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Background: Rapid and accurate triage of acute ischemic stroke (AIS) is essential 
for early revascularization and improved patient outcomes. Response to acute 
reperfusion therapies varies significantly based on patient-specific cerebrovascular 
anatomy that governs cerebral blood flow. We present an end-to-end machine 
learning approach for automatic stroke triage.

Methods: Employing a validated convolutional neural network (CNN) segmentation 
model for image processing, we extract each patient’s cerebrovasculature and 
its morphological features from baseline non-invasive angiography scans. These 
features are used to detect occlusion’s presence and the site automatically, and 
for the first time, to estimate collateral circulation without manual intervention. 
We then use the extracted cerebrovascular features along with commonly used 
clinical and imaging parameters to predict the 90  days functional outcome for 
each patient.

Results: The CNN model achieved a segmentation accuracy of 94% based on 
the Dice similarity coefficient (DSC). The automatic stroke detection algorithm 
had a sensitivity and specificity of 92% and 94%, respectively. The models for 
occlusion site detection and automatic collateral grading reached 96% and 87.2% 
accuracy, respectively. Incorporating the automatically extracted cerebrovascular 
features significantly improved the 90  days outcome prediction accuracy from 
0.63 to 0.83.

Conclusion: The fast, automatic, and comprehensive model presented here can 
improve stroke diagnosis, aid collateral assessment, and enhance prognostication 
for treatment decisions, using cerebrovascular morphology.
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Introduction

Stroke is a major cause of death and disability in the United States 
and worldwide. About 800,000 people in the US suffer from a stroke 
each year, leading to 140,000 deaths (1). Critically reduced regional 
cerebral blood flow during an acute ischemic stroke (AIS) initiates 
brain dysfunction and, if left untreated, brain tissue death at a high 
rate of 1.9 million neurons every minute (2). Therefore, fast and 
accurate AIS diagnosis is essential for timely treatment to limit 
constantly growing ischemic core and irreversible brain damage (3), 
and improve functional outcomes (4).

In the acute hospital setting, AIS triage consists of baseline patient 
assessment followed by imaging studies to rule out brain hemorrhage, 
localize vessel occlusion sites and identify salvageable tissue-at-risk. 
However, the current clinical process relies on the immediate 
availability of vascular neurology and neuroradiology expertise, which 
varies significantly across institutions (4, 5). In recent years, software 
solutions have been developed for the automatic detection of large 
vessel occlusion (LVO) and estimation of the ischemic core and at-risk 
tissue (4, 5) using features such as the difference between left versus 
right hemispheric average vessel density (4, 6, 7). These approaches, 
however, are limited by low sensitivity (63%–85%) or low specificity 
(50%–70%), despite achieving high sensitivity (83%–92%) due to 
pre-existing brain and cerebrovasculature changes such as intracranial 
atherosclerosis and tandem occlusions. Therefore, developing fast, 
reliable, and accurate methods that can automatically extract and 
analyze complex cerebrovascular morphology can improve stroke 
diagnosis even in smaller facilities without access to local expertise 
(4, 8, 9).

After the stroke diagnosis is established, acute reperfusion 
therapies, including intravenous thrombolysis, and increasingly, 
endovascular thrombectomy (EVT), are used for emergent 
recanalization of the occluded vessels (2, 10). Accumulating evidence 
has established the effectiveness of EVT in improving the ischemic 
core to tissue-at-risk (penumbra) ratio and long-term functional 
outcomes (2). Hence, accurate and rapid patient selection is critical 
yet clinically demanding and is typically performed using a 
combination of clinical and imaging parameters. The most common 
parameters include patient baseline functional status, symptoms onset 
time, stroke severity, baseline non-contrast computed tomography 
(CT) scan or magnetic resonance (MR) imaging of the brain, 
non-invasive vascular imaging modalities CT and MR angiography 
(CTA and MRA), as well as more advanced perfusion brain imaging 
in selected cases (11). However, not all AIS patients are eligible for 
acute reperfusion therapies. In addition, response to acute reperfusion 
therapies is highly variable among AIS patients and relies on patient-
specific cerebrovascular anatomy that governs cerebral blood flow 
during ischemia and reperfusion (12). Data-driven outcome 
prediction of acute reperfusion therapies can assist stroke systems of 
care in facilitating the triage and transfer of AIS patients and decision-
making by physicians, patients, and their families. Therefore, 
approaches to automatic and individualized response prediction to 
treatment and outcomes are consequently gaining popularity (13, 14).

The collateral circulation consists of a network of secondary 
vessels developed over time to maintain cerebral perfusion and 
prolong brain tissue survival during ischemia (15). Accordingly, the 
optimal treatment window varies between individuals, and a better-
developed collateral circulation provides the patient more time to 
receive acute reperfusion therapies (16). Therefore, a validated and 

rapid assessment of collateral circulation and potentially other 
complex cerebrovascular features can tremendously impact patient 
selection for treatment (17, 18). The collateral index (CI) is a metric 
to quantify the extent of collateral circulation development. It has been 
shown to significantly impact patient recovery after recanalization and 
long-term functional outcomes (15). However, manual CI assessment 
is time- and labor-intensive and not incorporated into the routine 
stroke triage for patient selection and outcome prediction (19).

