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Objective: To investigate the quantitative electroencephalography (EEG) features 
associated with a high risk of sudden unexpected death in epilepsy (SUDEP) in 
patients with Dravet syndrome (DS).

Methods: Patients with DS and healthy controls (HCs) who underwent EEG 
were included in the study. EEG signals were recorded using a 21 channel digital 
EEG system, and pre-processed data were analyzed to identify quantitative EEG 
features associated with a high SUDEP risk. To assess the risk of SUDEP, SUDEP-7 
scores were used.

Results: A total of 64 patients with DS [38 males and 26 females, aged: 
128.51  ±  75.50  months (range: 23–380  months)], and 13 HCs [7 males and 6 
females, aged: 95.46  ±  86.48  months (range: 13–263  months)] were included. For 
the absolute band power, the theta power was significantly higher in the high-
SUDEP group than in the low-SUDEP group in the central brain region. For the 
relative band power, the theta power was also significantly higher in the high-
SUDEP group than in the low-SUDEP group in the central and occipital brain 
regions. The alpha power was significantly lower in the high-SUDEP group than 
in the low-SUDEP group in the central and parietal brain regions.

Conclusion: Patients with high SUDEP-7 scores have different EEG features from 
those with low SUDEP-7 scores, suggesting that EEG may be used as a biomarker 
of SUDEP in DS.

Significance: Early intervention in patients with DS at a high risk of SUDEP can 
reduce mortality and morbidity. Patients with high theta band powers warrant 
high-level supervision.
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1. Introduction

Dravet syndrome (DS) is an SCN1A mutation-related, infantile-
onset epilepsy syndrome, characterized by a distinctive seizure 
history: prolonged febrile or afebrile seizures beginning in the first 
year of life, followed by subsequent multiple seizure types. Patients 
with DS experience developmental regression during early childhood, 
mostly because of frequent pharmaco-resistant seizures (1–3). Early 
diagnosis of DS is critical to avoid anticonvulsants that may aggravate 
seizures and increase morbidity (4).

Premature mortality is a leading cause of fear among 
caregivers (5–7). Up to 15% of patients with DS die during early 
childhood or adolescence (1), and most of them experience 
SUDEP (1), which is defined as sudden, unexpected, witnessed or 
unwitnessed, non-traumatic, and non-drowning death in patients 
with epilepsy (8). SUDEP accounts for 7.5%–17% of all deaths of 
epilepsy (9, 10), but SUDEP rates are particularly high in patients 
with DS attributing to 20% of all deaths (11). The mean age of 
SUDEP is as young as 4.6 years in patients with DS (6), 
emphasizing the high risk of mortality.

SUDEP is a diagnosis of exclusion (12), as the definitive post-
mortem signs or biomarkers of SUDEP have not yet been identified 
(13, 14). Indirect evidence has linked SUDEP to seizure-induced 
apnea, pulmonary edema, dysregulation of cerebral circulation, and 
cardiac arrhythmias (9, 10, 15), which may occur secondary to 
hormonal or metabolic changes or autonomic discharges (9, 15, 16), 
but the exact mechanisms remain unclear.

Electroencephalography (EEG) is a critical tool that can show the 
clinical status of patients, as well as ictal changes (17, 18) and 
age-related changes in patients with DS (19). Recently, few studies 
have analyzed the risk of SUDEP using EEG in patients with various 
epilepsies. One recent multi-center study has suggested that machine 
learning-driven models may be  used to quantify SUDEP risk in 
patients with epilepsy (20). Another study used the data of a group of 
patients with drug-resistant epilepsy to compare the EEG and ECG 
data of 21 patients with definite or probable SUDEP, and it reported 
an increased autonomic stimulation associated with seizures in 
patients with SUDEP (21). However, these studies included patients 
with various epilepsies, and the results were largely dependent on the 
ECG data (20, 21).

In the present study, we performed a quantitative EEG analysis to 
identify the EEG features related to a high risk of 
SUDEP. We hypothesized that the EEG features would be different 
between patients with high SUDEP scores and the others with lower 
SUDEP scores.

