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Background: This study aims to investigate the presence of spatial cognitive 
impairments in patients with acute unilateral peripheral vestibulopathy (vestibular 
neuritis, AUPV) during both the acute phase and the recovery phase.

Methods: A total of 72 AUPV patients (37 with right-sided AUPV and 35 with left-
sided AUPV; aged 34–80  years, median 60.5; 39 males, 54.2%) and 35 healthy 
controls (HCs; aged 43–75  years, median 59; 20 males, 57.1%) participated in the 
study. Patients underwent comprehensive neurotological assessments, including 
video-oculography, video head impulse and caloric tests, ocular and cervical 
vestibular-evoked myogenic potentials, and pure-tone audiometry. Additionally, 
the Visual Object and Space Perception (VOSP) battery was used to evaluate 
visuospatial perception, while the Block design test and Corsi block-tapping test 
assessed visuospatial memory within the first 2  days (acute phase) and 4  weeks 
after symptom onset (recovery phase).

Results: Although AUPV patients were able to successfully perform visuospatial 
perception tasks within normal parameters, they demonstrated statistically worse 
performance on the visuospatial memory tests compared to HCs during the acute 
phase. When comparing right versus left AUPV groups, significant decreased 
scores in visuospatial perception and memory were observed in the right AUPV 
group relative to the left AUPV group. In the recovery phase, patients showed 
substantial improvements even in these previously diminished visuospatial 
cognitive performances.

Conclusion: AUPV patients showed different spatial cognition responses, like 
spatial memory, depending on the affected ear, improving with vestibular 
compensation over time. We advocate both objective and subjective visuospatial 
assessments and the development of tests to detect potential cognitive deficits 
after unilateral vestibular impairments.
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Introduction

The spatial cognitive process is the result of complex multisensory 
signal interactions as well as various delicate synaptic integrative 
mechanisms involved in cognitive mapping (1, 2). The contribution 
of vestibular inputs to spatial cognition has been demonstrated in 
several neurophysiological, neuroimaging, and neuropathological 
studies (3). The vestibular system participates in dynamic mechanisms 
of spatial cognition, such as path integration, and landmark-or 
geometry-based strategies (1, 4), and contributes to update the 
navigator’s current position in relation to a reference point, space 
knowledge of the navigable space geometry, recognition of familiar 
view-dependent scenes, differentiation of self-or object-motion, and 
optimization of distance estimation (4). Peripheral vestibular signals 
in convergence with other sensory inputs establish multisensory 
pathways for enhanced perception and effective navigation (5, 6). 
Vestibular signals project into many subcortical and cortical structures 
responsible for spatial cognition, including the thalamocortical and 
cerebellocortical pathways linking the head direction cells (7).

The causal association between vestibular impairments and 
visuospatial cognitive deficits was demonstrated in bilateral 
vestibulopathy (BVP), which provided a comprehensive description 
of severe and prolonged dysfunction of spatial cognition with 
hippocampal atrophy (8). Acute unilateral peripheral vestibulopathy 
(AUPV, most commonly vestibular neuritis) refers to a sudden loss of 
ipsilateral peripheral vestibular function without hearing impairment 
or brainstem signs (9). It is characterized by acute, prolonged 
spontaneous vertigo, nausea/vomiting, and unsteadiness of stance and 
gait. The symptoms subside within a few weeks (9). Neurotological 
examinations reveal spontaneous horizontal-torsional nystagmus 
beating away from the lesion side, an abnormal head impulse test for 
the involved semicircular canals, and ipsilesional caloric paresis. The 
vestibular compensation following AUPV was elucidated by virtue of 
advances in neuroimaging, such as positron emission tomography 
(PET) (10) and voxel-based morphometry (VBM) on MRI (11). To 
date, convincing evidence for visuospatial cognitive deficits is lacking 
in AUPV. Only a few animal studies on AUPV reported spatial 
cognitive impairments, particularly transient memory deficits within 
2 weeks after labyrinthectomy (12), with lesions on the vestibular 
dominant side suspected of causing more severe cognitive deficits 
(13). Similarly, several studies showed spatial cognitive deficits (14) 
and hippocampal atrophy in patients with unilateral vestibulopathy 
(15). However, other studies failed to confirm these findings (16). The 
extent of unilateral or bilateral vestibular damage may explain these 
controversial results because patients often present with incomplete 
vestibular damage. In several neuroimaging studies, brain metabolism 
differed between patients with left-and right-sided AUPV, which may 
explain why the lesions on the dominant side of vestibular 
lateralization cause more severe spatial cognitive deficits (17). These 
findings raise questions about the hypothesis that AUPV is associated 
with spatial cognitive dysfunction, both during the acute stage and 
after symptoms have resolved in the recovery phase.

