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Introduction: Alzheimer’s disease (AD) and epilepsy are reciprocally related.

Among sporadic AD patients, clinical seizures occur in 10–22% and subclinical

epileptiform abnormalities occur in 22–54%. Cognitive deficits, especially

short-term memory impairments, occur in most epilepsy patients. Common

neurophysiological and molecular mechanisms occur in AD and epilepsy. The

choroid plexus undergoes pathological changes in aging, AD, and epilepsy,

including decreased CSF turnover, amyloid beta (Aβ), and tau accumulation due

to impaired clearance and disrupted CSF amino acid homeostasis. This pathology

may contribute to synaptic dysfunction in AD and epilepsy.

Methods: We evaluated control (n = 8), severe AD (n = 8; A3, B3, C3

neuropathology), and epilepsy autopsy cases (n = 12) using laser capture

microdissection (LCM) followed by label-free quantitative mass spectrometry

on the choroid plexus adjacent to the hippocampus at the lateral geniculate

nucleus level.

Results: Proteomics identified 2,459 proteins in the choroid plexus. At a 5% false

discovery rate (FDR), 616 proteins were di�erentially expressed in AD vs. control, 1

protein in epilepsy vs. control, and 438 proteins in AD vs. epilepsy. There was more

variability in the epilepsy group across syndromes. The top 20 signaling pathways

associated with di�erentially expressed proteins in AD vs. control included cell

metabolism pathways; activated fatty acid beta-oxidation (p = 2.00 x 10−7, z =

3.00), and inhibited glycolysis (p = 1.00 x 10−12, z = −3.46). For AD vs. epilepsy,

the altered pathways included cell metabolism pathways, activated complement

system (p = 5.62 x 10−5, z = 2.00), and pathogen-induced cytokine storm (p =

2.19 x 10−2, z = 3.61). Of the 617 altered proteins in AD and epilepsy vs. controls,

497 (81%) were positively correlated (p < 0.0001, R2 = 0.27).

Discussion: We found altered signaling pathways in the choroid plexus of

severe AD cases and many correlated changes in the protein expression of

cell metabolism pathways in AD and epilepsy cases. The shared molecular

mechanisms should be investigated further to distinguish primary pathogenic

changes from the secondary ones. These mechanisms could inform novel
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therapeutic strategies to prevent disease progression or restore normal function.

A focus on dual-diagnosed AD/epilepsy cases, specific epilepsy syndromes, such

as temporal lobe epilepsy, and changes across di�erent severity levels in AD and

epilepsy would add to our understanding.

KEYWORDS

Alzheimer’s disease, epilepsy, choroid plexus, proteomics, laser capture microdissection

Introduction

Alzheimer’s disease (AD) and epilepsy are reciprocally related:

AD increases the risk of late-onset seizures, and epilepsy increases

the risk of cognitive impairment (1–10), suggesting common

molecular mechanisms. Seizures occur in 10–22% of sporadic

AD (sAD) patients, subclinical epileptiform abnormalities in 22–

54% of AD patients, (11–17) and cognitive deficits occur in up

to 80% of epilepsy patients (1–3, 18). Non-convulsive seizures

and subclinical electroencephalography (EEG) abnormalities are

common and underrecognized in AD patients and may accelerate

structural and cognitive disorders (4, 14, 15, 17, 19). In

AD patients with epileptiform activity, the Mini-Mental State

Examination (MMSE) score decreased faster compared to AD

patients without epileptiform activity (15). Furthermore, anti-

seizure medications [ASMs; e.g., levetiracetam (LEV)] decreased

neuronal hyperexcitability and improved cognition in animal

models and in patients with mild cognitive impairment (MCI)

and are being investigated in ongoing studies for AD (20–24).

Cognitive deficits are common in patients with chronic epilepsy,

particularly in temporal lobe epilepsy (TLE), and late-onset epilepsy

(8, 9, 18, 25, 26). Epilepsy patients had a faster MMSE decline

than non-epilepsy patients (27), a 2-fold increased dementia risk

when compared to controls (28), and a 3-fold increased dementia

incidence in late-onset epilepsy when compared to non-epilepsy

patients (9). Cognitive deficits and epileptiform activity are linked

with amyloid beta (Aβ) and tau pathology in AD and epilepsy

(3, 19, 25, 29, 30). Cognitive performance was impaired with altered

cerebrospinal fluid (CSF) Aβ42 and EEG abnormalities in patients

with late-onset epilepsy of unknown etiology and MCI when

compared to MCI patients without epilepsy (26). Furthermore,

some patients with late-onset epilepsy of unknown etiology develop

pathogenic levels of AD biomarkers Aβ42 and tau that indicate an

ongoing neurodegeneration process and a risk factor for AD (31).

Compared to AD patients without seizures, those with seizures

had increased Aβ and tau pathology via mTOR activation in the

temporal cortex (32). An mTOR inhibitor improved cognition and

ameliorated AD pathology in a 5xTg AD model (32), highlighting

the therapeutic potential of exploring the pathways involved in the

bidirectional relationship between AD and seizures.