2. Methods

2.1. Participants

This study was performed at Severance Children’s Hospital. 
We  enrolled patients who were diagnosed with DS between 1 
January, 2012 and 31 March, 2021. DS was diagnosed according 
to the following criteria: (1) febrile or afebrile, generalized or 
unilateral, or clonic or tonic-clonic seizures that occur in the first 
year of life in an otherwise healthy infant; (2) the development of 
drug-resistant myoclonus, atypical absences, and focal seizures; 

(3) a developmental delay within the second year of life; (4) the 
subsequent development of cognitive impairment or other 
neuropsychiatric and behavioral disorders; and (5) an identified 
SCN1A gene mutation. Only patients who recently underwent 
EEG after 1 January, 2020 were included. EEGs were performed 
as routine clinical care to evaluate seizures and the background 
EEG activity. The healthy controls (HCs) group included patients 
who came to the neurologic outpatient clinic due to non-epileptic 
events such as dizziness or headache. Based on the SUDEP-7 
inventory score, patients with DS were then divided into low- 
(score: 0–3), mid- (score: 4–6), and high-SUDEP (score 7–9) 
subgroups. This study was approved by the institutional review 
board (4-2021-0377). Informed consent was waived because of 
the retrospective nature of the study, and we used anonymous 
clinical data.

2.2. SUDEP-7 score

The SUDEP-7 inventory was assembled from the large 
prospective cohort study of SUDEP reported by Walczak et al. 
(22). The core risk factors identified by Walczak et al. (22) were 
consolidated into a seven-item inventory. Risk factors with low 
odds ratios (0–2) were not included. The risk factor “any seizures, 
average per month” was consolidated into two core risk factors: 
any seizures in the last year or more than 50 seizures per month. 
The weighting for each risk factor was determined by the natural 
log of the odds ratio rounded to the nearest integer. The weighted 
SUDEP-7 inventory was scored from 0 to 12. The seven items 
were shown in Table 1.

2.3. EEG acquisition and analysis

The patients lay on an examination bed in a room with ambient 
noise blocked. EEGs were recorded for at least 30 min. The EEG 
signals were recorded using a 21-channel digital EEG system (Xltek, 
Natus Medical Incorporated, San Carlos, California or Telefactor 
Aurora® EEG machine, Grass-Telefactor, Melbourne, Australia). The 
electrodes were attached according to the international 10–20 system. 
Data were recorded using a sampling rate of 200 or higher with filter 
settings of 1–70 Hz. Epochs with too many artefacts were removed 
from the recorded data by visual inspection. The pre-processed EEG 
data was divided into multiple epochs of a length of 2 s. Power spectral 

TABLE 1  SUDEP-7 score inventory.

SUDEP risk factors

1 More than 3 tonic-clonic seizures in last year

2 1 or more tonic-clonic seizures in last year

3 One or more seizures of any type over the last 12 months

4 >50 seizures of any type per month over the last 12 months

5 Duration of epilepsy ≥30 years

6 Current use of three or more anti-epileptic drugs

7 Mental retardation, I.Q. <70, or too impaired to test

SUDEP, sudden unexpected death in epilepsy.
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analysis was used to compress the rhythmic information of the brain 
wave signals. In the power spectral analysis, the periodogram function 
in MATLAB R2020a (MathWorks, Natick, MA, United States) was 
used to calculate the power spectral density of each epoch. The 
spectral absolute and relative powers were then averaged according to 
randomly selected 30 epochs.

The absolute band powers were classified into five frequency 
bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta 
(12–30 Hz), and gamma (30–50 Hz). The relative band powers were 
calculated by dividing the absolute band powers by the total power of 
1–50 Hz. The powers were averaged into six regions: frontal (FP1, FP2, 
F7, F8, F3, F4, and Fz), central (C3, C4, and Cz), temporal (T3, T4, T5, 
and T6), parietal (P3, P4, and Pz), and occipital (O1 and O2).

2.4. Statistical analysis

Independent t-tests were used to compare the demographic data. 
A multivariate analysis of covariance (MANCOVA) was used to 
compare the absolute and relative EEG band powers between patients 
with DS and HCs. Age was controlled for as a covariate.