Here, we conducted a detailed study of spatial cognition in AUPV 
patients by using variable visuospatial-perception and-memory tasks. 
The main purpose of current study was to evaluate the spatial 
cognitive deficits, visuospatial perception and memory, in patients 
with AUPV during the initial and recovery phases of vestibular 

dysfunction. We  hypothesized that patients with AUPV would 
present spatial cognitive deficits during the acute phase, especially 
when the right side, the dominant vestibular side in right-handers, 
is affected.

Methods

Participants

The study included 72 AUPV patients (37 right and 35 left AUPV; 
age range 34 to 80 years, median 60.5; 39 men, 54.2%) and 35 healthy 
controls (HCs; age range 43 to 75 years, median 59; 20 men, 57.1%) in 
Jeonbuk National University Hospital from March 2021 to August 
2022 (Table 1). Patients who had moderate to severe visual impairment 
(with a best-corrected visual acuity less than 6/18 in the better eye) 
(18) or hearing impairment (with a threshold of pure tone audiometry 
over 30 dB), clinical signs of central involvement (such as gaze-evoked 
nystagmus, skew deviation, associated neurological deficits), abnormal 
MRI findings with diffusion-weighted sequence, or were on centrally 
active medications or vestibular sedatives were excluded. For all 
participants, the Mini-Mental State Examination (MMSE) was used 
to assess global mental status (19), and the Edinburgh Handedness 
Inventory, a 10-item inventory, to assess handedness (Table 1). During 
the acute phase, the visual analog scale (VAS) for dizziness (D-VAS) 
was used to gage the subjective feeling of dizziness in AUVP patients. 
Patients were asked about their personal experience of dizziness, 
which they reported using the D-VAS. The scale ranged from 0 
(indicating no sensation) to 100 (representing a disabling and 
continuous sensation). The Visual Object and Space Perception 
(VOSP) battery was used to assess visuospatial perception, and the 
Block design test (BDT) and Corsi block-tapping test (CBTT) were 
performed to assess visuospatial memory (Table 2).

All participants provided informed consent and received 
monetary compensation for participation. The Institutional Review 
Board at Jeonbuk National University Hospital (no. 2020-10-134-006) 
reviewed and approved the experiments.

Vestibular function tests

All patients underwent neurotological investigations using 
video-oculography, the video head impulse test (vHIT) and caloric 
test, ocular and cervical vestibular-evoked myogenic potentials 
(VEMPs), and pure-tone audiometry within the first 2 days (acute 
phase) and 4 weeks after symptom onset (recovery phase). vHIT 
was performed more than 20 times (head rotation 15–20°, duration 
150–200 ms, peak velocity > 150°/s) on both sides of each plane and 
was analyzed using oculography (SLMED, Seoul, Korea) (20). The 
caloric irrigation test was performed with the patient in the supine 
position and 300 head elevation using closed-loop water irrigators 
at 30°C and 44°C (irrigation time 30 s, intervals 5 min) and was 
characterized by induced nystagmus (SLMED, Seoul, Korea) (21), 
especially the slow-phase velocity to estimate unilateral weakness 
using Jongkees formula (22). For cervical VEMPs (23), active 
electrodes were placed over the middle or upper portion of the 
sternocleidomastoid muscle; for ocular VEMPs (24), electrodes 
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were placed on the infraorbital margin 1 cm below the center of the 
contralateral lower eyelid. The VEMP results can be  easily 
interpreted based on the asymmetry ratio (AR) of the amplitude, 
computed as the difference in amplitudes between the ears divided 
by the sum of the amplitudes in both ears (25).

