised ML process with 

FIGURE 1

Flowchart of study selection.
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TABLE 1 General characteristics of included studies.

No. First author Year of 
publication

Author 
country

Study type Souce of 
patients

Stroke type Diagnostic criteria for cognitive impairment

1 Yinwei Zhu (12) 2022 China RCT Multicenter Acute ischemic stroke MMSE < 25

2 Fei Zha (13) 2022 China Retrospective cohort study Single center Cerebral stroke MMSE score ≤ 19 (illiteracy), ≤ 22 (primary education), ≤ 26 (Secondary school and above)

3
Georgios Vlachos 

(14)
2023 Norway Retrospective cohort study Multicenter Mild acute stroke The Barthel ADL index and the modified Rankin Scale (mRS).

4 Lisa R¨ohrig (15) 2022 Germany Prospective cohort study Multicenter
Right hemisphere 

stroke

Letter cancelation test; bells cancelation test the Center of Cancelation [CoC; (35)]; The 

CoC.

5 Ragnhild (16) 2022 Norway Prospective cohort study Multicenter Cerebral stroke Premorbid cognitive status based on GDS

6 Zhao-Yin Ma (17) 2022 China RCT Single center Acute ischemic stroke MoCA score ≥ 26 indicates normal cognitive function; < 26 indicates MCI; < 20 indicates CI

7 Reeree Lee (18) 2021 Republic of Korea Prospective cohort study Multicenter Cerebral stroke Objective neuropsychology tests, including MMSE and CDR

8 Yongzhe Gu (19) 2022 China Retrospective cohort study Multicenter Ischemic stroke MoCA score < 26

9 Nacim Betroun (20) 2022 Australia Prospective cohort study Multicenter Cerebral stroke MMSE score < 27 or MoCA score < 25

10 Xueling Yuan (21) 2021 China Retrospective cohort study Single center Cerebral stroke
MMSE score ≤ 17 (illiteracy), ≤ 20 (Primary education), ≤ 24 (Secondary school and 

above), MOCA score ≤ 26

11 Nick A Weaver (22) 2021 Netherlands Retrospective cohort study Multicenter Cerebral stroke

Performance below the fifth percentile of local normative data in at least one cognitive 

domain on the Multidomain Neuropsychological Assessment or the Montreal Cognitive 

Assessment

12 Renaud Lopes (23) 2021 franc Retrospective cohort study Multicenter Cerebral stroke IQCODE 49 ± 2

13 Youssef Hbid (24) 2021 UK Prospective cohort study Single center
First occurrence of 

cerebral stroke
MMSE score < 24 or AMT < 8

14 Li Gong (25) 2021 China Prospective cohort study Multicenter Mild acute stroke MoCA score < 22

15 Yi Dong (26) 2021 China Retrospective cohort study Multicenter Acute ischemic stroke MoCA score < 22

16
Eva Birgitte Aamodt 

(27)
2021 Norway Prospective cohort study Multicenter Cerebral stroke

TMT A and B, CERAD, COWAT, MoCA, AD-8, GDS (36), NPI Q, HADS, and the Cornell 

scale.

17 Yueli Zhu (28) 2020 China Prospective cohort study Multicenter
First occurrence of 

cerebral stroke
MMSE score < 27 and MoCA score < 21

18 Zhengbao Zhu (29) 2019 China Prospective cohort study Multicenter
Ischemic stroke with 

elevated blood pressure
MMSE score < 27 or MoCA score < 25

19 Jae-Sung Lim (30) 2017 Republic of Korea Prospective cohort study Multicenter Cerebral stroke AHA-ASA Criteria, at least two cognitive defects

20
Nagaendran 

Kandiah (31)
2015 Singapore Retrospective cohort study Multicenter

Mild acute ischemic 

stroke
MMSE score ≤ 2 5 or MoCA score ≤ 22

21 Sheng Ye (32) 2022 China Retrospective cohort study Single center Lacunar infarction MMSE score < 24

(Continued)
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TABLE 1 (Continued)

Follow-up 
duration

Number of 
patients 

with 
cognitive 

impairment 
after stroke

Total 
sample 

size

Number of 
patients 

with 
cognitive 

impairment 
in training 

set

Total sample 
size of 

training set 
(deriving set 

and 
modeling 
cohort)

Validation set generation 
method [internal validation 
(k-fold cross-validation, 
leave-one-out method, 
random sampling), 
external validation 
(prospective, institutional)]

