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Introduction

Parkinson’s disease (PD) is a chronic and progressive neurodegenerative disorder

characterized by asymmetrical limb bradykinesia, rigidity and tremor. A plethora of

cognitive, emotional and vegetative non-motor symptoms are also frequent and can greatly

impact on daily living (1). Among them, fatigue is estimated to occur in about 50% of patients

with PD (2–4). Even more important, one-third of these subjects report this symptom

as one of the most disabling in terms of quality of life (5). Friedman et al. (3) proposed

to define PD fatigue as a sense of exhaustion unexplained by drug effects, other medical,

or psychiatric disorders, present for a defined period, and associated with other fatigue-

related symptoms, such as reduced motivation and non-restorative rest, or constraints (6).

There are neither established empirical approaches to the treatment of fatigue in PD nor

accepted pathophysiological mechanisms underlying this debilitating symptom (7–9). Based

on several published studies (10–13), we hypothesize that fatigue in PD could be an indirect

expression of attention deficit, a common cognitive disturbance in PD that can frequently be

interpreted by the patient as fatigue. A recent report has linked attention deficits and fatigue

in several neurological disorders, including PD (14). Studying intra-individual variability

(IIV) in reaction times (RTs) and the use of transcranial magnetic stimulation (TMS) could

have the power to shed light on the interaction between fatigue and attention. Together

with a brief review of the proposed models for explaining fatigue in PD, we suggest why

IIV and TMS could help in understanding this symptom and propose a framework for

future studies.
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Fatigue in PD, the link with attention
and study modalities

Fatigue in PD is not related to decreased force-generating

capacity during voluntary muscular contractions but to an

increased sense of effort in both motor and cognitive tasks (15, 16).

Disruption of the reciprocal loop between the striatum, frontal

and limbic structures, following dopamine depletion (17, 18), was

shown to be associated with fatigue in PD (19, 20). Nevertheless,

the effect of dopaminergic therapies on fatigue remains unclear

(21–23) and it is actually known that other non-dopaminergic

networks are involved in fatigue generation (24). Coherently,

it has been reported that the presence of fatigue is associated

with serotoninergic denervation in the basal ganglia (BG) and

limbic circuits (12). These changes could disrupt the integrity of

different motor-cognitive processes (12), leading to a dissociation

between motivation to act and motor execution, which could

finally result in reluctance to move and feeling of fatigue (25).

Because of performing movements is a decision-making process

and the choice to move is taken considering the effort necessary

to reach the goal (26), pathological fatigue could emerge from

deficient evaluation of internal (somatic) input associated with

abnormal feedback of perceived exertion (27). Accordingly, clinical

and experimental evidence suggest that fatigued PD patients

present in decision-making processes (28). The orbitofrontal cortex

(OFC) is implicated in decision-making process, as well as in

emotion regulation and reward processing. A strong contribution

to the process of decision-making is provided by the dorsolateral

prefrontal cortex (DLPFC), that is mainly involved in executive

functions and is associated with attention to the selection of action

(29). Despite different relations have been observed between fatigue

and cognitive, motivational and emotional problems (in terms

of depression, episodic anxiety, cognitive apathy, sleepiness, and

subjective memory impairment) (13, 30), this symptom has been

found to affect also non-depressed and non-demented PD patients

to the same extent (31). In a prospective, 8-year longitudinal study

of 233 PD patients (32), fatigue was found to be persistent in more

than half of the patients and the authors concluded that non-motor

features, such as depression and excessive daytime sleepiness,

cannot explain fatigue (32). Using resting-state functional MRI

in drug-naïve patients with early PD, Tessitore et al. (10) found

that fatigue is associated with decreased connectivity within the

supplementary motor area and increased connectivity within the

prefrontal and posterior cingulate hubs of the default mode

network. In line with these data, it has been found that PD

patients with fatigue manifest significantly lower executive network

efficiency, lower accuracy and less efficient attentional-alerting

network (11). Other relevant findings support a link between

PD-related fatigue and attention-demanding motor tasks (33).

Martino et al. (34) designed a protocol based on sequential finger

opposition movements paced to a 2Hz metronome signal and

repeated continuously for 5min (34). This motor task requires

high attentional demand and both spatial and temporal accuracy

(33, 34). The authors administered this finger sequential task to

PD patients with and without fatigue and found that the accuracy

of fatigued PD patients deteriorated more than in non-fatigued

PD patients, and that change over time correlated significantly

with the burden of subjective fatigue complaints. Interestingly,

subjective fatigue complaints were not associated with performance

deterioration on an internally paced (un-cued) version of the same

task (33).