The choroid plexus is impacted in both AD and epilepsy. It

is the primary source for CSF production and is essential in the

maintenance and function of the brain (33). This region undergoes

age-related pathological changes (e.g., altered volume, epithelial

atrophy, thickened basement membrane, and stroma fibrosis) that

decrease CSF turnover (33–36). Aβ accumulation in the choroid

plexus results from mitochondrial deficits, oxidative stress, and

cytoskeletal dysregulation (34, 37–39). These pathogenic changes

alter nutrient and ion secretion, impairing brain homeostasis (33,

35, 40). In epilepsy, choroid plexus and hippocampal inflammation

occur ipsilateral to the seizure focus (41). CSF amino acid

homeostasis is disrupted in epilepsy patients and animal epilepsy

models (42–45).

We and others have identified AD protein changes in multiple

brain regions over the disease course (46). These include glial

proteins (47), Aβ, and tau levels that correlate with spliceosome

activity (48–50), synaptic dysfunction (51, 52), and tau interacting

proteins involved in ubiquitination and phagosome maturation

(29, 53). In epilepsy, we identified protein changes associated with

increased translation and decreased oxidative phosphorylation and

synaptogenesis (54). The molecular mechanisms in the choroid

plexus of AD and epilepsy are not well-understood. Limited

proteomic studies in AD choroid plexus (55) and CSF revealed

protein changes in CSF, indicating altered astrocyte/microglial

and sugar metabolism (56), neuroinflammation, cerebrovascular

dysfunction, and apoptosis (57, 58). There are no proteomics

studies in human epilepsy choroid plexus. With most AD clinical

trials failing (59–66) and drug-resistant epilepsy rates stable for

decades (67, 68), proteomics approaches may reveal unbiased

comprehensive datasets to identify shared druggable protein

targets. Identifying these mechanisms can inform therapeutic

strategies to improve network function, limit disease progression,

and potentially reverse functional and pathological changes.

Materials and methods

Brain tissue

Specimens were acquired under protocols with Institutional

Review Board (IRB) approval at NYU Grossman School of

Medicine, including autopsy tissues from the North American

SUDEP Registry (NASR) at NYU CEC, NYU ADRC, and

NYU Center for Biospecimen Research and Development

(CBRD)/Department of Pathology. For epilepsy cases (n = 12),

the inclusion criteria were those cases with temporal lobe epilepsy

or likely temporal lobe involved epilepsy as determined from the

review of available medical records, as well as additional epilepsy

cases that were age-matched to the other groups and enrolled in

NASR. For AD cases (n= 8), the inclusion criteria were those cases

with severe AD pathology as indicated by the neuropathology score

A3B3C3 (69) and part of the NYU ADRC, which allowed for age

matching to the other groups. Control cases (n = 8) were selected

to include those cases with no known significant neurology or
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TABLE 1 Case history summary.

Study group n Sex (M/F) Age (years) PMI (hours) Brain weight (grams)

Control 8 5/3 57.8± 6.1 59.1± 14.3 1249.0± 130.7

AD 8 2/6 72.6± 9.5 23.6± 22.5 1063.4± 102.3

Epilepsy 12 11/1 45.4± 14.3 35.8± 19.7 1392.9± 169.3

From the available case information. See Supplementary Table 1 for detailed case history. Mean is indicated for age, PMI, and brain weight± standard deviation (mean± SD).

neuropathology. Cases were further selected to include those that

were age-matched and with hippocampal sections available at the

level of the lateral geniculate nucleus (LGN) with adjacent choroid

plexus present. The sample size was informed by ours and other

prior studies (47, 49, 52, 54, 56, 70, 71). Case history is summarized

in Table 1 and detailed in Supplementary Table 1.

Laser capture microdissection

Formalin-fixed, paraffin-embedded (FFPE) tissue was cut into

8 µg sections from autopsy hippocampal tissue at the level of the

LGNwith adjacent choroid plexus onto LCMPETmembrane slides

(54, 70, 72, 73) and stained with cresyl violet (74) for the localization

of choroid plexus. Microdissected samples were collected at a

consistent area per case of 3 mm2 into LC-MS grade water (Thermo

Fisher Scientific) with the Leica LMD6500 LCM system. Samples

were stored at −80◦C until further processing. The schematic

overview in Figure 1 was partially generated with Biorender.com.

Label-free quantitative mass spectrometry
LFQ-MS

Protein extraction and digestion
LCM-excised tissue samples were solubilized and digested

using the SPEED sample prep workflow (75). In brief, tissue

sections were incubated in 10 µl of LC-MS grade trifluoroacetic

acid (TFA) for 5min at 73◦C. TFA was neutralized by 10x dilution

(v:v) with 2M TRIS containing 10mM Tris (2-carboxyethyl)

phosphine TCEP and 20mM chloroacetic acid (CAA) and

incubated at 95◦C for 10min. For enzymatic digestion, samples

were diluted 6x (v:v) with water containing 1 µg of sequencing-

grade trypsin. Digestion was carried out at 37◦C overnight and

halted by acidification to 2% of TFA.