Machine learning (ML) algorithms have been increasingly used 
in recent years to improve multiple aspects of stroke care, including 
diagnosis, treatment, and outcome prediction (20). The performance 
of ML algorithms depends on the input data, its structural design, and 
defined outcomes. Many previous attempts have been limited by the 
variety and reliability of their input, which typically includes 
parameters similar to those used for EVT patient selection, such as the 
National Institute of Health Stroke Scale (NIHSS) (21) and the Alberta 
Stroke Program Early CT Score (ASPECTS) of the baseline 
non-contrast head CT scan (22). However, only a very few ML models 
have used more advanced neuroimaging parameters (11, 23), and 
most have failed to incorporate patient-specific cerebrovascular 
features in their models, thus missing out on exploiting the rich 
vascular information (14, 24, 25) despite their significant impact on 
patient outcomes (2, 9, 26). Not surprisingly, the outcome prediction 
studies have reported a relatively low specificity and sensitivity with 
an area under the curve (AUC) for the receiver operating characteristic 
curve (ROC curve) under 0.76 (27, 28).

We hypothesized that incorporating patient-specific 
cerebrovascular morphological features would improve stroke 
diagnosis and long-term outcome prediction. A major challenge in the 
automatic estimation of the CI and other morphological features of 
the cerebral vasculature is the lack of a validated method for vascular 
segmentation and feature extraction from baseline CTA or MRA 
scans. In the past few years, there have been significant advances in 
automatic cerebrovasculature segmentation methods, which refers to 
partitioning an image into multiple segments to separate the regions 
of interest from the background, i.e., “vessels” and “non-vessels,” by 
assigning a label to each image pixel (29–31). We previously developed 
a novel, validated algorithm for accurate segmentation as well as 
geometric feature extraction of the cerebral vessel network (32). 
However, the segmentation must be extremely fast, and produce vessel 
network maps in real-time, for clinical applications. For this purpose, 
deep learning techniques are gaining popularity as they enable 
instantaneous 3D segmentation of volumetric imaging data. Most 
deep learning efforts in literature have used small datasets for neural 
network training and applied threshold-based vascular maps as the 
ground truth to generate binary vessel trees (30, 33). These limitations 
lead to inaccuracies in the final segmentation due to insufficient 
training data, the inconsistent nature of the thresholding-based 
approach, and low inter-observer agreement in manually segmented 
ground truth.

In this pilot study, we present a novel hybrid image processing and 
artificial intelligence pipeline for stroke patient triage. Figure 1 depicts 
an overview of our end-to-end process. Using our validated 
segmentation algorithm as ground truth (32), we train a convolutional 
neural network (CNN) for instantaneous, accurate, and automatic 
segmentation of the vascular network from the raw CTA or MRA 
scans that aids in subsequent extraction of the complex geometric 
features of the cerebral vessel network, namely—total length, average 
diameter, branching pattern, total volume, vessel tortuosity, and fractal 
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dimension. We  then used these cerebrovascular morphological 
features in conjunction with our previously developed statistical 
cerebrovascular atlas (34) to automatically detect the presence and site 
of the vessel occlusion, and calculate the CI for each stroke patient. 
The findings were validated against ground truth clinical assessment 
and grading of each subject’s collateral circulation. Lastly, 
we  developed a predictive ML algorithm to incorporate the 
automatically extracted cerebrovascular features and CI in 
combination with the commonly used clinical and imaging parameters 
to predict the 90 days functional outcome of AIS. With this work 
we aim to improve various aspects of stroke patient triage by bringing 
imaging data to the forefront of treatment decisions.

Materials and methods

Figure 1 illustrates an overview of the entire workflow, starting 
from the CNN-based segmentation of cerebrovasculature to 

predicting the 90 days outcome after AIS. This retrospective study 
uses multiple anonymized datasets, each approved by the 
corresponding IRB. Table 1 lists the details of all the imaging data 
used in this study.

To train and test the CNN segmentation algorithm, we used time-
of-flight (ToF) MRA scans of 175 healthy subjects consisting of 109 
subjects from the MIDAS public database (CASILab at the University 
of North Carolina, Chapel Hill, NC; distributed by Kitware, Inc.) and 
66 subjects from the OASIS-3 study (Knight Alzheimer Research 
Imaging Program at Washington University, St. Louis, MO) (35). An 
Allegra 3 T MR scanner (Siemens Medical Systems Inc., Germany) 
was used for data acquisition in MIDAS database with 0.5 mm3 
resolution. The scans in the OASIS-3 database were acquired on three 
different Siemens scanner models: a 1.5 T scanner with a 16-channel 
head coil and two 3 T scanners with a 20-channel head coil with 
0.3 mm3 resolution. Furthermore, Stanford University School of 
Medicine provided head CTA scans of 10 healthy subjects, acquired 
on a GE Lightspeed scanner at 100–120 kV after a bolus injection of 

FIGURE 1

An overview of the end-to-end machine learning process. The process starts with automatically segmenting raw imaging scans using the CNN model, 
followed by extracting morphological features from the vessel tree. These features, along with our labeled cerebrovascular atlas of healthy adults, are 
used for automatic stroke detection and estimating the collateral index. Lastly, in combination with the patient’s baseline clinical and imaging data, 
these features are used in a fine-trees decision model to predict 90  days functional outcomes.