Visuospatial perception testing (VOSP 
battery)

The Visual Object and Space Perception (VOSP) battery is a 
neuropsychological assessment tool used to evaluate visual perception 

TABLE 1 Comparison of demographic features and vestibular function tests in AUPV (vestibular neuritis, VN) patients (n  =  72) and healthy controls 
(n  =  35).

VN (n  =  72) R.VN 
(n  =  37)

L.VN 
(n  =  35)

HC 
(n  =  35)

Value of 
p (VN-

HC)

Value of 
p (R.VN-

HC)

Value of 
p (L.VN-

HC)

Value of 
p (R.VN-L.

VN)

Demographics

Sex, male, n (%) 39 (54.17) 20 (54.05) 19 (54.29) 20 (57.1) 0.758 0.777 0.793 0.984

Age, years, median (95% CI) 60.5 (59–63) 62 (58–65) 60 (58–63) 59 (53–65) 0.421 0.252 0.78 0.379

Education, years, median (95% CI) 12 (12–16) 12 (12–16) 12 (12–16) 16 (11–16) 0.474 0.503 0.539 0.9

MMSE (30 points), median (95% CI) 28 (28–29) 28 (28–29) 29 (28–30) 28 (28–30) 0.581 0.417 0.87 0.455

Right handedness, n (%) 72 (100) 37 (100) 35 (100) 35 (100)

D-VAS 39.95 ± 1.75 41.01 ± 1.07 37.24 ± 1.90 - 0.591

Audio-Vestibular function tests

Acute phase (within 2 days of onset)

Spontaneous nystagmus, mean (°/sec) 13.7 ± 14.5 14.2 ± 11.3 12.9 ± 14.1 - - 0.061

vHIT hVOR mean gain

Ipsilesional, median (95% CI) 0.69 (0.61–0.76) 0.64 (0.53–0.83) 0.72 (0.62–0.76) - - 0.968

Contralesional, median (95% CI) 0.96 (0.94–0.99) 0.94 (0.91–0.98) 0.97 (0.96–1.01) - - 0.178

Presence of corrective saccades, n (%) 58 (80.56) 28 (75.68) 30 (85.71) - - 0.285

Caloric paresis, %, median (95% CI) 66.96 (45.7–98) 68.8 (36.4–110) 66.96 (36.4–111) - - 0.782

Caloric paresis ≥35%, n (%) 48 (66.67) 25 (67.57) 23 (65.71) - - 0.933

Cervical and ocular VEMP

cVEMP p13 mean latency

Ipsilateral, ms, median (95% CI) 13.9 (13.6–14.6) 13.9 (13.6–14.4) 14.2 (13.5–15.3) - - 0.515

Contralateral, ms, median (95% CI) 13.9 (13.5–14.2) 13.6 (13.2–14.2) 14.1 (13.2–14.6) - - 0.48

cVEMP amplitude AR, %, median 

(95% CI)
21 (13–26) 16 (12–25) 25 (15–31) - - 0.28

cVEMP amplitude AR ≥ 40%, n (%) 11 (15.28) 4 (10.81) 7 (20) - - 0.116

oVEMP n10 mean latency

Ipsilateral, ms, median (95% CI) 11 (10.8–11.8) 11 (10.7–11.8) 11.3 (10.8–12.8) - - 0.118

Contralateral, ms, median (95% CI) 10.7 (10.4–10.8) 10.7 (10.3–10.8) 10.55 (10.2–11) - - 0.624

oVEMP amplitude AR, %, median 

(95% CI)
26 (17–36) 21.5 (14–45) 27 (14–44) - - 0.925

oVEMP amplitude AR ≥ 40%, n (%) 20 (27.78) 11 (29.73) 9 (25.71) - - 0.855

PTA, dB, median (95% CI) 19.5 (15–24) 20.5 (16–24.5) 15.8 (12.5–24.5) - - 0.396

Recovery phase (follow-up 4 weeks after onset)

vHIT hVOR mean gain -

Ipsilesional, median (95% CI) 0.82 (0.57–1.02) 0.85 (0.57–1.03) 0.76 (0.53–1.06) - - 0.48

Contralesional, median (95% CI) 0.97 (0.93–1.03) 0.96 (0.91–1.01) 0.99 (0.91–1.07) - - 0.41