LC-MS/MS
LC separation was performed online on an Evosep One

(Evosep) LC utilizing Dr. Maisch ReproSil-Pur 120 C18 AQ, 1.9-

µmbead (150µm ID, 15 cm long, cat# EV-1106) analytical column.

Peptides were gradient eluted from the column directly into an

Orbitrap HFX mass spectrometer using the 88-min extended

Evosep method (SPD15) at a flow rate of 220 nl/min. The mass

spectrometer was operated in data-independent acquisition (DIA)

mode (76) acquiring MS/MS fragmentation across 22 m/z windows

after every MS full-scan event.

High-resolution full MS spectra were acquired with a resolution

of 120,000, an AGC target of 3e6, with a maximum ion injection

time of 60ms, and a scan range of 350 to 1650 m/z. Following

each full MS scan, 22 data-independent HCD MS/MS scans were

acquired at a resolution of 30,000, an AGC target of 3e6, and a

stepped normalized collision energy (NCE) of 22.5, 25, and 27.5.

Data analysis

MS data were analyzed using the Spectronaut
R©

software

(https://biognosys.com/shop/spectronaut) and searched in direct

DIA mode against the homo sapiens UniProt database (http://

www.uniprot.org/). The database search used the integrated search

engine Pulsar. For searching, enzyme specificity was set to trypsin

with two or fewer missed cleavages. Oxidation of methionine was

searched as a variable modification, and carbamidomethylation

of cysteines was searched as a fixed modification. The false

discovery rate (FDR) for peptide, protein, and site identification

was set to 1%. Protein quantification was done on the MS/MS

level using the three most intense fragment ions per precursor.

Subsequent data analysis used Perseus (77) (http://www.perseus-

framework.org/), R environment (http://www.r-project.org/), or

Prism GraphPad for statistical computing and graphics. Raw data

are available on the MassIVE server (https://massive.ucsd.edu/)

under accession MSV000091370.

The protein expression matrix (n = 2,498) was filtered

to remove the proteins that were non-human, common lab

contaminants, and those proteins observed in less than half of all

the three groups (n = 2,459). For principal component analysis

(PCA), missing values were imputed from the normal distribution

with a width of 0.3 and a downshift of 1.8 (relative to measured

protein intensity distribution) in Perseus (77). Unpaired t-tests

were performed in Perseus v. 1.6.2.3 (77) to detect significant

changes in protein expression. A comparison of the significant

proteins common to each pairwise comparison was evaluated

by a Venn diagram generated from InteractiVenn (78). Cell-

type annotations for each protein were evaluated in comparison

to a reference choroid plexus dataset (79), as we have similarly

done previously in other brain regions with enrichment evaluated

by a Fisher’s exact test (54, 70, 71, 73, 80, 81). The signaling

pathways associated with the differentially expressed proteins were

assessed by Ingenuity Pathway Analysis (IPA, Qiagen). All detected

proteins were included in the dataset for each pairwise comparison,

including the UniProtID, fold change, and p-value. Core analysis

was performed in each brain region for proteins at an FDR of
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FIGURE 1

LCM and schematic approach overview. Choroid plexus (3 mm2), adjacent to the hippocampus at the level of LGN, was microdissected by LCM from

FFPE autopsy brain tissue from control (n = 8), AD (n = 8), and epilepsy (n = 12) cases. Proteins were quantified by label-free quantitative mass

spectrometry to identify protein di�erences.

<5%. Pathways were considered enriched at a p-value of overlap

of <0.05 and to be activated/inhibited as a result of combined

protein fold changes in a pathway as reflected by a |z-score| of

≥2. Correlation analyses were performed by Pearson’s correlation

in GraphPad Prism. Data were also compared to previous AD

studies and recently compiled in our NeuroPro database v1.12

(https://neuropro.biomedical.hosting/) (82). To identify basement

membrane proteins (by cell component GO term), 616 proteins in

AD vs. control were evaluated by STRING v11.5 (https://string-db.

org/).

Immunohistochemistry
Immunohistochemistry was performed to validate the protein

of interest, transmembrane protein 106B (TMEM106B) (52, 73, 83,

84). The FFPE sections (8µm) were deparaffinized and rehydrated

in a series of xylenes and ethanol dilutions. A heat-induced

antigen retrieval was performed with 10mM sodium citrate, 0.05%

Triton-X 100; pH 6. Blocking with 10% normal donkey serum

was followed by a TMEM106B primary antibody (1:100, Sigma

HPA058342) and AQP1 (1:100, Santa Cruz sc-25287) overnight at

4◦C. Sections were incubated with donkey anti-rabbit Alexa-Fluor

647 and Alexa-Fluor 488 secondary antibodies (1:500, Thermo

Fisher Scientific, Invitrogen), counterstained with DAPI (Sigma

D9542), and coverslipped.

Whole-slide scanning was performed at ×20 magnification

with a Leica Aperio Versa 8 microscope using the same settings for

each slide. There were three to four images at ×10 magnification

collected for each case (n = 5 control, n = 5 AD, n = 5 epilepsy).