Number of 
patients with 

cognitive 
impairment in 
validation set

Total 
sample 
size of 

validation 
set

Variable 
screening/
feature 
selection 
method

Model type

3 m 228 599 228 599 No validation set Multivariate Logistic regression

3 m 87 367 58 245 Random sampling at a ratio of 2:1 29 122 Multivariate Logistic regression

12 m 21 117 21 117 No validation set Multivariate Logistic regression

27 103 27 103 No validation set Multivariate Logistic regression

3 m 91 589 91 589 No validation set No No Multivariate Logistic regression

94 161 94 161 No validation set No No Multivariate Logistic regression

6 m 19 110 19 110 Random internal validation 12 70 Multivariate Logistic regression

6 m 69 123 69 123 External validation 38 60 Multivariate Logistic regression

1y 77 327 62 262 5-fold cross validation 15 65 Multivariate random forest

1y 118 376
118 376 External validation 75 125

Multivariate LASSO regression
106 338 10-fold cross validation 12 38

15 m 1,286 2,950
1,286 2,950 External validation

107 246 Multivariate Logistic regression
1,179 1,704 12-fold cross validation

36y 9 72 9 72 External validation 40 Multivariate Ridge regression

5y 1,000 2,468 1,000 2,468
External validation

204 940 Multivariate Mixed effects model
Internal validation

1y 112 228 112 228 External validation No 1,000 Multivariate
Multivariate logistic 

regression

6 m 131 383 131 383
External validation 281

Multivariate
Multivariate logistic 

regressionInternal validation 102

3 m 125 227 125 227 Leave-one-out cross validation 227 Multivariate Classifier model

6 m 66 104 66 104 Internal cross validation 66 104 Multivariate Decision tree

3 m

340 MMSE 

scoring
638 No Multivariate Logistic regression

422 MoCA 

scoring

(Continued)
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TABLE 2 Modeling variables in the included studies.

Variables Frequency

Age 29

Gender 26

Educational level 24

Diabetes 15

Smoking 15

Hypertension 14

History of stroke 11

Stroke severity 11

Lesion size 10

Hyperlipemia 9

Drinking 9

Stroke subtype 8

Body mass index 8

NIHSS 7

Site of lesion 7

Race 7

Coronary heart disease 6

NIHSS score 6

Atrial fibrillation 6

MoCA (baseline) 5

MMSE (baseline) 5

Antiplatelet before stroke 5

Glycosylated hemoglobin (HbA1c) 5

Information about cognitive decline in the elderly 4

homocysteine 4

Number of days after stroke 4

APOE ε4 positive 3

Fazekas 3

mRS (baseline) 3

sTREM2 3

WMH size 3

Fluvastatin 3

Hypercholesteremia 3

Family history of stroke 3

Transient ischemic attack, a prestroke vascular risk factor 3

Uroclepsia 3

Cortical thickness 3

Cognitive examination 3

Socioeconomic group 3

Use of antihypertensive drugs 3

Cardiovascular risk factors 3

aCL 2

aPS 2

DS-WMH 2

HS 2

PV-WMH 2

RF 2

β2-GPi 2

Imaging time (days after the event) 2

The time from disease onset to randomization 2

Red blood cell distribution width 2

Mean corpuscular volume 2

Diastolic blood pressure 2

Random treatment 2

(Continued)
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TABLE 2 (Continued)