TABLE 1 The imaging datasets and the corresponding number of scans used in the various aspects of the study.

Databases Number of subjects

Name N (female) Resolution 
(mm3)

CNN (train/
test)

Stroke 
detection

CI validation Outcome 
prediction

MIDAS (healthy) 109 (57) 0.5 × 0.5 × 0.5 99/10 50 — —

OASIS3 (healthy) 66 (29) 0.3 × 0.3 × 0.3 41/25 — — —

Stroke 100 (54) 0.5 × 0.5 × 0.5 0/10 100 56 100

CTA (healthy) 10 (4) 0.43 × 0.43 × 0.62 0/10 — — —

The time-of-flight MR angiography (ToF-MRA) was the modality used in all databases except the healthy CTA database, where CT angiography was used. The CI estimation algorithm was 
validated against clinical ground truth for 56 patients and later applied to the 44 remaining patients. Additionally, 12 of the 100 stroke patients were excluded from the outcome prediction due 
to unavailability of their mRS outcome.
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90–120 mL contrast media (Isovue-370 mg/mL) at the injection rate 
of 4–5 mL/s with 0.5 mm3 resolution.

We also obtained MRA scans of 100 AIS patients from the Centre 
Hospitalier Universitaire Vaudois in Lausanne, Switzerland, acquired 
on a 1.5 T Siemens scanner with 0.5 mm3 resolution. All patients had 
a confirmed diagnosis of AIS due to an occlusion in the anterior 
circulation in the internal carotid artery (ICA), the middle cerebral 
artery (MCA) at the M1, M2, or M3 segments, or a combination of 
these. The MRA scans were performed within 72 h from stroke onset. 
The database also included demographic, clinical, and additional 
neuroimaging data, including ASPECTS and perfusion mismatch 
volume and ratio, as well as 90 days functional status assessed using 
the modified Rankin scale (mRS), when available. We used the MRA 
scans and patient data to extract the patient-specific vascular features 
and collateral index and train our outcome prediction model. Out of 
the 100 AIS patients, 12 had to be excluded from the prediction model 
due to the unavailability of their mRS outcome.

Multiple datasets were used in the various parts of this study—175 
MRA scans of healthy subjects, 10 MRA scans of stroke patients and 
10 CTA scans of healthy subjects to train and test the convolutional 
neural network (CNN) model; 100 MRA scans of stroke patients and 
50 MRA scans of healthy subjects to develop and validate the stroke 
detection algorithm; 56 MRA scans of stroke patients to develop and 
validate the CI estimation algorithm; and lastly, extracted data and 
from 100 MRA scans of stroke patients for the outcome prediction 
model development and testing.

Segmentation and feature extraction

For CNN-based cerebrovascular segmentation, we adapted and 
optimized the U-Net architecture. The U-Net framework, presented 
by Ronneberger et al. (36), has previously been successfully used for 
various medical image segmentation applications. Our U-Net CNN 
model consisted of 18 double convolution layers, 9 in each encoding 
and decoding segment (Figure 1; Supplementary material). Out of 
the total 175 healthy MRA, 10 stroke MTA and 10 CTA scans, 
we used 140, 25, and 30 scans for training, validation, and blind 
testing, respectively with a stratified sampling of the CNN 
segmentation model. This was done to ensure a division into 80% for 
training and 20% for test data from each database and overall. 
We used our previously validated methodology for segmentation 
and vascular feature extraction to obtain the “ground truth” of the 
segmented vascular maps and their respective features (32). The 
validated segmentation algorithm involves a multi-step process, 
resulting in a 3D binary volume of the vessel network, which is then 
skeletonized to obtain the centerlines of the vessels and the diameter 
at every point on the centerline, with being able to detect vessels 
with diameters as small as the imaging resolution. It tracks 
connected tubular structures in 3D volumes. It thereby performs 
better than other available segmentation algorithms under technical 
issues that can cause intensity inhomogeneities in imaging data, such 
as motion artifacts and inflow effects. After segmentation, 
we performed a skeletonization of the vessel network. A “branching 
node” of the vascular tree, defined as a point connected to 3 other 
points (i.e., a bifurcation), was used to calculate the global geometric 
features of the vessel tree as follows:

 1. Total length: the total length of the vessel network is calculated 
by summing the skeletal segments’ length between 2 nodes.