Images were analyzed using Fiji ImageJ to compare the average

amount of TMEM106B positive area among the groups. The same

binary threshold was used for all images to determine the number

of TMEM106B positive pixels in each image, which was reported

as a percentage of the total image area. A Mann–Whitney U-test

was performed for statistical analysis; a p-value of < 0.05 was

considered significant.

Results

Protein di�erential expression

Protein differential expression analysis was evaluated in control

(n = 8), AD (n = 8), and epilepsy cases (n = 12) from

the autopsy brain tissue with LFQ-MS in the microdissected

choroid plexus (Table 1, Figure 1, Supplementary Table 1). LFQ-

MS identified 2,459 proteins in the choroid plexus of the cases

analyzed, detected in at least 50% of the cases in any of the

groups. PCA showed significant segregation of AD cases from

control (p < 0.0001) and epilepsy (p < 0.0001) cases in PCA1

(Figures 2A–C). There was more variability in the epilepsy group

that included various syndromes. In addition to the disease group,

sex contributed to some differences observed on the PCA (p =

0.023), while age did not (p = 0.89) as observed by a multiple

variable linear regression analysis (Supplementary Table 2).

With an unpaired t-test followed by permutation-based FDR

at 5%, there were significant differences between AD and control

cases in 616 proteins, between epilepsy and control cases in 1

protein, and between AD and epilepsy cases in 438 proteins

(Figures 2D–G, Supplementary Table 3). There were 303 proteins

different in AD when compared to both control and epilepsy cases

(Figure 2D). The top 20 most significant proteins altered in the

AD vs. control and AD vs. epilepsy pairwise comparisons are

summarized in Tables 2, 3. For epilepsy vs. control, the differentially

expressed protein FUCA2 (alpha-L-fucosidase 2) was increased
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FIGURE 2

PCA and proteomic di�erences in the choroid plexus of control, epilepsy, and AD patients. (A) Principal component analysis (PCA) shows the

distribution of control (n = 8), AD with A3, B3, C3 neuropathology (n = 8), and epilepsy (n = 12) for the 2,459 proteins detected in choroid plexus. (B,

C) There is a segregation of AD from control (p < 0.0001) and epilepsy (p < 0.0001) in PCA1, but no segregation in PCA2 (one-way ANOVA with

post-hoc Tukey’s test). (D) Di�erential expression analysis for each pairwise comparison is indicated, as well as an overlap in the number of significant

proteins, at a 5% false discovery rate (FDR; dotted line) when comparing (E) AD vs. control (616 proteins), (F) epilepsy vs. control (1 protein), and (G)

AD vs. epilepsy (438 proteins). Annotations include the number of significantly increased (red arrows) and decreased (blue arrows) proteins. The top

five altered proteins are annotated by gene name, and choroid plexus cell-type annotations for each significant protein are indicated.

by 2.5-fold (p = 1.17 x 10−5). There were trending differences

(p < 0.05, FDR >5%) in epilepsy vs. control for 216 proteins

(Supplementary Table 3).

After cell-type annotation of proteins, most proteins were

“undefined” and likely expressed by multiple cell types, or their

association is unknown (Figures 2, 3, Supplementary Table 3). After

“undefined,” the most abundant annotation for significant proteins

was for endothelial proteins (2.4%, 15 proteins) in AD vs. control

and both endothelial and epithelial proteins (3.2%, 14 proteins

each) in AD vs. epilepsy. Cell-type enrichment analysis (Fisher’s

exact test) indicated that glial proteins (1.9%, 12 proteins) were

trending in enrichment (p = 0.051) in AD vs. control, and

endothelial proteins were enriched (p = 0.031) in AD vs. epilepsy

(Figure 3).

Pathway analysis

In AD vs. control (Figures 3B, C), pathway analysis of the

significantly altered proteins identified 142 signaling pathways

associated with the 616 proteins (p-value of overlap < 0.05);

20 of these pathways were significantly impacted by fold change

as reflected by the z-score (|z| ≥ 2; Supplementary Table 4).

Top signaling pathways were associated with cell metabolism,

including activated fatty acid beta-oxidation (p = 2.00 x 10−7,

z = 3.00) and inhibited glycolysis (p = 1.00 x 10−12, z =

−3.46; Figure 4). Three branched-chain amino acid degradation

pathways were activated: valine degradation I (p = 1.17 x 10−5,

z = 2.45), leucine degradation I (p = 5.13 x 10−5, z = 2.00),

and isoleucine degradation I (p = 7.59 x 10−5, z = 2.24). There

was BAG2 signaling activation (p = 1.12 x 10−5, z = 2.00) with

several decreased proteasome proteins, as well as 14-3-3-mediated

signaling inhibition (p= 1.82 x 10−2, z=−2.12).

In AD vs. epilepsy (Figures 3E, F), pathway analysis of the

significantly altered proteins identified 137 signaling pathways

associated with the 438 proteins (p-value of overlap <0.05) and 17

pathways were significantly impacted by fold change as reflected

by the z-score (|z| ≥ 2; Supplementary Table 5). The top 20

signaling pathways similar to AD vs. control included five pathways

associated with cell metabolism (gluconeogenesis I, glycolysis I,

oxidative phosphorylation, and glutaryl-CoA degradation) and the

GP6 signaling pathway that is related to platelet activation and

thrombus formation. Unique to AD vs. epilepsy, there were two

activated inflammation signaling pathways: complement system

(p = 5.62 x 10−5, z = 2.00) and pathogen-induced cytokine

storm (p= 2.19 x 10−2, z= 3.61).
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TABLE 2 Top 20 significant proteins in AD vs. control.