Presence of corrective saccades, n (%) 22 (30.56%) 9 (24.3%) 13 (37.1%) 0.307

Values are presented as median (95% CI). Statistical significance was calculated using the Mann–Whitney U test. D-VAS, the visual analog scale (VAS) for dizziness; vHIT-ipsi, video head 
impulse test-ipsilesional; UW, unilateral weakness; VEMP, vestibular evoked myogenic potential; AR, asymmetry ratio; MMSE, mini–mental state examination; PTA, pure tone audiometry; 
dB, decibel; ms, millisecond.
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and spatial processing abilities. It includes subtests for Object 
Perception and Space Perceptions, which are designed to elicit 
straightforward responses from participants and minimize the 
influence of other cognitive abilities (26, 27). In this study, we first 
conducted a preliminary visual sensory efficiency test (Shape detection 
screening test), and then administered the Space Perceptions subtests, 
including Position discrimination, Number location, and 
Cube analysis.

The shape detection screening test was conducted to ensure that 
participants had adequate visual capacity to complete the other 
subtests. Visual acuity of the participants was assessed using 20 
stimulus cards, half of which contained a degraded ‘X’ symbol 
(degraded by 30%), and participants were required to identify the 

presence or absence of the ‘X’ (28). Participants with scores of 15 or 
below were excluded from further participation in the VOSP test 
battery, as research has shown that low visual acuity can significantly 
affect performance on the VOSP tasks (28).

The position discrimination test includes 20 boards, each featuring 
a square with a black dot (5 mm) positioned exactly at the center, and 
another square with a slightly off-center black dot that is horizontally 
adjacent. The score is determined by counting the number of correct 
responses in identifying the square with the black dot at the exact 
center, with a maximum possible score of 20 (20). The cutoff value for 
failure is 18/20 (28).

The number location test comprises of 10 boards, each containing 
two squares with a small gap between them. The top square displays 

TABLE 2 Assessment of visuospatial cognitive abilities in AUPV (vestibular neuritis, VN) patients during acute and recovery phases.

VN 
(n  =  72)

R.VN 
(n  =  37)

L.VN 
(n  =  35)

HC 
(n  =  35)

Value of p 
between 
groupK

Value of 
pM (VN-

HC)

Value of 
pM 

(R.VN-
HC)

Value of 
pM 

(L.VN-
HC)

Value of 
pM 

(R.VN-L.
VN)

Acute phase (within 2 days of onset)

Visuospatial perception tests

Position 

discrimination 

(20 points)

18 (18–19) 18 (17–19) 19 (18–20) 20 (19–20) 0.003 0.006 0.001 0.083 0.042

Number location 

(10 points)
9 (8–9) 8 (8–9) 9 (9–10) 10 (9–10) <0.001 <0.001 <0.001 0.023 0.006

Cube analysis (10 

points)
9 (8–9) 8 (8–9) 10 (9–10) 9 (9–10) <0.001 0.048 <0.001 0.834 <0.001

Visuospatial memory tests

BDT (48 points) 32 (32–32) 30 (28–32) 32 (32–36) 37 (32–40) <0.001 0.002 <0.001 0.095 0.003

BDT Plus (66 

points)
34 (32–35) 33 (29–34) 35 (34–41) 43 (38–48) <0.001 0.001 <0.001 0.041 0.019

CBTT-block span 5 (5–6) 5 (5–6) 6 (5–6) 7.5 (7–8) <0.001 <0.001 <0.001 <0.001 0.098

CBTT-total score 25 (23–28) 24 (21–28) 27 (22–33) 40.5 (34–44) <0.001 <0.001 <0.001 <0.001 0.047

Recovery phase (follow-up 4 weeks after onset)

Visuospatial perception tests

Position 

discrimination 

(20 points)

19 (19–20) 19 (19–20) 20 (19–20) 20 (19–20) 0.488 0.708 0.402 0.868 0.259

Number location 

(10 points)
9 (9–10) 9 (9–10) 10 (9–10) 10 (9–10) 0.138 0.353 0.091 0.983 0.094

Cube analysis (10 

points)
9 (9–10) 9 (9–10) 9 (9–10) 9 (9–10) 0.289 0.362 0.17 0.793 0.205

Visuospatial memory tests

BDT (48 points) 32 (32–36) 32 (32–38) 32 (32–38) 37 (32–40) 0.155 0.065 0.075 0.131 0.528