The MANCOVA was used to compare the absolute and relative 
EEG band powers among the SUDEP subgroups (low-, mid-, and 
high-SUDEP) of patients with DS. p-values were adjusted for age. 
Statistical analyses were performed using SPSS 21 (SPSS, Inc., Chicago, 
IL, United States).

3. Results

A total 64 patients with DS [38 males and 26 females, aged: 
128.51 ± 75.50 months (range: 23–380 months)] were included in this 
study. A total of 13 HCs [7 males and 6 females, aged: 
95.46 ± 86.48 months (range: 13–263 months)] were included in 
this study.

Low-SUDEP group consisted of 14 patients [10 males and 4 
females, aged: 122.73 ± 54.10 months (range: 68–238 months)], 
mid-SUDEP, 14 [6 males and 8 females, aged: 113.83 ± 76.73 months 
(range: 55–380 months)] and high-SUDEP, 31 [19 males and 12 
females, aged: 138.51 ± 81.81 months (range: 23–347 months)]. Five 
patients were excluded because of lacking information on clinical data.

There was a difference in age between patients with DS and HCs 
(p = 0.021), and other demographics are no different.

Demographic data of the DS patients and the HCs are reported in 
Table 2.

3.1. Differences in EEG between the DS and 
HCs groups

The multivariate analysis of covariance (MANCOVA) was applied 
to the absolute and relative EEG power between patients with DS and 
HCs. Age was controlled as a covariate.

For the absolute band power, the delta power was significantly 
lower in the DS group than in the HCs group in the occipital region 
[68.19 (31.81; 150.75) vs. 124.68 (34.98; 280.48), p = 0.033]. The beta 
power was also significantly higher in the DS group than in the HCs 
group in the following sub-regions: frontal [17.96 (12.69; 34.32) vs. 
11.01 (7.82; 12.27), p = 0.008], temporal [18.24 (12.89; 31.14) vs. 12.48 
(10.03; 14.08), p = 0.010], central [16.14 (9.36; 25.35) vs. 8.52 (5.88; 
10.94), p = 0.003], and parietal [13.96 (10.00; 22.69) vs. 9.45 (7.57; 
11.59), p = 0.010]. All the comparison results of the absolute EEG band 
power between the DS and HCs groups are presented in Table 3.

For the relative band power, the theta power in the occipital 
region was significantly higher in the DS group than in the HCs group 
[0.27 (0.23; 0.33) vs. 0.22 (0.16; 0.27), p = 0.013]. The alpha power was 
also significantly lower in the DS group than in the HCs group in the 
following sub-regions: temporal [0.11 (0.08; 0.16) vs. 0.21 (0.05; 0.24), 
p = 0.045], central [0.11 (0.08; 0.15) vs. 0.20 (0.05; 0.29), p = 0.001], 
parietal [0.12 (0.07; 0.17) vs. 0.24 (0.05; 0.30), p = 0.001], and occipital 
[0.13 (0.09; 0.21) vs. 0.30 (0.05; 0.43), p = 0.006]. The gamma band 
power in the frontal region was significantly lower in the DS group 
than in the HCs group [0.02 (0.01; 0.03) vs. 0.03 (0.01; 0.04), p = 0.010]. 
All the comparison results of the relative EEG band power between 
the DS and HCs groups are presented in Table 4. No other frequency 
bands in the brain regions showed any significant differences between 
the DS and HCs groups.

3.2. Differences in EEG between the 
low-SUDEP and high-SUDEP group

The MANCOVA was applied to the absolute and relative EEG 
power between the low-SUDEP and high-SUDEP groups. Age was 
controlled for as a covariate.

For the absolute band power, the theta power was significantly 
higher in the high-SUDEP group than in the low-SUDEP group in the 
central brain regions [23.60 (11.30; 44.02) vs. 47.16 (19.37; 61.79), 
p = 0.042]. All the comparison results of the absolute EEG band power 
between the high-SUDEP and low-SUDEP groups are presented in 
Table 5.