Variables Frequency

Hemoglobin 2

Scan sequence or pattern for infarct segmentation 2

Hypoglycemic drugs 1

Comorbidity2 1

Fazekas score 1

FBG 1

FDG PET DL-based cognitive assessment 1

hsCRP 1

IQCODE score 1

LDL-C 1

MTA pathology 1

NINDS-CSN 5-minute protocol score 1

NLR 1

OCSP classification 1

SAA 1

Imaging features of T1-weighted (T1w) image texture analysis 1

OCSP classification and functional level in advanced TOAST 1

TOAST classification 1

White blood cell count 1

White matter hyperintensity 1

Premorbid cognitive decline 1

At discharge (NIHSS, mRS, Barthel scores) 1

Low density lipoprotein 1

Triglyceride 1

Cysteine proteinase inhibitor 1

Country 1

Marital status 1

Progression of acute stroke 1

Memory 1

Employment situation 1

Anticoagulant drugs 1

Infections treated with antibiotics 1

1 point for six or more correct answers 1

Hexagonal orientation 1

Number of intracranial atherosclerotic stenosis 1

Incranial volume 1

Chronic lacunes 1

Uric acid 1

Global cortical atrophy and stenosis of large intracranial vessels 1

Presence of any APOE-e4 allele 1

Visual space function 1

Affected vascular area 1

Pentaterial memory 1

Pre-existing depression 1

Fibrinogen 1

Myocardial infarction 1

Serum albumin 1

Language 1

Speech fluency raw score 1

Executive function 1

Stroke classification 1

Stroke feature 1

Neutrophil-lymphocyte ratio (NLR) 1

NCD 1

single-factor + multi-factor LR model selection method and performed 
internal validation through random sampling (43–45).

In our study, the c-index of LR did not significantly lag behind 
other types of ML models, which demonstrates relatively high 
sensitivity and specificity. Hence, we  believe that LR exhibits 
promising predictive potential for PSCI.

In addition, we found that the major modeling variables for the 
ML-based PSCI prediction models were age, gender, education 
level, white matter hyperintensity (WMH), stroke history, stroke 
severity, lesion volume, lesion site, stroke subtype, and vascular 
risk factors. These modeling variables were still mainly based on 
past identified risk factors (race, age, gender, education level, 
vascular risk factor, stroke severity, and stroke lesion site and 
volume) (46), and very few or no newly identified risk factors were 
used for modeling, such as blood proteins [homocysteine (Hcy), 
C-reactive protein (CRP), low-density lipoprotein cholesterol 
(LDL-C), total cholesterol (TC)] that have been recognized as 
effective biomarkers for PSCI (47), cognitive reserve (CR) (48), 
activity and participation of stroke survivors (49), and intestinal 
dysbiosis (50). Therefore, the newly identified risk factors should 
be prioritized for further validation as their efficacy as modeling 
variables remains uncertain.

It was reported that common cognitive screening tools have 
similar predictive accuracy in PSCI. Although the MoCA has 
significantly better sensitivity in PSCI prediction than other 
cognitive screening tools, its specificity is less than desirable (51, 
52). This demonstrates that there is a lack of effective prediction 
models for the early screening of PSCI. However, our findings 
showed that ML has considerably high predictive accuracy 
(c-index, sensitivity, and specificity) in PSCI and is a promising 
tool for predicting PSCI.

A recent systematic review indicated that although PSCI has 
unique risk factors (e.g., Vascular risk factors, lifestyle, overweight, 
and obesity), it is currently unclear whether the intervention of these 
risk factors can effectively reduce the incidence of PSCI. Most 
approaches for lowering PSCI incidence are still dependent on 
effective prophylaxis for stroke (46). Therefore, effective prediction 
tools for the early identification and diagnosis of PSCI are urgently 
needed. Despite the uncertainty in the intervention measures for post-
stroke cognitive functions, some researchers found that physical 

FIGURE 2

Risk of bias assessment.
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activity intervention and noninvasive brain stimulation can improve 
post-stroke cognitive functions compared with conventional care (53). 
Though, the ≥2-year improvement in PSCI after intervention was 
small (54). Moreover, patients with cognitive impairment have 
significantly increased risks of subsequent ischemic and fatal stroke 
(55, 56). Hence, early identification of appropriate treatment and 
rehabilitation measures are critical for improving the health and life 
expectancy of PSCI patients. Our study demonstrated the feasibility 
of ML in the development of PSCI prediction tools and that ML is also 
an important means for PSCI prediction.

Given the low number of PSCI prediction models for 
hemorrhagic stroke included in this study (n = 3) (19), the 
predictive accuracy of ML vs. common cognitive screening tools 
in PSCI in hemorrhagic stroke patients remains unclear and 
warrants further investigation.