 2. Total number of branches: a “branch” was defined as a sequence 
of points along the vessel beginning at a bifurcation point and 
ending either at the next bifurcation or the last point on the 
vessel (i.e., a terminating branch).

 3. Average and maximum branch length: all network branches’ 
mean length (geodesic distance) and the longest branch found.

 4. Average diameter: the mean diameter at all points on 
the centerline.

 5. Total volume: volume of the vessel network is calculated by 
considering the vessels as cylinders with varying diameters 
along the total length.

 6. Fractal dimension: the fractality of the vessels was determined 
using the box-counting method. This feature is a measure of 
morphological complexity in cerebral vasculature.

 7. Vessel tortuosity: vessel tortuosity was defined using the sum 
of angles measurement between sets of 3 points on the 
centerline divided by the total length.

For CNN training, the raw scans were the model input and 
mapped to their corresponding segmented vascular networks, using 
the above method as output. The model architecture includes skipping 
connections built in between the encoding/contraction and the 
mirrored decoding/expansion path for each scale level, with 
deconvolutional layers replacing the 2-stride convolutions. We use a 
small kernel size of 3 × 3, and our model consists of 18 total layers—9 
double convolution layers each in the encoding and decoding 
segments. We implement the rectified linear unit (ReLU) activation 
function throughout the layers and a sigmoid function at the last layer 
for the final prediction of grayscale pixel intensities between 0 and 1, 
corresponding to vascular pixels as opposed to the background. Adam 
optimizer was used for the gradient descent, and the model was 
trained for 50 epochs until the loss was minimized. Early-stopping 
and drop-outs were used as additional regularizers to prevent 
overfitting and improve generalization (37). We  defined an 
application-specific loss function known as “Dice loss,” which, when 
minimized, maximizes the overlap of segmentation prediction and 
ground truth, measured using the Dice similarity coefficient 
“SoftDice” (38).

For CNN validation and testing, we  compared the model 
predictions against the segmented vascular maps of the test data 
obtained by the vessel segmentation algorithm (ground truth) using 
an image matching/registration metric, namely the Dice similarity 
coefficient (DSC). The DSC quantifies the overlap between the 
ground truth and the prediction for each slice of the 3D volume as 
a measure of accuracy and is obtained by averaging the DSC per 2D 
cross-sectional slice across each 3D volume and then averaging 
across all the test scans. Also, as a further quantitative assessment of 
model performance, we compared the following extracted features 
obtained by the CNN model against the ground truth: total length, 
number of branches, total volume, and average diameter. 
We calculated the error margins for these features as an additional 
indicator of segmentation accuracy. Lastly, the CNN model was 
tested on the CTA of 10 healthy subjects and MRA of 10 AIS patients 
to accurately evaluate the model’s ability to segment vasculature in 
different modalities and health status.

https://doi.org/10.3389/fneur.2023.1217796
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Deshpande et al. 10.3389/fneur.2023.1217796

Frontiers in Neurology 05 frontiersin.org

Stroke detection and occlusion localization

Of 100 AIS patients, the occlusion sites were the internal carotid 
artery (ICA) in 18, tandem ICA-MCA in 17, and M1 and M2 segments 
of the MCA in 46 and 19, respectively. We utilized our previously 
developed probabilistic cerebrovascular atlas of spatially co-registered 
cerebral vessel maps of 175 healthy adults (34). The atlas was labeled 
to denote the five major vascular territories: (1) the ICA, (2) and (3) 
the left and right MCA, (4) anterior cerebral artery (ACA), and (5) the 
posterior cerebral artery (PCA) and basilar artery (BA), as illustrated 
in Figure 2.

We implemented a two-step approach for automatic stroke 
detection based on previous preliminary studies that showed a 
significant difference in cerebrovascular features between stroke 
patients and healthy subjects (32, 34). In the first step, the presence of 
occlusion was determined by comparing the vessel density of the 
patient-specific vascular network with the probabilistic cerebrovascular 
atlas using the total vessel length, volume, and the number of branches. 
A significantly lower vessel density, defined as more than three 
standard deviations below the average healthy subjects, indicated an 
occlusion. In the second step, each of the five vascular territories of AIS 
patients was compared with the corresponding territory in the 
probabilistic atlas. The vascular territory with the largest average vaso-
deviation score from the healthy average was identified as the occlusion 
location (Figure 2). We also compared the vessel density between the 
left and right cerebral hemispheres for each patient to ensure that the 
algorithm can also detect occlusion in case the comparison against the 
atlas was not sensitive enough. The analysis was performed for all 100 

AIS patients, and 50 randomly selected healthy subjects to assess the 
algorithm’s ability to detect the occlusion’s presence and location. 
We evaluated the algorithm’s performance by calculating both steps’ 
sensitivity, specificity, and positive and negative predictive values (PPV 
and NPV).