For the relative band power, the theta power was significantly 
higher in the high-SUDEP group than in the low-SUDEP group in the 
following sub-regions: central [0.24 (0.19; 0.39) vs. 0.31 (0.26; 0.39), 
p = 0.044] and occipital [0.24 (0.17; 0.29) vs. 0.30 (0.23; 0.35), 
p = 0.021]. The alpha power was also significantly lower in the high-
SUDEP group than in the low-SUDEP group in the following 
sub-regions: central [0.13 (0.12; 0.17) vs. 0.10 (0.07; 0.15), p = 0.032] 
and parietal [0.15 (0.13; 0.20) vs. 0.10 (0.07; 0.15), p = 0.023]. All the 
comparison results of the relative EEG band power between the high-
SUDEP and low-SUDEP groups are presented in Table 6. No other 
frequency bands or brain regions showed any significant differences 
between the low-SUDEP and high-SUDEP groups.

Figure 1 presents topographic maps. (A) Differences of relative 
power in theta band between Dravet syndrome (DS) and healthy 

TABLE 2  Demographic data of Dravet syndrome (DS) patients, healthy 
controls (HCs), and SUDEP subgroups.

Group N Male Female Age (months) 
Mean (SD)

DS 64 38 26 128.51 (75.50)

HCs 13 7 6 95.46 (86.48)

Low-SUDEP 14 10 4 122.73 (54.10)

Mid-SUDEP 14 6 8 113.83 (76.73)

High-SUDEP 31 19 12 138.51 (81.81)
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controls (HCs) groups (DS−HCs); (B) differences of relative power in 
alpha band (DS−HCs); (C) differences of relative power in theta band 
between high-SUDEP and low-SUDEP groups (high-SUDEP−
Low-SUDEP); (D) differences of relative power in alpha band 
(high-SUDEP−low-SUDEP).

4. Discussion

SUDEP is a fatal condition that can occur frequently in patients 
with DS. However, biomarker for predicting SUDEP remains to 
be  investigated. This study demonstrates that patients with high 
SUDEP-7 scores have different EEG features from those with low 
SUDEP-7 scores, suggesting that EEG may be used as a biomarker of 
SUDEP in DS.

The most significant finding of this study was the increase in 
the theta powers in patients with high SUDEP-7 scores. At the same 
time, the relative alpha powers of EEG signals decreased in the 
same group. In previous studies, the 1–30 Hz-frequency range and 
theta activity (4–7 Hz) showed a consistent relationship with 

epilepsy. Topographically a diffuse increase in theta activity 
characterizes the broad spectrum of genetic-developmental, 
non-lesional childhood epilepsies (23, 24), idiopathic generalized 
epilepsies (25), and focal epilepsies with dissimilar aetiology (26, 
27) compared to the theta activity in healthy controls. Previous 
studies have reported a diffuse theta, and delta slowing in DS (17, 
28). Modifications of theta and delta rhythms have been reported 
in SCN1a knock-out mice (29).

Notably, the alpha band powers decreased in DS patients 
with high SUDEP scores. Alpha-band oscillations play an 
important role in information processing. Alpha band rhythm 
increases attention by inhibiting task-irrelevant processes (30–
33). In epilepsy, a slower alpha rhythm is associated with poorer 
seizure control (34). These findings suggest that the 
dysregulation of alpha activities, which represent cognitive 
activities, is related to a high SUDEP risk score. Intellectual 
disability has been suggested as a factor associated with a high 
SUDEP risk, but data about this hypothesis is still limited (35). 
Our findings correlate with these previous findings, and 
demonstrate that alpha is decreased in high-SUDEP group using 

TABLE 3  Comparison of the absolute electroencephalography (EEG), power between patients with Dravet syndrome (DS) and healthy controls (HCs).