All these observations lead toward the hypothesis that fatigued

PD patients could fail in initiating and maintaining attentional

tasks that require self-motivation and/or manifest an inability to

inhibit/control the occurrence of excessive or distracting internal

and external stimuli (10, 25, 27). Despite the plausible link between

attention and fatigue in patients with PD, the lack of extensive

neuropsychological evaluations, together with the absence of any

neurophysiological measures, does not allow to disentangle the

complex interplay between fatigue and attention in PD and the

pathophysiology of this symptom remains still largely unknown.

Classically, researchers referred on reaction times (RTs) tasks

for exploring the link between “central” fatigue and attention.

These studies highlighted that patients with fatigue manifest

defective attention (35, 36) and present increased IIV in RTs tasks

exploring executive attention (37). IIV consists of within-person

fluctuations in cognitive performance and their (in-)stability across

time. It is believed to reflect the brain activity at different neural

level (37) as provides information about attentional/executive

control demand (38, 39), thus representing a useful method for

understanding the neurological dysfunctions (40–42). Low IIV

(i.e., high consistency across scores) is hypothesized to reflect

neurological integrity, whereas high IIV (i.e., low consistency across

scores) could be indicative of neurological compromise (43). IIV

has been found to be greater in PD patients relative to controls,

both in global cognition and in attentive functions (41, 44–46).

These findings are in line with the notion that deficits in attention

present early in the disease course and are among the most frequent

non-motor symptoms in PD (47).

Because of the progressive degeneration of the dopaminergic

transmission in PD alters the direct pathway leading to the need for

a massive exploitation of executive-attentive resources to express

motor behaviors (48–55), the measure of IIV and inconsistency

could be extremely relevant also as a motor-cognitive marker.

By referring to IIV analysis of RTs, different studies aimed

to define the attentive impairment and its relation with fatigue

in other neurological conditions. A recent study (56) assessed 74

post-COVID patients complaining of high levels of fatigue with

computerized Sustained Attention and Stroop tasks. For studying

IIV, RTs distributions of performances in computerized tasks were

fitted with ex-Gaussian distribution. In sustained attention task,

mean, µ, σ and τ values were significantly higher in patients with

respect to controls (56). These findings strengthen the role of

these measures for detecting links between perceived fatigue and

attentive deficits in neurological patients.

The pathophysiology of neural pathways involved in fatigue

and attention deficits could be further explored through TMS

(57–65). In a typical TMS study, the researchers first determine

the threshold required to activate a muscle. The threshold is

typically defined as a stimulation intensity required to evoke

a Motor Evoked Potential (MEP) of > 50 micronV recorded

from the target muscle in five of ten trials. In normal subjects,

intermittent submaximal exercise is accompanied by increase

in TMS-evoked MEP amplitude during exercise before fatigue

Frontiers inNeurology 02 frontiersin.org

https://doi.org/10.3389/fneur.2023.1212876
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Ortelli et al. 10.3389/fneur.2023.1212876

develops, whereas, after fatigue has developed, a decrease in MEP

amplitude relative to baseline can be found. Both, post-exercise

facilitation and post-exercise depression are most likely mediated

by cortical mechanisms (66). Lou et al. (67) found that PD patients

in “off” state have more pronounced post-exercise facilitation and

absent post-exercise depression compared with normal controls.