ML plays an important role in the clinical management of 
stroke and improvement of the accuracy and efficiency of stroke 
prediction, diagnosis, personalized treatment, and prognosis 
assessment (57). For prediction of stroke risk, ML algorithms can 
be trained using patient data to establish predictive models and 
estimate the risk of stroke based on individual patient information, 
clinical indicators, and biomarkers. As for stroke diagnosis, ML 
can learn and identify radiological features of stroke and assist 
physicians with early and accurate diagnosis. In addition, ML can 

predict the efficacy and safety of different treatment options based 
on the patient’s personal information, medical history, and clinical 
manifestations, enabling physicians to develop personalized 
treatment strategies. Furthermore, ML algorithms can predict 
post-stroke recovery and long-term prognosis based on patients’ 
clinical and biomarker data. ML has been extensively used in 
stroke diagnosis, particularly in brain imaging, with SVM being 
the optimal model for stroke imaging (6, 44, 57). However, in our 
study, SVM exhibited inferior sensitivity to LR despite higher 
c-index, and the model size was limited (n = 1). Therefore, further 
exploration and development of SVM in predicting PSCI are 
warranted. We  can attempt to optimize the accuracy of PSCI 
prediction by using different SVM models and parameter settings. 
SVM has various variants, such as non-linear SVM, multi-kernel 
SVM, and support vector regression, which are selected based on 
specific circumstances. Additionally, the combination of SVM 
with other ML methods can be explored for PSCI prediction. For 
instance, integrating SVM with deep learning techniques can 
improve the accuracy and robustness of predictions when 
analyzing images or text data. Moreover, extensive clinical 
validation studies are required to assess the actual effectiveness of 
SVM in PSCI prediction. The application value of SVM in PSCI 
prediction can be comprehensively assessed by collecting more 
data from PSCI patients and evaluating the models on independent 

FIGURE 3

Forest plot of c-index in the training set. LR, logistic regression; SVM, Support Vector Machines; DT, decision trees; MEM, mixed effects model.
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FIGURE 4

Forest plot of sensitivity and specificity in the training set. LR, logistic regression; SVM, Support Vector Machines; DT, decision trees; MEM, mixed effects model.

FIGURE 5

Forest plot of c-index in the validation set. LR, logistic regression; LASSO, least absolute shrinkage and selection operator.
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validation sets. In conclusion, SVM, as a widely used ML method, 
has untapped potential in PSCI prediction. Continuous learning 
and research efforts can further refine and optimize the 
application of SVM in PSCI prediction, providing more accurate 
diagnostic and treatment decision support for clinical practitioners.

For this systematic review, the literature search was performed up 
until December 2022 and additional studies on this topic may become 
available subsequently. Hence, a regular review of the literature is 
recommended to obtain the most updated progress on this research topic.

FIGURE 6

Forest plot of sensitivity and specificity in the validation set. LR, logistic regression; LASSO, least absolute shrinkage and selection operator.

FIGURE 7

Meta-regression bubble plot of follow-up time in the training set 
(circles represent weights, with larger circle indicating greater weight 
and smaller confidence interval).

FIGURE 8

Meta-regression bubble plot of follow-up time in the validation set 
(circles represent weights, with larger circle indicating greater weight 
and smaller confidence interval). (1) Randomized controlled trial; (2) 
Prospective cohort study. (3) Retrospective cohort study.
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4.1. Strengths and limitations

This systematic review is the first to demonstrate the feasibility of 
ML in PSCI prediction. The included models were highly consistent 
and were predominantly logistic regression nomograms, which 
minimized heterogeneity.

Despite a comprehensive literature search, the number of included 
studies and models was still relatively low, and bias may be present in 
model construction.

5. Conclusion

ML has considerable predictive accuracy and is a promising 
prediction tool for PSCI. Therefore, future studies should 
concentrate on constructing ML models based on multi-racial, 
multi-center, and large-cohort samples and transforming them into 
simple clinical scoring tools with wide application. This will 

FIGURE 9

Meta-regression bubble plot of design in the training set (circles 
represent weights, with larger circle indicating greater weight and 
smaller confidence interval. (1) Randomized controlled trial; (2) 
Prospective cohort study; (3) Retrospective cohort study).

FIGURE 10

Meta-regression bubble plot of design in the validation set (circles 
represent weights, with larger circle indicating greater weight and 
smaller confidence interval).
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undoubtedly help with the development of follow-up strategies or 
rehabilitation measures for stroke patients to reduce their risk of 
developing cognitive impairment.
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SUPPLEMENTARY FIGURE S1

Sensitivity analysis of the training set.

SUPPLEMENTARY FIGURE S2

Sensitivity analysis of the validation set.

SUPPLEMENTARY FIGURE S3

The funnel plot of the training set.

SUPPLEMENTARY FIGURE S4

The funnel plot of the validation set.

SUPPLEMENTARY FIGURE S5

Egger’s regression test of the training set.

SUPPLEMENTARY FIGURE S6

Egger’s regression test of the validation set.
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