Frequency band Brain region DS (n =  64) HCs (n =  13) p

Median [Q1; Q3]

Delta

Frontal 55.44 [33.47; 117.92] 60.16 [33.68; 159.96] 0.689

Temporal 49.46 [25.07; 97.38] 63.34 [27.37; 149.68] 0.084

Central 42.96 [17.90; 68.65] 49.39 [13.04; 143.81] 0.238

Parietal 37.16 [18.72; 82.39] 65.83 [15.47; 122.14] 0.084

Occipital 68.19 [31.81; 150.75] 124.68 [34.98; 280.48] 0.033*

Theta

Frontal 37.44 [19.91; 59.38] 41.34 [24.75; 58.08] 0.233

Temporal 43.79 [18.54; 69.81] 45.90 [26.48; 96.63] 0.860

Central 36.92 [18.85; 61.45] 34.50 [22.35; 59.60] 0.145

Parietal 43.63 [17.40; 71.68] 43.04 [29.20; 93.06] 0.889

Occipital 51.73 [29.44; 100.21] 111.94 [58.29; 159.39] 0.577

Alpha

Frontal 13.17 [8.25; 21.67] 14.10 [13.46; 25.21] 0.555

Temporal 15.94 [8.38; 29.56] 27.31 [13.22; 35.83] 0.996

Central 11.79 [7.75; 19.49] 17.75 [10.50; 25.76] 0.257

Parietal 12.39 [7.87; 23.35] 22.19 [12.36; 39.50] 0.337

Occipital 24.64 [12.44; 53.54] 72.08 [26.11; 152.33] 0.089

Beta

Frontal 17.96 [12.69; 34.32] 11.01 [7.82; 12.27] 0.008*

Temporal 18.24 [12.89; 31.14] 12.48 [10.03; 14.08] 0.010*

Central 16.14 [9.36; 25.35] 8.52 [5.88; 10.94] 0.003*

Parietal 13.96 [10.00; 22.69] 9.45 [7.57; 11.59] 0.010*

Occipital 19.89 [13.66; 37.68] 20.79 [17.01; 25.82] 0.238

Gamma

Frontal 2.67 [1.99; 4.00] 4.00 [2.30; 5.12] 0.829

Temporal 2.80 [1.89; 4.20] 2.65 [2.58; 4.13] 0.455

Central 1.79 [1.20; 2.78] 1.80 [1.42; 2.10] 0.059

Parietal 1.85 [1.16; 2.77] 1.88 [1.21; 2.26] 0.130

Occipital 2.89 [1.80; 4.08] 3.24 [2.41; 4.32] 0.541

*p < 0.05. EEG, electroencephalography.
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a quantitative EEG analysis. Our findings suggest that an 
increased theta and alpha activity may be used to predict an 
increased risk of SUDEP.

In this study, we also compared the EEG findings of patients 
with DS to those of HCs. This study showed that absolute beta 
activities increased diffusely in patients with DS, in which 
occipital delta activities decreased in patients with DS. The 
relative alpha and gamma powers of EEG signals decreased in the 
same group. An increase in diffuse beta activity might 
be associated with anti-seizure drugs. Sedative benzodiazepines 
increase beta activity (36). Clobazam, an oral 1,5-benzodiazepine, 
is the first-line treatment drug for DS (37).

Delta is usually considered the slowest EEG frequency band 
(38). Delta oscillations are frequently observed in pathologic 
conditions, including coma (39–41) and Lennox-Gastaut syndrome 
(42). Increased delta activity can be observed as an ictal (43) or 
postictal activity (28). However, we found a decrease in delta activity 
in DS that might be correlated with their age. It is known that the 
rate of slowing increases with age in DS, suggesting that delta activity 
increases with the duration of epilepsy (17). Previous findings 

showed that SUDEP risk is increased in correlation with the duration 
of epilepsy (44).

In contrast to delta oscillations which usually represent pathologic 
conditions, gamma waves are the fastest brain waves which mainly occur 
when brain is highly alert and conscious. Gamma activity represents the 
finely-tuned inhibitory inter-neuron network (45), specifically 
γ-aminobutyric acid type A (GABAA) receptor-induced inhibitory 
postsynaptic currents (46–49). As the functional connectivity of the 
brain is modulated by the inhibitory inter-neuron network, dysregulation 
and reduction of gamma activity are observed in pathological conditions 
such as Alzheimer’s disease (50). A normal gamma frequency represents 
cognitive functions including sensory processing (51, 52), recognition, 
and memory (53). Modifications of gamma oscillations have been 
reported in mouse models of Alzheimer’s disease (in which NaV1.1 
expression is reduced, leading to epileptiform activities) (54).