BDT Plus (66 

points)
38 (35–40) 36 (34–41) 38 (35–47) 43 (38–48) 0.097 0.067 0.037 0.231 0.236

CBTT-block span 7 (6–7) 7 (6–7) 7 (6–8) 7 (7–8) 0.187 0.099 0.062 0.272 0.446

CBTT-total score 35.5 (31–38) 35 (29–36) 37 (31–43) 40.5 (34–44) 0.037 0.051 0.012 0.308 0.1

Values are presented as median (95% CI). Statistical significance was calculated using the KKruskal-Wallis test (between group comparison) and the MMann–Whitney U test (pairwise 
comparisons) with a Bonferroni-adjusted significance level of 0.017 (0.05/3). Bold indicates a statistically significant difference. In the BDT, scores are added based on whether the block design 
for each question is correct regardless of time, and the BDT Plus is a summation assigning additional points for faster answers. CBTT-block span is the length of the last correctly repeated 
sequence. CBTT-total score is the product of the CBTT-block span and the number of correctly repeated sequences until the test is discontinued (i.e., the number of correct trials). This latter 
score takes into account the performance on both trials of an equal length and is more reliable than the CBTT-block span alone.
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randomly arranged numbers (1–9), while the bottom square has a 
single black dot that corresponds to the position of one of the 
numbers. The score is based on the number of correct responses 
identifying the number that matches the dot’s position, with a 
maximum score of 10 (20). The cutoff value for failure is 7/10 (28).

The cube analysis test is a three-dimensional (3D) analysis 
presented on a two-dimensional (2D) plane consisting of 10 boards 
with 3D-arranged cubes. The score is determined based on the 
number of correct responses accurately identifying the number of 
cubes were on each board, including the hidden cube (maximum 
score: 10) (20). The cutoff value for failure is 6/10 (28).

Visuospatial memory testing

Block design test
Participants were given nine individual blocks with two sides of 

solid white, two sides of solid red, and two sides of half red/half white 
(crossed diagonally) and were asked to assemble the blocks to exactly 
reconstruct the 2D pattern shown (29). Gradually more complex 
patterns are presented and reproduction times are measured. Each 
trial is timed and bonus points are given for faster completion. BDT 
scores range from 0 to 48, with bonus points up to 66 (BDT Plus). 
BDT is considered to reflect spatiotemporal structural capabilities and 
is a reasonably good predictor for routine spatial measurements (30). 
A higher score reflects better visuospatial functioning.

Corsi block-tapping test
The examiner tapped cubes starting with a sequence of two blocks 

in front of the participant. Two trials were performed per block 
sequence length. The participant had to tap the cube sequence in the 
same order immediately after the examiner had finished. The number 
of cubes tapped ranged from 2 to 9. The subject had two chances to tap 
the cubes in the correct order; the subject only proceeded to the next 
step if he or she provided the correct answer (20). For each patient, the 
two metrics block span and total score were measured. The CBTT-
block span is equal to the length of the last correctly repeated sequence. 
The CBTT-total score is the product of the block span and the number 
of correctly repeated sequences during the test. Considering the 
performance on both trials of equal length, the CBTT-total score is 
more accurate (31). The CBTT is a simple and effective method to 
assess visuospatial working memory and spatial attention.

Statistical analysis

All data were analyzed using SPSS Statistics version 23.0 (IBM Corp., 
Armonk, NY, USA). Nonparametric variables are displayed as median 
values accompanied by a 95% confidence interval (CI), whereas 
parametric variables are shown as the mean ± standard deviation (SD). 
Frequencies are represented by counts and their respective percentages. 
To assess statistical significance, the Kruskal-Wallis test was utilized for 
comparisons between groups, while the Mann–Whitney U test was 
employed for pairwise comparisons. For each subgroup, comparisons 
between acute and recovery phases were assessed using the Wilcoxon 
Signed Rank test. A value of p less than 0.05 and a Bonferroni-adjusted 
significance level of 0.017 (0.05/3) was considered statistically significant 
for pairwise comparisons within the three groups.