A small dose of levodopa/carbidopa (100/25mg) reduced the

MEP amplitudes. Therefore, the investigators concluded that

dopamine may play a role in exacerbated physical fatigability

in PD because levodopa/carbidopa normalized abnormal cortico-

neural excitability in these patients (65, 67). The increased MEP

amplitude and more pronounced post-exercise facilitation might

represent compensatory mechanisms for reduced excitatory inputs

from the premotor and the supplementary motor areas in PD

(65, 67). These findings related toMEPmeasures do not completely

explain the cognitive, attention-related aspects concerning fatigue

and the contribution of other non-dopaminergic pathways in

fatigue generation in PD. Nevertheless, the potential relevance of

TMS in addressing the pathophysiology of fatigue in PD could be

clearly understood when looking at the sequence effect (SE). SE

is characterized by progressive slowness in speed or a decrease in

amplitude of sequential movements and it represents amain feature

of bradykinesia (68). It may be associated with altered cortical

excitability: as the BG are important for planning movement

amplitude, the aberrant output from the BG to the motor cortex

may produce this abnormality (69). Different studies have followed

the hypothesis that SE observed during the execution of complex

movements may be related to fatigue (70, 71). Nevertheless, it

remains still unclear whether fatigue correlates with these motor-

behavioral abnormalities in PD or not. In this concern, Bologna

and colleagues (72) investigated whether objective measures of

bradykinesia (amplitude, speed and decrement of repetitive finger

tapping) have any relationship with neurophysiological measures

in primary motor cortex as assessed by means of TMS measures.

PD patients tapped more slowly and with smaller amplitude

than normal, and displayed decrement as tapping progressed.

They also had steeper input/output curves, reduced short-interval

intracortical inhibition and a reduced response to the paired

associative stimulation protocol. Further, bradykinesia features

correlated with the slope of the input/output curve and the after-

effects of the paired associative stimulation protocol (72). These

results suggest that a tight relation linking neurophysiological

changes in primary motor cortex and bradykinesia exist. Therefore,

because of SE (as a main feature of bradykinesia) and less efficient

attentional-alerting network could be both related to some extent

with perceived fatiguability, we could assume that different TMS

measures, given their potential to study complex neural networks,

may be useful to explore deeper the pathophysiology of fatigue in

PD. As a matter of fact, TMS has been adopted to unveil fatigue-

related mechanisms in different neurological conditions (57–65).

In patients with multiple sclerosis, the Cortical Silent Period (CSP),

an intracortical, mainly GABAB-mediated inhibitory phenomenon,

was found to be shorter in patients than in controls (57). As

fatigue developed, CSP changes involved both the “fatigued”

and the “unfatigued” muscles, suggesting a cortical spread of

central fatigue mechanisms. Interestingly, chronic therapy with

amantadine annulled differences in CSP duration between controls

and patients, possibly through restoration of more physiological

levels of intracortical inhibition in the motor cortex (57). In

a recent cross-sectional observational study (61) in 59 non-

depressed stroke survivors suffering from non-exercise induced

fatigue (PSF), the authors examined the relationship between

inter-hemispheric inhibitory balance (IIB) of homolog neural

populations and subjectively reported PSF severity (measured with

Fatigue Severity Scale). The authors found an association between

individuals’ levels of IIB in M1 and the reported levels of persistent

PSF (61). Interestingly, IIB has been previously linked properly

with attentional and affective disorders (61). In patients suffering

from long-lasting fatigue and/or cognitive difficulties after mild

SARS-CoV-2 infection longer CSP, together with impairments

in long-interval intracortical inhibition and short-latency afferent

inhibition, was found, thus indicating altered GABAB-ergic and

cholinergic neurotransmission (64).

Study proposal and framework

We believe that literature data go through the idea that future

studies putting together IIV in attentive RTs analysis and a wide

TMS-based assessment could contribute to the knowledge of the

intricate link between fatigue, motor behavior alterations and

attention deficits in PD.

Starting from these assumptions, in the following section we

will outline which clinical, IIV and TMS paradigms we intend to use

in future studies for better understanding the pathophysiological

mechanisms underlying fatigue in PD.

Evaluation of fatigue

Presence of fatigue can be defined based on the 16-item

Parkinson Fatigue Scale (PFS-16) (73), which was developed for

use in routine clinical practice and has been recommended for

screening and rating the severity of fatigue in PD taking into

account possible overlapping with other motor and non-motor

symptoms (74). PFS-16 provides a measure of fatigue, which is

independent of affective, sleep and cognitive disturbances. Brown

et al. (73), using the full Likert scale, found that an average score

greater than 2.9 distinguishes those who experienced fatigue from

those who did not with a sensitivity of 81.0% and specificity of

85.7%. Therefore, according with this finding and previous reports

(11), a PFS-16 threshold of 2.9 can be adopted to define the

presence of fatigue and to differentiate “fatigued PD patients” and

“non-fatigued PD patients”.