This study had some limitations. As our center was a tertiary 
referral epilepsy center, only patients with severely drug-resistant 
epilepsy were included. This could have caused a selection bias. 
In addition, we  used a SUDEP-7 inventory score in our 
investigation instead of the actual event because SUDEP is not a 

TABLE 4  Comparison of the relative EEG power between patients with Dravet syndrome (DS) and healthy controls (HCs).

Frequency band Brain region DS (n =  64) HCs (n =  13) p

Median [Q1; Q3]

Delta

Frontal 0.41 [0.31; 0.52] 0.43 [0.39; 0.56] 0.481

Temporal 0.38 [0.30; 0.46] 0.36 [0.31; 0.69] 0.808

Central 0.34 [0.25; 0.43] 0.31 [0.28; 0.60] 0.936

Parietal 0.37 [0.25; 0.43] 0.31 [0.27; 0.52] 0.771

Occipital 0.41 [0.26; 0.47] 0.26 [0.21; 0.74] 0.315

Theta

Frontal 0.24 [0.19; 0.32] 0.22 [0.18; 0.30] 0.358

Temporal 0.28 [0.22; 0.35] 0.25 [0.19; 0.29] 0.201

Central 0.30 [0.23; 0.39] 0.26 [0.19; 0.32] 0.094

Parietal 0.29 [0.24; 0.40] 0.26 [0.19; 0.33] 0.127

Occipital 0.27 [0.23; 0.33] 0.22 [0.16; 0.27] 0.013*

Alpha

Frontal 0.09 [0.07; 0.13] 0.13 [0.06; 0.17] 0.084

Temporal 0.11 [0.08; 0.16] 0.21 [0.05; 0.24] 0.045*

Central 0.11 [0.08; 0.15] 0.20 [0.05; 0.29] 0.001*

Parietal 0.12 [0.07; 0.17] 0.24 [0.05; 0.30] 0.001*

Occipital 0.13 [0.09; 0.21] 0.30 [0.05; 0.43] 0.006*

Beta

Frontal 0.14 [0.09; 0.27] 0.08 [0.03; 0.12] 0.119

Temporal 0.12 [0.09; 0.26] 0.08 [0.03; 0.12] 0.291

Central 0.14 [0.10; 0.27] 0.06 [0.03; 0.12] 0.252

Parietal 0.12 [0.07; 0.23] 0.07 [0.03; 0.11] 0.291

Occipital 0.10 [0.07; 0.20] 0.05 [0.02; 0.09] 0.950

Gamma

Frontal 0.02 [0.01; 0.03] 0.03 [0.01; 0.04] 0.010*

Temporal 0.02 [0.01; 0.03] 0.02 [0.01; 0.04] 0.399

Central 0.02 [0.01; 0.03] 0.02 [0.01; 0.02] 0.480

Parietal 0.01 [0.01; 0.02] 0.01 [0.01; 0.02] 0.730

Occipital 0.01 [0.01; 0.02] 0.01 [0.01; 0.01] 0.379

*p < 0.05. EEG, electroencephalography.
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condition that can be  confirmed. However, we  still think this 
study is valuable because this seven-item weighted inventory 

derived from a prospective SUDEP study (22, 55) is a validated, 
well-known tool which has been used frequently to identify risk 

TABLE 5  Comparison of the absolute EEG power among low-SUDEP, mid-SUDEP, and high-SUDEP groups in patients with Dravet syndrome.