Gene ID Protein name UniProt ID p-value Fold change

Increased

ERP29 Endoplasmic reticulum resident protein 29 P30040 5.83E-07 1.7

ALDH18A1 Delta-1-pyrroline-5-carboxylate synthase P54886 6.33E-07 2.0

FBLN1 Fibulin-1 P23142 3.38E-06 3.4

FAHD1 Acylpyruvase FAHD1, mitochondrial Q6P587 4.73E-06 2.1

HIBADH 3-hydroxyisobutyrate dehydrogenase, mitochondrial P31937 4.91E-06 1.8

NUCB2 Nucleobindin-2 P80303 7.16E-06 1.8

HADH Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial Q16836 1.07E-05 1.9

LETM1 Mitochondrial proton/calcium exchanger protein O95202 1.83E-05 1.6

FBN1 Fibrillin-1 [Cleaved into: Asprosin] P35555 2.04E-05 2.5

Decreased

C12orf10 UPF0160 protein MYG1, mitochondrial Q9HB07 7.02E-07 2.2

AKR7A3 Aflatoxin B1 aldehyde reductase member 3 O95154 1.12E-06 3.2

DCTN2 Dynactin subunit 2 Q13561 3.50E-06 1.7

YWHAB 14-3-3 protein beta/alpha P31946 3.94E-06 2.0

EIF3A Eukaryotic translation initiation factor 3 subunit A Q14152 5.28E-06 1.7

NAP1L4 Nucleosome assembly protein 1-like 4 Q99733 6.21E-06 1.7

AKR7A2 Aflatoxin B1 aldehyde reductase member 2 O43488 6.36E-06 1.9

EZR Ezrin P15311 1.65E-05 1.9

ALDOA Fructose-bisphosphate aldolase A P04075 1.78E-05 3.1

PPM1B Protein phosphatase 1B O75688 1.82E-05 1.7

RDX Radixin P35241 1.97E-05 1.9

In epilepsy vs. control, there were no pathways associated with

the one altered protein FUCA2. Pathways associated with the 216

trending proteins at a p-value of < 0.05 with an FDR of >5% are

detailed in Supplementary Table 6.

TMEM106B validation and localization

TMEM106B (Q9NUM4) was among the top 20 most

significantly altered proteins when comparing AD vs. epilepsy

(Table 3) with the highest fold change at an 18.9-fold increase

(p = 3.22 x 10−6) and was a top protein candidate for

validation with cell and regional localization. For AD vs. control

by LFQ-MS, there was a 3.5-fold increase (p = 0.04, not

significant at 5% FDR). By immunohistochemistry, TMEM106B

was predominantly localized in epithelial cells at the basal

membrane (Figure 5). The epithelial cell marker in the choroid

plexus, aquaporin 1 (AQP1), was evaluated for colocalization

and was present in the apical membrane of epithelial cells.

Validation of the LFQ-MS findings in five cases per group with

the semiquantification of immunohistochemistry similarly showed

the same trends for TMEM106B, with a 3.9-fold increase in AD

vs. epilepsy (p = 0.095) and a 5.0-fold increase in AD vs. control

(p= 0.095).

AD and epilepsy correlation analysis

Although few proteomic differences in epilepsy vs. control

reached the 5% FDR, 617 proteins altered in AD and epilepsy vs.

controls had a positive correlation in expression levels (p < 0.0001,

R2 = 0.27, Figure 6A). There were 81% (497/617) of proteins

changing in the same direction and 19% (120/617) of proteins

changing in the opposite direction, indicating that many protein

changes in AD also trend in epilepsy cases but do not reach

significance in these cohorts. The top 10 pathways associated with

these proteins were specified by those up in both disease groups,

down in both, or changing in the opposite direction (Figures 6B–E,

Supplementary Tables 7–10).

Comparison to other AD studies

We compared the choroid plexus protein differences in AD vs.

control to AD-related proteomics studies in our NeuroPro database

(82) that compiles results from 38 other proteomics studies, with

multiple brain regions, subtypes of disease progression, and types

of pathology. There was an overlap of the identified proteins from

the choroid plexus with 525 confirmed from previous studies

and 91 unique proteins via proteomics to the choroid plexus
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TABLE 3 Top 20 significant proteins in AD vs. epilepsy.