IIV in RTs

We intend to apply the study of IIV to the following

computerized RTs tasks in fatigued and non-fatigued PD patients

in order to unveil whether such aspects of mental-cognitive fatigue

could be related to dysfunctions in attentional networks:
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Sustained attention task
SAT evaluates the speed with which subjects respond to a

specific environmental stimulus that are presented at randomized

intervals. For example, patients have to press a response button as

quickly as possible after the appearance, on the computer screen, of

a target that disappear immediately after striking the response key

(56, 75).

Stroop task
ST assesses to inhibit cognitive interference, which occurs when

automated processing of a stimulus feature affects the simultaneous

processing of another attribute of the same stimulus (76). The task

can be divided into two conditions: word Color Naming (WCN),

and Color Naming (CN). In this paradigm (56, 75), patients have

to press corresponding keys related to differently colored circles

(CN) as fast as possible. In WCN (“interference condition”) names

of colors are printed in inconsistent colors, and subjects have to

press a key corresponding to the color of the ink instead of the

word’s meaning. Thereafter, participants will have to perform a less

automated task (naming ink color) while inhibiting the interference

arising from a more automated task (reading the word). The

difference between WCN and CN is considered an expression of

the Interference component (77).

Multiple-choice task
MCT assess selective attention. The target can be a number

(1, 2, 3) whose presentation is randomized. Each number can be

associated to a different response button. In each trial patients have

to press as quickly as possible the response button associated with

the number that appeared on the screen. The accuracy of responses

is evaluated by counting the errors (56, 75).

For each task, the mean value can be computed and RTs

distributions can be fit with ex-Gaussian distribution using

maximum likelihood estimation ad a bounded Simplex algorithm

(78). From the resulting ex-Gaussian function three parameters,

µ, σ, and τ can be obtained: the first two parameters (µ and σ)

correspond to the mean and standard deviation of the estimated

Gaussian component (sensory-motor and automatic processes),

the third parameter (τ ) is the mean of the estimated exponential

component (central, attentive and decision-related processes of

executive attention).

Application of TMS

We intend to adopt TMS for understanding motor cortex

excitability and the functioning of intracortical circuits in fatigued

and non-fatigued PD patients, to carry on a neurophysiological

evaluation of motor fatigue and to evaluate possible relations with

mental-cognitive fatigue. Therefore, the following measures will

be collected:

Resting motor threshold
RMT is defined as the lowest TMS intensity (expressed in

percentage of the maximum stimulator output) that evoked MEPs

of at least 50 µV peak-to-peak amplitude in five of ten successive

trials (79).

Cortical silent period
CSP reflects an intracortical, mainly GABAB-mediated

inhibitory phenomenon, and is defined as the time elapsing

from the end of the MEP until the recurrence of voluntary tonic

electromyographic activity (79).

Short and long interval intracortical inhibition
SICI is thought to represent GABAA-receptor-mediated

fast inhibitory post-synaptic potentials (IPSPs) in corticospinal

neurons, while LICI is considered a phenomenon dependent on

slow IPSPs mediated through GABAB-receptors (80).

Short-latency a�erent inhibition
SAI is a marker of inhibitory sensorimotor integration

that depends mainly on the excitatory effect of cholinergic

thalamocortical projections onto the inhibitory GABAergic cortical

network (81).

TMS evaluation of neuromuscular fatigue
Neuromuscular fatigue is typically assessed via sustained

isometric maximal voluntary contraction (82). MEP amplitude and

CSP duration can be evaluated to assess neuromuscular fatigue

10min before (PRE) and 2min after (POST) a 1-min fatiguing

motor task. After a fatiguing isometric exercise, MEPs evoked in

the resting target muscle are depressed for about half an hour. The

CSP, on the opposite, increases after a fatiguing isometric muscle

effort likely with the physiological purpose to reduce corticomotor

output and prevent excessive peripheral exhaustion (83).

Conclusions

To the best of our knowledge, no studies have investigated IIV

in parkinsonian subjects with respect to their level of fatigue and no

data examining the relations between IIV in RTs and TMSmeasures

actually exist. Combining thesemeasures and correlating the results

of neuropsychological investigations with the neurophysiological

ones could help in the attempt to understand whether, and to

what extent, alterations of the attentional system contribute to

the perception of physical and mental fatigue in Parkinsonian

patients. Therefore, results from further studies adopting these

neuropsychological and neurophysiological measures and based on

this framework could help in understanding physical and cognitive

fatigability in PD.
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