Automatic collateral index estimation

The collateral index (CI) quantifies the development of a patient’s 
collateral vessel network. In clinical settings, using different scales, CI 
is usually graded as either good, intermediate, or poor. The clinical 
grading which was utilized for developing and validating our method 
is as follows (39):

0 = collateral supply absent
1 = collateral supply filling >0% but ≤50%
2 = collateral supply filling >50% but <100%
3 = 100% collateral supply
To provide a fast and automatic calculation of CI, we used our 

previously developed probabilistic cerebrovascular atlas in 
conjunction with the extracted patient-specific vascular geometric 
features (34). Of the 100 AIS patients included in the study, we had 
access to the CI for 56, graded in the clinic by a neuroradiologist, since 
this metric is not routinely estimated in all stroke patients due to the 
time constraints and manual nature of the task. These clinically-
evaluated CIs were used as the “ground truth” to develop and validate 
our algorithm. We then use the validated method, described below, to 
obtain the CI for the remaining 44 AIS patients automatically.

FIGURE 2

Stroke detection and occlusion localization. The brighter regions of the three-dimensional probabilistic atlas (top−left) show maximum intensity 
projection and correspond to a higher probability of vessel occurrence. The brain vascular was divided into five major territories, illustrated in different 
colors (bottom−left). The cerebrovasculature map of four stroke patients is shown on the right. The red arrow indicates the location of the occluded 
vessel.
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The relative vessel density in the collateral region was calculated 
for each patient compared to patients with the fully developed 
collateral network (CI = 3). Based on this relative index obtained using 
linear regression, we grade the collaterals per patient on a scale of 0 
(absent collateral supply) to 3 (100% developed collateral supply). 
We used this automatically estimated CI for the 100 patients as an 
outcome predictor in our ML model, given the well-established 
impact of collateral circulation on the patient’s response to ischemia 
and eventual treatment (15, 16, 40).

Functional outcome prediction

The functional status of the AIS patients was evaluated at the 
90 days mark using the modified Rankin scale (mRS) (Table  1; 
Supplementary material) (41). The input data for the prognostication 
model comprised of patients’ clinical and imaging variables, including 
demographic information, pertinent past medical history, stroke 
symptoms and severity (the baseline NIH stroke scale or NIHSS), and 
data from initial brain imaging studies, including the Alberta Stroke 
Program Early CT Score (ASPECTS) and perfusion metrics (the 
volume of the ischemic core and tissue-at-risk and their mismatch 
ratio). The perfusion mismatch ratio refers to the ratio of the ischemic 
core to the critically hypo-perfused tissue-at-risk (penumbra) that is 
commonly measured by the cerebral blood volume versus the mean 
transit time or time-to-maximum of the blood flow. A larger mismatch 
volume or ratio indicates a larger salvageable tissue that may 
be amenable to acute treatments (42–44).

Cerebrovascular geometric features have been shown to correlate 
with aging and pathologic states (32, 34, 45–47). The vessel structure 
and geometry, including lumen diameter and branching patterns, are 
known to impact the patient’s response to ischemia and reperfusion 
(12, 15, 48). To utilize the predictive ability of the rich imaging-based 
vascular information, we  also incorporated novel patient-specific 
cerebrovascular geometric features extracted by the segmentation 
algorithm described above (32) as well as automatically estimated CI 
into our ML model as additional predictors of the 90 days mRS. Table 2 
lists all the features used as predictors to train the model.

To assess the performance of the ML model predictions, the 
in-clinic assessment of the mRS at 90 days post-stroke was considered 
the ground truth. In this study, we trichotomized the 90 days mRS 
scores into good (mRS 0–1), moderate (mRS 2–3), and poor (mRS 
4–6) outcome groups. Reducing the 7-class mRS to the three output 
classes will facilitate better prediction and provides a more granular 
classification than the dichotomized predictions in literature, since 
there are oftentimes higher number of misclassifications between good 

vs. moderate and moderate vs. poor outcomes (14, 20, 25). We used 
supervised ML to train the predictor model using the Classification 
Learner app in the MATLAB® package (Mathworks, MA). The dataset 
was divided into 80% training and 20% test datasets for validation. 
We also included stratified sampling and five-fold cross-validation to 
improve learning and prevent overfitting. The features were then 
ranked using the chi-square test based on the univariate associations 
between each categorical or continuous predictor variable and the 
90 days mRS outcome. The ranked features were used as predictors, and 
the three final outcome groups were the ground truth for the output 
classes. The final outcome prediction model was chosen based on the 
training and validation performance metrics; the optimal model for 
our dataset was determined to be the fine trees decision model. The 
model performance was assessed by calculating the accuracy using the 
true positive and false negative rates and the positive and negative 
predictive values. The findings were visualized by the AUC of the ROC 
curve. Since we are performing a multi-class prediction, the AUC was 
computed for the ROC curves using the one-against-rest method for 
multi-class models (49).