Results

Demographics and clinical data

The demographic and clinical characteristics of the patients are 
summarized in Table  1. The patients had a median education of 
12 years (95% CI: 12–16) and maintained an overall cognitive 
function, as indicated by a median MMSE score of 28 (95%CI: 28–29). 
No significant differences were observed in baseline education levels 
and general cognitive abilities (MMSE) between AUPV patients and 
HCs, as assessed by the Mann–Whitney U test. Furthermore, the 
shape detection screening test confirmed that patients had sufficient 
visual capacity to undertake the other subtests and demonstrated no 
significant variations between AUPV patients and the HC group in 
the current study. All participants in the study were identified as right-
handed. AUPV patients were categorized according to the affected ear 
into either right (n = 37) or left (n = 35) subgroups. Importantly, there 
were no notable demographic differences between these subgroups. 
During the acute phase, both groups exhibited comparable levels in 
general cognition, sex distribution, education, and visual capability. 
Moreover, the D-VAS scores, which evaluate the subjective feeling of 
dizziness in AUPV patients, did not show any significant difference 
between the right VN and left VN groups. This is another factor to 
consider that during the acute phase of AUPV, patients’ sensations of 
dizziness might have influenced their performance on visuospatial 
attention and memory tasks.

The patients with AUPV (vestibular neuritis) mostly presented 
with acute or subacute spontaneous vertigo with nausea, vomiting, 
and unsteadiness. Vertigo was usually described as rotational and 
markedly increased with head position changes. On first examination, 
spontaneous nystagmus was directed to the contralesional side with a 
mean slow phase velocity of 13.7°/s (± 14.5) in the patient group, 
which was similar between the right and left AUPV subgroups 
(14.2 ± 11.3°/s vs. 12.9 ± 14.1°/s, p = 0.061). Almost all patients showed 
pathological findings on bedside HIT, and the median caloric 
weakness value was 66.96% (95%CI: 45.7–98%) in the patient group. 
The vHIT gain was decreased with a mean value of 0.69 (95%CI: 
0.61–0.76) for the ipsilesional side and within normal range with a 
mean of 0.96 (95%CI: 0.94–0.99) for the contralesional side; corrective 
saccades were mostly observed on the ipsilesional side. In the AUPV 
group, the average pure tone audiometry value was 19.5 dB (95% CI: 
15–24), which demonstrates normal hearing capabilities. The AR of 
cervical VEMP amplitudes was 21% (median, 95%CI: 13–26%), with 
abnormal AR (>40%) in 15.28% (11/72). The AR of ocular VEMP 
amplitudes was 26% (median, 95%CI: 17–36%), with abnormal AR 
found in 27.78% (20/72). Significant differences were not observed in 
the vestibular function tests between the right and left AUPV 
subgroups (Table 1).

Visuospatial cognition during the acute 
phase of AUPV

During the acute phase, the AUPV group displayed impairments 
in visuospatial perception and memory tests compared to the HCs, as 
shown in Table  2. In the visuospatial perception test, the AUPV 
patients scored significantly lower in Position discrimination (18 vs. 
20, p = 0.006, the Mann–Whitney U test), Number location (9 vs. 10, 
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p < 0.001), and Cube analysis (9 vs. 10, p = 0.048) compared to HCs. 
However, despite these lower scores, all values surpassed the cutoff 
values for failure, which are 18, 7, and 6, respectively. In the 
visuospatial memory test, the AUPV patients demonstrated 
significantly lower scores in the Block design tests (BDT, 32 vs. 37, 
p = 0.002; BDT Plus, 34 vs. 43, p = 0.001) and CBTT tests (block span, 
5 vs. 7.5, p < 0.001; total score, 25 vs. 40.5, p < 0.001) compared to HCs, 
as assessed by the Mann–Whitney U test (Figure 1).