Gene ID Protein name UniProt ID p-value Fold change

Increased

MACROH2A1 Core histone macro-H2A.1 O75367 8.64E-08 1.8

TMEM106B Transmembrane protein 106B Q9NUM4 3.22E-06 18.9

ERLIN2 Erlin-2 O94905 4.23E-06 1.7

HIBADH 3-hydroxyisobutyrate dehydrogenase, mitochondrial P31937 4.35E-06 1.8

FBLN1 Fibulin-1 P23142 4.43E-06 2.8

VAPA Vesicle-associated membrane protein-associated protein A Q9P0L0 6.84E-06 1.4

TGM2 Protein-glutamine gamma-glutamyltransferase 2 P21980 8.01E-06 2.5

XRCC5 X-ray repair cross-complementing protein 5 P13010 8.42E-06 1.4

ATP5PD ATP synthase subunit d, mitochondrial O75947 1.54E-05 1.9

FAHD1 Acylpyruvase FAHD1, mitochondrial Q6P587 1.56E-05 1.7

PNPLA6 Patatin-like phospholipase domain-containing protein 6 Q8IY17 1.74E-05 1.8

NUCB2 Nucleobindin-2 P80303 1.98E-05 1.8

Decreased

AIFM3 Apoptosis-inducing factor 3 Q96NN9 6.58E-09 2.4

CIRBP Cold-inducible RNA-binding protein Q14011 1.19E-06 2.2

PSPH Phosphoserine phosphatase P78330 2.63E-06 2.1

MPI Mannose-6-phosphate isomerase P34949 3.70E-06 3.8

KCNJ13 Inward rectifier potassium channel 13 O60928 4.40E-06 2.6

SLC39A12 Zinc transporter ZIP12 Q504Y0 7.08E-06 2.1

AKR7A3 Aflatoxin B1 aldehyde reductase member 3 O95154 1.36E-05 2.8

GLUL Glutamine synthetase P15104 2.12E-05 3.0

(Supplementary Tables 11, 12). Of the 525 confirmed proteins, 114

proteins were altered in AD when compared to controls from 9

other brain regions in previous studies. Among the 91 unique

proteins by proteomics to choroid plexus, there were several

increased collagen and aldehyde dehydrogenase proteins.

Discussion

We identified protein differences in the choroid plexus of AD

cases with severe neuropathology when compared to control and

epilepsy cases, with top significant pathways related to activated

fatty acid beta-oxidation and inhibited glycolysis. The protein

differences in the AD group correlated with the same trends in

epilepsy when compared to control cases, with more variability in

the epilepsy group.

AD vs. control

We identified pathways associated with altered cell energy

metabolism indicating a shift from glucose-mediated energy

production to fatty acid beta-oxidation activation and glycolysis

inhibition, coupled with activated branched-chain amino acid

degradation. This shift was further reflected by trends in ketogenic

pathways, with mild activation of ketolysis (p = 8.41 x 10−5, z

= 1.00) and ketogenesis (p = 1.29 x 10−4, z = 1.00). There was

oxidative phosphorylation activation, withmany increased proteins

in complex I (NDUF proteins), as well as complexes II and V. The

elevated abundance of these mitochondrial proteins may indicate

increased expression or mitochondrial biogenesis that occurs with

ketosis (85). Brain imaging studies found hypometabolism in AD

patients consistent with low glucose in some brain regions (86). We

detected the glucose transporter GLUT1 (SLC2A1) (87) altered in

some cells in an AD mouse model (88), but this was not different

from controls in the choroid plexus. Future studies should evaluate

this further in specific choroid plexus cell types and correlate with

neighboring brain tissues and CSF protein levels, as well as clinical

variables such as disease progression. Evaluating how these altered

pathways may impact ketosis induction may provide insights into

the mechanisms of cognitive dysfunction and resilience (89–92).

Other altered pathways associated with AD include BAG2

and 14-3-3 signaling. In the current study, BAG2 signaling

activation included nine decreased proteasome proteins and two

increased heat shock proteins. This pathway is associated with

multiple functions such as cytoskeleton maintenance, including

proteasome-independent phosphorylated tau degradation (93). We
detected total tau (MAPT) in most cases (n = 7 control, n = 2

AD, n = 9 epilepsy), but this was not different among the groups.

Regarding proteasome proteins, we detected a number of these
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FIGURE 3

Cell-type enrichment and signaling pathways associated with proteomics di�erences. (A) Cell-type annotation analysis of di�erentially expressed

proteins in AD vs. control by Fisher’s exact test indicates a trend in enrichment (p = 0.051) for glial proteins. (B, C) For AD vs. control, the 616

di�erentially expressed proteins are significantly associated with 9 activated pathways (red) and 11 inhibited pathways (blue; p-value of overlap <

0.05, z-score ≥ |2|). (D) Cell-type enrichment analysis for di�erentially expressed proteins in AD vs. epilepsy indicates enrichment for endothelial cell

proteins (p = 0.031). (E, F) For AD vs. epilepsy, the 438 di�erentially expressed proteins are significantly associated with 11 activated pathways and 6

inhibited pathways. The dotted lines indicate p = 0.05.

proteins, but those that were significant were all decreased and

associated with this pathway. Previous studies have shown that

proteasome proteins tend to be increased in AD when compared

to controls in other brain regions when searched in our NeuroPro

database (82). Follow-up studies should evaluate this finding in

choroid plexus to determine whether these decreased proteins are

associated with the dysfunction of protein clearance, altered in

specific cell types, or present in another insoluble fraction for

example. Additionally, 14-3-3-mediated signaling was inhibited

with decreased 14-3-3 proteins (YWHAB, YWHAE, YWHAG,

YWHAQ, and YWHAZ). The proteins in this pathway are also

associated with multiple cellular functions, and in AD, they

colocalize with neurofibrillary tau tangles and are increased in CSF,

with correlations to clinical variables (94, 95). Evidence suggests

that 14-3-3 proteins are decreased in the frontal cortex tissue,

as well as in some studies from our NeuroPro database in most

brain regions and in a limited choroid plexus proteomics study

(55, 82, 96).