Results

CNN segmentation model

For rapid, real-time segmentation, we developed a convolutional 
neural network (CNN) using a U-net architecture (36) to extract the 
cerebral vessel network from raw imaging scans, leveraging our 
previously validated algorithm as segmentation “ground truth.” 
We used 140 MRA scans of healthy subjects for training and tested the 
model on four separate datasets consisting of 55 subjects: 35 MRA 
scans of healthy subjects (10 from the MIDAS dataset with 0.5 mm3 
resolution and 25 from the OASIS3 dataset with 0.3 mm3 resolution), 
10 MRA scans of AIS patients with 0.5 mm3 resolution, and 10 CTA 
scans of healthy subjects with 0.5 mm3 resolution (Table 1).

The average Dice similarity coefficient (DSC) between the ground 
truth segmentation and CNN predictions across the multi-resolution 
test data was 0.94. This was obtained by averaging axial slice DSC 
values of each subject and then averaging across all subjects. To 
further validate that the model captures the vascular branches and 
preserves the volume, the segmented vascular features were compared 
against the ground truth. The average error margins were under 4% 
for all geometric features: total length (3.4%), number of branches 
(1.90%), total volume (3.18%), and average diameter (2.11%). Figure 3 
shows two predicted segmentation maps and their corresponding 
ground truth. The quantitative measures of model performance on the 
test dataset are shown in Table 2.

Stroke detection and occlusion localization

Our model identified 92 strokes among 100 AIS patients and 50 
healthy subjects with a sensitivity of 92% and specificity of 94%. The 
algorithm only missed the presence of an LVO in 8 cases due to the 
overall vessel length and volume not being significantly different than 
the atlas due to the presence of significant vessel density in the 
proximal part of the middle cerebral artery (MCA) in case of M2 
strokes, in the distal segment of the MCA (Figure 2). Additionally, the 

TABLE 2 CNN model performance on test data per geometric feature 
between the predictions vs. ground truth.

Validation metric Value (mean ± standard 
deviation)

Avg. DSC 0.94 ± 0.05

Avg. error in total length (%) 3.40 ± 0.31

Avg. error in the number of branches (%) 1.90 ± 0.44

Avg. error in total volume (%) 3.18 ± 0.26

Avg. error in average diameter (%) 2.11 ± 0.10

https://doi.org/10.3389/fneur.2023.1217796
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Deshpande et al. 10.3389/fneur.2023.1217796

Frontiers in Neurology 07 frontiersin.org

algorithm detected three false positives among the 50 healthy subjects 
due to the vascular networks deviating significantly from the atlas.

The model had an accuracy of 95.6% in identifying the region 
containing the occlusion, with only four mis-localizations out of the 
92 stroke cases identified. These errors are due to outliers in vascular 
patterns deviating from the average atlas. Overall, the model achieved 
a 95.56% positive predictive value (PPV) and a 95.56 negative 
predictive value (NPV).

Collateral index calculation

We used cerebrovascular morphologic features and the 
probabilistic cerebrovascular atlas for the automated scoring of CI 
from poor or absent collateral circulation to a fully formed collateral 
network. Our method was validated against clinically graded CI for 
56 out of the 100 stroke patients and was then applied to the remaining 
patient scans. The algorithm correctly estimated the CI in 49 out of 
the 56 strokes MRA, yielding a sensitivity of 87.2%. Figure 4 shows the 
vascular tree, extracted vessel network from the ipsilateral collateral 
region, and the estimated CI for 4 cases, each corresponding to a CI 
score from 0 to 3.

Functional outcome prediction

Fine decision trees were adopted for multi-class prediction of the 
90 days modified Rankin scale (mRS) (41). The basic predictor model 
using conventional predictors of functional outcomes (Table  3), 
reached an area under the curve (AUC) of the receiver operating 

characteristic (ROC) curve of 0.63 ± 0.01 (Figure  5A), similar to 
currently available models. We  then investigated the effect of 
incorporating cerebrovascular morphologic features to the model, to 
improve prognostication after AIS. By including the automatically 
estimated CI in the prediction model, the and the AUC of the ROC 
curve increased to 0.74 ± 0.02. The additional incorporation of 
vascular geometric features further increased the prediction accuracy 
with an AUC of the ROC curve of 0.83 ± 0.02 (Figure 5A). ROC curves 
in Figure 5 are overlaid on the same graph to highlight the AUC 
values, with the true class being the “Good” outcome (i.e., mRS 0–2). 
The confusion matrices (Figures 5B,C) show the prediction accuracy 
per outcome group for the predictive models with and without the 
morphologic features.

Discussion

Machine learning (ML) strategies have been used in various 
applications in stroke medicine (9, 14). In this work, we presented an 
end-to-end automatic ML approach for stroke triage, consisting of a 
CNN-based cerebrovascular segmentation and morphologic 
extraction, an automated algorithm for stroke detection and collateral 
circulation assessment, and finally, a 90 days functional 
outcome predictor.