In a subgroup analysis comparing right and left AUPV patients, 
the right AUPV group scored significantly lower in visuospatial 
perception (Position discrimination, 18 vs. 19, p = 0.042; Number 
location, 8 vs. 9, p = 0.006; Cube analysis, 8 vs. 10, p < 0.001) and 
visuospatial memory tests (BDT, 30 vs. 32, p = 0.003; BDT Plus, 33 vs. 
35, p = 0.019; CBTT-total score, 24 vs. 27, p = 0.047) according to the 
Mann–Whitney U test (Table 2). Compared to the HC group, the right 
AUPV group had also significantly lower scores in both visuospatial 
perception (Position discrimination, 18 vs. 20, p = 0.001; Number 
location, 8 vs. 10, p < 0.001; Cube analysis, 8 vs. 9, p < 0.001) and 
memory (BDT, 30 vs. 37, p < 0.001; BDT Plus, 33 vs. 43, p < 0.001; 
CBTT-block span, 5 vs. 7.5, p < 0.001; CBTT-total score, 24 vs. 40.5, 
p < 0.001) as evaluated by the Mann–Whitney U test. The left AUPV 
subgroup exhibited a lesser degree of impairment, with significantly 
lower scores in the Number location test (9 vs. 10, p = 0.023), BDT Plus 
(35 vs. 43, p < 0.001), and CBTT (block span, 5 vs. 7.5, p < 0.001; total 
score, 24 vs. 40.5, p < 0.001) relative to the HCs, as assessed by the 
Mann–Whitney U test (Figure 1).

Correlation analysis between the vestibular function tests of 
ipsilesional vHIT gain and caloric weakness, asymmetry ratio of 

cervical and ocular VEMP, and the visuospatial cognition tests did not 
show significant relationships (Table 3, Spearman’s correlation).

Visuospatial cognition during the recovery 
phase of AUPV

Most AUPV patients experienced significant improvement in 
severe vertigo and static vestibular imbalance within a few days, which 
continued to resolve over the subsequent weeks. Four weeks after the 
onset of symptoms, all patients showed recovery from initial 
symptoms such as vertigo, imbalance, spontaneous nystagmus, and 
abnormal vestibulo-ocular reflex (VOR) gain (Table 1). Alongside the 
vestibular compensation process, visuospatial cognitive deficits also 
improved, resulting in AUPV patients’ scores being comparable to 
those of the HCs (Tables 2, 4; Figure 1). However, subgroup analysis 
indicated that the right AUPV group still had significantly lower 
scores in the visuospatial memory tests with BDT Plus (36 vs. 43, 
p = 0.039) and CBTT-total score (35 vs. 40.5, p = 0.019) compared to 
the HC group, as assessed by the Mann–Whitney U test (Tables 2, 4; 
Figure 1).

Discussion

Although AUPV patients were able to successfully perform 
visuospatial perception tasks within normal parameters, the current 
findings revealed a decline in visuospatial perception and memory 

FIGURE 1

Comparisons of visuospatial cognitive performances between subgroups during the acute and recovery phases with (A) Position Discrimination test, 
(B) Number Location test, (C) Cube Analysis test, (D) Block Design test, (E) Block Design test-Plus, (F) Corsi Block Tapping test-Block Span, and 
(G) Corsi Block Tapping test-Total Score. Rt. AUVP, right-sided acute unilateral vestibulopathy; Lt. AUVP, left-sided acute unilateral vestibulopathy. 
**Indicates p < 0.01; ***indicates p < 0.001. Statistical significance was calculated using the Mann–Whitney U test with a Bonferroni-adjusted 
significance level of 0.017 (0.05/3).
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compared to HCs in the acute phase. These visuospatial cognitive 
impairments were more pronounced in the acute stage and gradually 
improved over the course of 4 weeks. These findings align with 
previous research that also identified visuospatial cognitive deficits in 
AUPV patients (32). One possible explanation for these impairments 
might be abnormalities in the vestibular reflex, such as oscillopsia/
nystagmus-induced blurred vision or VOR deficits, or from 
imbalances in stance and gait due to VSR deficits (33). However, this 
explanation would predict similar spatial cognitive deficits in both left 
and right AUPV during acute and recovery phases, which was not 
supported by the current findings. Nonetheless, during the acute 
phase, there was no significant difference in the D-VAS scores, a 
measure used to gage the subjective feeling of dizziness in AUPV 
patients, between those with right VN and those with left VN. Given 
that there were no marked differences in general cognition, gender 
distribution, education level, vestibular imbalance, and subjective 
feelings of dizziness between the right and left VN groups, a more 
plausible hypothesis might be  that spatial cognitive discrepancies 
during the early stages of AUPV arise from disrupted vestibular 
information to the hippocampal formation that negatively impacts the 
multisensory integration of cognitive mapping.