Proteomics analyses in human AD choroid plexus have been

limited to less sensitive approaches (55), and transcriptomic studies

have been limited to two RNA microarray analyses (97, 98).

In the first RNA microarray study, choroid plexus epithelial

cells were microdissected from AD and controls with differences

related to increased oxidative stress and protein ubiquitin pathways

and decreased glutathione-mediated detoxification and urea cycle

pathways (99). In the second RNA microarray study, bulk AD

choroid plexus were compared to controls with differences related

to upregulated metabolic and immune-related pathways and

downregulated methionine degradation and protein translation

(98). We identified trends in these signaling pathways (p-value

of overlap < 0.05, z-score n.s.), including mTOR signaling (98),

methionine degradation pathways (98), unfolded protein response

(99), protein ubiquitination pathway, (99) urea cycle, (99) and

glutathione-mediated detoxification (99). In contrast to previous

studies, NRF2 oxidative stress (99) and aldosterone signaling in

epithelial cells (99) trended down.

Other altered proteins in aging or AD choroid plexus were

identified by non-proteomic studies (33, 35, 100), including

basement membrane thickening, decreased clusterin, TTR,

LRP2, IGF1, and gelsolin, and increased LRP1 and PGP.

We identified 17 proteins associated with the basement

membrane (GO cellular component GO:0005604) that were

all increased and may be consistent with basement membrane

thickening. Clusterin (CLU, also known as APOJ; P10909),

an extracellular chaperone that traffics multiple proteins

including Aβ in addition to other functions (100), was

increased by 2.3-fold (p = 1.42 x 10−4). LRP1 was detected

but not different. LRP2, TTR, PGP, gelsolin, and IGF1 were

not detected.

We expected some similarities of proteins when comparing

the choroid plexus to other studies evaluating CSF and blood

vessel protein expression levels, as the choroid plexus produces
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FIGURE 4

Proteins in AD vs. control associated with the top altered pathway, glycolysis inhibition. The glycolysis signaling pathway was the most significantly

altered and was the most a�ected by the fold change of proteins in AD vs. control (p = 1.00 x 10−12, z = −3.46). (A–L) The proteins are depicted by

order of decreasing significance. Those proteins that are significant at 5% FDR are indicated for all pairwise comparisons, with the p-values as

indicated. ***p < 0.001, **p < 0.01. Error bars indicate SEM.

CSF and also contains blood vessels. CSF proteomics analyses

had identified altered metabolism proteins in AD vs. controls,

some differing from the brain tissue (56, 101). Increased glycolysis

proteins were identified in CSF, including a top candidate aldolase

fructose-bisphosphate A (ALDOA) (101). Whereas, we identified a

significant 3.1-fold decrease (p = 1.78 x 10−5) in ALDOA in the

choroid plexus of AD. In a proteomics analysis of Aβ accumulation

in blood vessels of cases with cerebral amyloid angiopathy (CAA)

in the occipital/parietal lobes, one of the top altered proteins was

high-temperature requirement serine peptidase 1 (HTRA1) which

is suggested to remove misfolded or mislocalized peptides in an

ATP-independent manner (102). From our NeuroPro database,

this protein is also increased in a number of other studies in AD

from various brain regions (82). Similarly, we identified a 2.8-fold

increase in HTRA1 (p= 1.11 x 10−3).

Epilepsy vs. control

In the epilepsy vs. control comparison, only one protein

(FUCA2) was elevated with many trending proteins in this

heterogeneous disease group. In the 216 proteins trending in

epilepsy, FUCA1 was also increased and has a similar function

to FUCA2 adding fucose to glycoproteins and can be associated

with cell migration as suggested from elevation in various tumor

types (103). From the pathways associated with trending proteins,
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FIGURE 5

Protein candidate TMEM106B histological localization and quantification. Representative images from the (A) control, (B) AD, and (C) epilepsy groups

of TMEM106B (red) localized in the basal membrane and epithelial marker AQP1 (green) in the apical membrane of epithelial cells of the choroid

plexus adjacent to the hippocampus at the level of LGN. (D) TMEM106B quantification by LFQ-MS in control (n = 8), AD (n = 8), and epilepsy cases (n

= 12). As determined by Student’s two-tailed t-test with permutation correction at a 5% FDR, for AD vs. epilepsy, there was an 18.9-fold increase (p =

3.22 x 10−6, FDR <5%), for AD vs. control, there was a 3.5-fold increase (p = 0.037, FDR >5%), and for epilepsy vs. control, there was a 5.5-fold

decrease (p = 0.0048, FDR >5%). (E) Immunohistochemistry from five cases/group shows using semiquantitative analysis that TMEM106B expression

follows a similar trend observed in LFQ-MS, AD vs. epilepsy (3.9-fold increase, p = 0.095), AD vs. control (5.0-fold increase, p = 0.095), and epilepsy

vs. control (1.3-fold increase, p = 0.84) by the Mann–Whitney U-test. Scale bar 100 um. Error bars indicate SEM.