Cerebrovascular segmentation using CNN

Accurate and efficient segmentation of brain vascular imaging by 
extraction and visualization of the 3D cerebrovascular network is 

FIGURE 3

The CNN predictions of the segmented vascular maps. CNN segmentations of two MRA scans from test data are shown alongside the corresponding 
ground truth segmentations obtained using our validated algorithm. The third column shows the error volume overlaid on the ground truth volume, 
with one 2D panel showing the overlap between corresponding slices of the ground truth and the error.
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critical for clinical practice. We  had previously developed and 
validated a method to detect brain vessels as small as the image 
resolution (voxel size) with superior performance compared to other 
freely available segmentation software (32). However, depending on 
the image resolution and computing resources, our previous model 
took up to 20–30 min to segment one vascular imaging study. Here, 
we used the segmented vascular maps extracted by our algorithm as 
the ground truth to train a U-Net architecture-based CNN model for 
accurate and instantaneous segmentation of 3D vessel networks from 
raw imaging data.

U-Net has widely been accepted as the gold standard for image 
segmentation applications, more so in the medical image processing 
field. Its widespread use is justified by its optimized and flexible 
modular design and the ability to perform well for all kinds of imaging 
modalities (50). Medical images like ours can involve complex 
vascular structures of interest at varying scales, making segmentation 
challenging. The U-Net architecture has been specially designed to 
segment precisely these kinds of multi-scale complex structures and 
has been shown to out-perform other kinds of neural networks for 
similar medical image segmentation tasks (50, 51). Additionally, the 
customizability offered by U-Nets, such as the skip-connection 
enhancements we use in our work, further elevates the applicability 
and performance of this versatile and easy to implement model for our 
application. U-Net models require relatively significantly smaller 
number of training data points as compared to other networks that 
need thousands of training data samples to learn (51).

The existing CNN-based segmentation methods require manual 
annotation with increased “noise” in the final segmented map 
pertaining to the erroneous prediction of non-vessel voxels from the 

skull or bright spots on the scans (30, 33). The U-Net CNN model 
employed in this study demonstrated accurate segmentation without 
requiring manual annotations. It detects the finer vessels present in 
the ground truth segmentation with a small error margin and, in some 
cases, detects smaller tapering vessel voxels that were not present in 
the ground truth segmentation of the blind test data due to poor 
contrast in the raw imaging scan at those voxels. The segmented 
vascular edges are smooth, and the CNN predictions do not miss 
vessel pixels around the boundary surface of the vessel cross-sections, 
as seen in 2D slices, resulting in the diameter and other geometric 
features to be computed accurately.

Stroke detection and occlusion localization

Vascular morphology differs significantly between healthy and 
stroke subjects (32, 34). Implementing complex cerebrovascular features 
and quantitative measurement of vaso-deviation from the average 
healthy forms the basis of our stroke detection algorithm. Using a labeled 
atlas of healthy vessel networks and their inherent geometrical 
properties, we identified the anatomical region of occlusion in the most 
commonly occurring ischemic strokes. The sensitivity of our algorithm 
is comparable to (and in some cases higher than) previously published 
methods, and the specificity has improved as well (4, 5). The high 
sensitivity and specificity of the stroke detection algorithm demonstrate 
the applicability of vascular geometry in automated stroke diagnosis and 
occlusion localization rather than a simplistic hemispheric comparison 
that may lead to false detections due to inconsistent vascular symmetry 
between the two hemispheres. Early diagnosis of AIS and identifying the 

FIGURE 4

The extracted vascular networks and estimated collateral index for the four varying levels of development of the collateral network in patients with a 
middle cerebral artery stroke. The collateral index (CI) is shown at the bottom right of panels (A–D). The top right sub-panels show the vessels in the 
corresponding collateral region of the ipsilateral hemisphere.

TABLE 3 The clinical and imaging variables used to train the prediction models.

Clinical and demographic information Imaging-based clinical features Vascular geometric features

Age ASPECTS score Total length

Sex Side of the stroke Number of branches

Baseline NIHSS Occlusion location Total volume

History of stroke Perfusion mismatch ratio and volume Average diameter

Smoker (y/n) Collateral index (CI)—ground truth Tortuosity

Diabetes mellitus (y/n) Fractal dimension

Hypertension (y/n) Auto-estimated CI

NIHSS, National Institute of Health Stroke Scale; ASPECTS, Alberta Stroke Program Early CT Score. The cells in blue represent the conventionally used features, yellow refers to the 
automatically estimated CI using our method and green cells represent the novel vascular predictors.
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occluded vessel can facilitate acute treatments and enhance the efficiency 
of stroke care systems. Such a tool could be invaluable in radiological 
screenings in case of an emergency or lack of on-call neuroradiologists 
in smaller medical centers.