Frequency band Brain region Low-SUDEP (n =  14) Mid-SUDEP (n =  14) High-SUDEP (n = 31) p

Median [Q1; Q3]

Delta

Frontal 54.47 [30.82; 79.93] 54.26 [41.80; 107.24] 55.56 [26.06; 124.63] 0.429

Temporal 40.70 [19.14; 74.55] 51.92 [33.82; 89.09] 51.40 [24.14; 105.55] 0.349

Central 30.31 [13.49; 47.97] 43.82 [25.13; 66.83] 40.78 [14.82; 82.93] 0.275

Parietal 34.06 [16.35; 48.55] 43.26 [25.02; 66.52] 41.62 [17.07; 105.55] 0.254

Occipital 80.19 [23.62; 143.77] 92.17 [52.60; 126.66] 51.51 [30.44; 150.82] 0.315

Theta

Frontal 26.30 [12.91; 46.23] 35.79 [22.11; 56.74] 42.42 [26.29; 68.05] 0.177

Temporal 29.93 [13.34; 72.51] 48.37 [19.73; 73.58] 47.52 [23.96; 69.71] 0.873

Central 23.60 [11.30; 44.02] 39.03 [25.17; 67.57] 47.16 [19.37; 61.79] 0.042*

Parietal 22.40 [11.41; 64.88] 47.25 [22.80; 77.95] 52.04 [18.00; 71.24] 0.531

Occipital 42.94 [27.12; 87.56] 56.63 [34.67; 133.01] 54.35 [28.65; 93.89] 0.950

Alpha

Frontal 12.68 [8.39; 23.32] 12.16 [8.04; 19.59] 13.45 [8.55; 23.77] 0.644

Temporal 20.11 [11.55; 32.30] 17.32 [8.13; 34.32] 13.59 [8.03; 28.81] 0.404

Central 11.97 [9.10; 19.57] 10.93 [7.18; 20.68] 11.66 [8.51; 21.14] 0.986

Parietal 15.98 [11.00; 20.77] 12.51 [8.25; 30.34] 11.71 [7.39; 25.49] 0.531

Occipital 37.66 [24.55; 70.32] 24.11 [13.37; 67.73] 22.63 [12.67; 38.64] 0.288

Beta

Frontal 14.07 [11.99; 33.70] 21.06 [10.65; 25.01] 22.06 [13.79; 43] 0.056

Temporal 20.77 [12.28; 29.89] 20.11 [15.02; 29.87] 17.40 [12.94; 29.16] 0.070

Central 11.73 [8.32; 18.46] 15.17 [10.05; 29.73] 16.58 [9.83; 25.81] 0.079

Parietal 14.45 [8.25; 21.65] 13.19 [11.28; 27.19] 14.35 [9.69; 21.43] 0.101

Occipital 23.35 [14.36; 39.21] 25.3 [15.61; 42.15] 18.09 [10.91; 37.71] 0.242

Gamma

Frontal 2.51 [2.27; 3.06] 2.69 [1.98; 3.17] 3.07 [1.95; 4.29] 0.608

Temporal 2.84 [1.97; 3.92] 3.77 [2.48; 4.57] 2.71 [1.49; 5.02] 0.413

Central 1.92 [1.29; 2.10] 2.38 [1.49; 2.89] 1.44 [1.06; 3.19] 0.209

Parietal 1.65 [1.20; 2.15] 2.03 [1.59; 2.73] 1.87 [1.09; 3.09] 0.368

Occipital 2.86 [2.33; 3.64] 3.35 [2.82; 4.58] 2.57 [1.24; 4.18] 0.234

*p < 0.05. EEG, electroencephalography; SUDEP, sudden unexpected death in epilepsy.

FIGURE 1

Topographic maps. (A) Differences of relative power in theta band between Dravet syndrome (DS) and healthy controls (HCs) groups (DS−HCs); 
(B) differences of relative power in alpha band (DS−HCs); (C) differences of relative power in theta band between high-SUDEP and low-SUDEP groups 
(high-SUDEP−low-SUDEP); (D) differences of relative power in alpha band (high-SUDEP−low-SUDEP).
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factors for SUDEP (55–57). Also, a broad range of age (2–31 years 
old) was considered. In future research, it may be beneficial to 
compare subpopulations within different age ranges to highlight 
potential differences during specific life stages. This could help 
use this data for early intervention strategies before clinical 
deterioration and seizures occur.

5. Conclusion

Here, we  identified the quantitative EEG findings that 
correlate with a high SUDEP-7 score. Patients with high theta 
band powers, and the low relative alpha band powers warrant 
high-level supervision.
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