FIGURE 6

Proteomic di�erences in the choroid plexus of AD and epilepsy cases positively correlate. (A) Of the 617 altered proteins in AD and epilepsy cases

when compared to controls, 497/617 (81%) changed in the same direction (purple) and 120/617 (19%) in the opposite direction (yellow) with an

overall positive correlation (p < 0.0001, R2 = 0.27). Several of the proteins with the highest fold change are annotated by the gene name. The top 10

signaling pathways associated with the proteins in each quadrant from the correlation show those pathways (B) down in AD and up in epilepsy, (C)

up in both AD and epilepsy, (D) down in both AD and epilepsy, and (E) up in AD and down in epilepsy.
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there were similarities to those observed in AD when compared

to controls that included fatty beta-oxidation and 14-3-3 signaling.

There have been no related proteomics or transcriptomics studies

in human epilepsy choroid plexus for comparison. It will be of

interest in future studies to evaluate larger homogeneous cohorts

to identify whether there are additional protein differences, as well

as comparison to other AD groups with more mild pathology and

AD cases with an epilepsy diagnosis.

AD vs. epilepsy

In the AD vs. epilepsy comparison, most of the protein

differences were also found when comparing AD to controls, and so

many of the same signaling pathways were identified. Additionally,

there was the activation of inflammatory-related pathways such

as complement system and pathogen-induced cytokine storm

that were associated with a number of complement and collagen

proteins. Although there were many differences, the changes in AD

also correlated with trends in epilepsy when compared to controls.

TMEM106B was a top protein candidate that was elevated

in AD when compared to the epilepsy group. TMEM106B is a

type II transmembrane protein that localizes to late endosomes

and lysosomes in many cell types, including in both neurons

and oligodendrocytes (104). Previous studies have shown that

TMEM106B can fibrilize in a similar way as Aβ in AD and that

TMEM106B filaments may form in an age-dependent manner

(105–107). There was a similar trend for expression levels on LFQ-

MS and histology, with differences related to the detection method

(i.e., sensitivity and normalization).

The correlation of AD and epilepsy to controls from those

proteins significant in at least one pairwise comparison identified

a positive correlation, with the majority of proteins changing in

the same direction. With these similar trends, as expected, many

of the same signaling pathways were identified and were associated

with a shift in cellular energy production. Among the top correlated

proteins with the highest fold changes, there was increased

ATP6V0A4 and decreased APOB. ATP6V0A4 is a vacuolar ATPase

(108) and can be involved in several signaling pathways, including

those associated with endocytosis. The top pathway associated

with ATP6V0A4 (increased by 4.2-fold in AD and by 2.6-fold

in epilepsy compared to controls) from the increased proteins in

the correlation was the iron homeostasis signaling pathway (p =

3.80 x 10−4). APOB is an apolipoprotein that transports lipids in

plasma and CSF (109) and is also involved in several signaling

pathways including endocytosis. APOB is increased in AD CSF and

plasma. (109) It is unclear whether these cases have lower APOB

levels relative to the many controls with atherosclerosis (110) that

were observed on neuropathology and whether these levels reflect

those in the adjacent brain tissue or CSF. Some of the top protein

differences between AD and epilepsy with the highest fold change

from the correlation included increased MFGE8 (milk fat globule

EGF and Factor V/VIII domain containing) by 2.5-fold in AD

and decreased by 2.2-fold in epilepsy. An increase in AD may be

expected as MFGE8 vascular deposition increases with age and it

can interact with Aβ (111). As noted above, it will be of interest

to evaluate these protein differences further in larger homogeneous

epilepsy cohorts, as well as across the AD and epilepsy spectrums

of disease. Furthermore, future mechanistic studies will be essential

to elucidate the implications of these protein differences, i.e., how

the altered signaling pathways directly or indirectly impact CSF

production, turnover, and content.

Limitations

Our study had limitations, including a small sample size. Our

technique is less sensitive in detecting large membrane proteins,

insoluble proteins, and low-abundance proteins (i.e., TTR, AQP1,

and APP were not detected). Among the AD and epilepsy disease

groups, heterogeneous clinical variables warrant further evaluation

in future studies with larger samples, as do genetic risk factors (e.g.,

APOE, MTOR, APP, and PSEN1). Differences we identified in bulk

choroid plexus should be explored with regard to specific cell types.

Conclusion

We identified a shift in cell energy metabolism in the choroid

plexus of AD patients with severe neuropathology and similar

trends in epilepsy patients. Follow-up studies should evaluate the

spectrum of AD and epilepsy, including those cases with dual

diagnoses to identify potential molecular drivers of epilepsy and

AD. This could empower novel and targeted therapies.
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