CI estimation and functional outcome 
prediction

A large number of studies support the significant benefits of 
endovascular thrombectomy in treating acute ischemic stroke (1, 2, 10, 
11, 52). The eligibility for EVT is expected to expand, along with 
technological advancements, with a shift from rigid time-based treatment 
protocols to imaging-based strategies that incorporate patient-specific 
factors into therapeutic decision-making, such as collateral circulation (2). 
Our previous study of healthy human cerebrovasculature and the 
development of a probabilistic vascular atlas (34) showed that the Circle 
of Willis is not fully formed in most adult humans, and a significant 
cerebrovascular variability exists within the population. These variations 
affect cerebral hemodynamics and even rates of neuronal degradation (53, 
54) during ischemia and, thereby, response to treatment. Hence, a more 
developed collateral circulation provides more time (even several days) 
for therapeutic interventions and impacts clinical outcomes (15, 16). 
Therefore, a better understanding of each patient’s cerebrovasculature and 
collateral circulation are pivotal to expanding eligibility for acute 
treatments (17). The method presented in this study can accurately, 
rapidly, and automatically calculate the collateral index from 
cerebrovascular morphologic features. This development can drastically 
impact patient triage and reduce the time for diagnosis and treatment (55).

Stroke is a complex and multifaceted disease, and its underlying 
pathophysiology is yet to be fully discovered. Prognostication of AIS 

remains challenging (24) despite its tremendous impact on decision-
making for patients, their families, clinicians, and society (27, 56). An 
algorithm that can achieve early, reliable, and accurate prognostication 
is lacking. Many previous attempts at using ML for outcome prediction 
after AIS have yielded low-performance algorithms with low 
sensitivity and AUC for ROC curves under 0.76 (24, 25, 28, 56). This 
study presents a novel ML approach incorporating quantitative 
cerebrovascular information to predict the functional outcome. 
Adding the automatically graded CI as a predictor significantly 
improved the 90-outcome prediction, shown as a 17% higher AUC of 
the ROC curve. Including other vascular geometric features further 
enhanced the predictive utility of the algorithm, as shown in Figure 5. 
Our current model is designed and tested to detect acute ischemic 
stroke in large vessel occlusions (LVOs) and can be possibly expanded 
to distal medium vessel occlusions. But if the cerebral ischemia is 
being caused by a (symptomatic) stenosed vessel, in most cases the 
carotid, our model has not yet been optimized or trained for carotid 
disease. It should also be noted that our current model is focused on 
prognosis and is agnostic to the etiology of stroke. In future iterations 
of the model, we aim to include this information in order to better 
understand its effects on patient outcomes.

Limitations

Post segmentation, the stroke detection algorithm calls for a 
comparison with the cerebrovascular atlas, which, in turn, requires the 
patient-specific vascular network to be  spatially co-registered to the 
Montreal Neurologic Institute (MNI) space, utilized to normalize all 
patient scans spatially. However, the standardized MNI atlas space is 
intended for MR scans, and CT scan images cannot be co-registered to 

FIGURE 5

Results of the outcome prediction models. (A) ROC curves for the three fine decision tree models are plotted. All three models included the baseline 
clinical and imaging data. AUC-ROC for the model without any vascular features was 0.63. AUC-ROC increased to 0.74 in the model trained with the 
collateral index but without other geometric features. Incorporating all vascular features improved the model’s performance with AUC-ROC =0.83. The 
confusion matrix for the prediction model before (B) and after (C) incorporating the vascular geometric features and auto-estimated collateral index 
are shown.
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the same space. Thus, for a wider appositeness of this method, CT scan 
data needs to be registered to this common space. Additionally, due to the 
inherently distinct nature of subject-specific vascular anatomy, patient 
vascular network alignments sometimes differ significantly from the 
probabilistic atlas in the cartesian space. This can cause errors in stroke 
detection as well as collateral estimation algorithms.

As a pilot study, we  retrospectively analyzed a smaller stroke 
patient database (n = 100) to establish our methods and the utility of 
cerebrovascular morphology in stroke diagnosis and prognostication. 
Outcome prediction typically requires a large and representative 
patient database to assess predictive features accurately. Our training 
dataset was also limited to patients with large vessel occlusion in the 
anterior circulation. Furthermore, patients with missing outcomes 
were excluded from the final model (n = 12). A future large and 
prospectively collected dataset of patients with various stroke 
syndromes, including those with strokes in the posterior circulation 
and medium or small vessel occlusion, is necessary to solidify the 
effectiveness of vascular geometry as a predictive tool in AIS patients.

Conclusion

The rapid and automatic process presented here aims to improve the 
accuracy and efficiency of detecting and localizing intracranial vessel 
occlusion and the fidelity of predicting the functional outcomes of stroke. 
We presented a novel end-to-end quantitative machine-learning strategy 
to extract patient-specific cerebrovascular morphology accurately, rapidly, 
and automatically from segmented vessel trees, automatically calculate the 
collateral circulation index, and predict 90 days functional outcomes. The 
model can improve patient outcomes by aiding diagnosis and facilitating 
enhanced patient selection for stroke treatment. Our method for 
automatic CI grading can help address the incongruity between the 
significant impact of collateral circulation assessment in AIS patients and 
the lack of time and resources to perform this task in the acute hospital 
setting. Through this approach, we highlight the need for patient selection 
and treatment decisions to be  based on quantitative, imaging-based 
information along with clinical patient evaluation Future large prospective 
studies are warranted to further establish the role and applicability of 
the model.
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