The results revealed a significant difference in performance 
between right and left AUPV subgroups compared to each other and 
the HC group. Specifically, more severe and lasting deficits in 
visuospatial perception and memory were observed in the right 
AUPV subgroup (vestibular dominant side) than in the left AUPV 
subgroup (vestibular non-dominant side) of the right-handed 
patients. A plausible explanation for these differing impairments 
could be the initial disruption or absence of peripheral input into the 
bilateral vestibular cortical network, which features predominantly 
ipsilateral right-sided pathways from the vestibular nuclei to the 
parietoinsular core region and a right hemispheric vestibular 
dominance in right-handers (34, 35). This is consistent with a three-
month follow-up study in UVD rats, which demonstrated spatial 
memory deficits in darkness, suggesting spatial navigation 
impairments independent of oscillopsia (36). Similarly, previous 
studies, especially differences according to the gender or lesion side, 
revealed that spatial cognitive performance appeared substantially 
poorer in female patients (37), and deficits in spatial memory and 
navigation were found in right but not in left vestibular loss (37). 
Regarding vestibular lateralization (38), the unilateral lesions on the 
vestibular dominant side appeared to show more severe deficits than 

those on the non-dominant side (38). Neuroimaging data also 
indicated that brain activity in the acute phase of right-and left-sided 
AUPV exhibited different compensatory patterns, with more 
pronounced negative metabolic brain activities with right-sided 
lesions in right-handed patients (39).

Given the complexity of visuospatial memory tests in contrast to 
visuospatial perception tasks, the more sophisticated the task, the 
greater the chance of identifying visuospatial deficiencies. From this 
point of view AUPV tends to cause more recognizable deficits in 
visuospatial memory, which involves intricate vestibular processes 
(40), compared to visuospatial perception which is predominantly 
influenced by visual information (41). This is in alignment with 
numerous earlier studies that have focused on identifying and defining 
the impact of vestibular impairment on visuospatial memory (42). 
Consequently, there is a need to develop clinical visuospatial 
behavioral tests that can more sensitively identify these minor 
alterations across different patient groups.

Vestibular information must ascend to the hippocampus to 
be integrated with visual and other sensory data pertinent to spatial 
memory (43, 44). This information has been demonstrated to reach 
the hippocampal formation, a complex brain structure involved in 
spatial cognition, through various pathways such as thalamocortical, 
theta-generating, cerebellocortical, and head direction pathways (7, 
45). Furthermore, place cells in the hippocampus, which react to 
specific locations in the environment, are influenced by vestibular 
stimulation (33). The vestibular system plays a role in the dynamic 
processes of spatial cognition, including path integration, landmark-
based strategies, and geometry-based strategies (1, 4). As for brain 
morphological changes related to spatial cognition, there is no 
definitive neuroimaging evidence of hippocampal atrophy in UVD 
patients (37). Some studies have reported atrophy in the ipsilateral 
supramarginal nucleus, postcentral and superior temporal gyrus, 
MT/V5 area, contralateral thalamus, and mesencephalon tegmentum 
(11, 46). Other studies of patients who recovered from AUPV showed 
a significant decrease in the volume of left posterior hippocampus 
(11). The authors speculated that the relative atrophy was the result 
of interaction between the diminished vestibular input and the 
insufficient central compensation to ameliorate all features of 
unilateral peripheral vestibular loss (11).

Despite the vestibular system’s role in integrating 
multisensory signals of various ipsilateral and contralateral brain 
regions, both this study and past animal behavioral studies (12), 

TABLE 3 Spearman’s correlation analysis of vestibular function tests and visuospatial cognition parameters.

vHIT-ipsi HC-gain Caloric UW Cervical VEMP AR Ocular VEMP AR PTA

r p r p r p r p r p

Position 

discrimination
−0.089 0.459 −0.071 0.568 −0.195 0.113 0.24 0.069 −0.045 0.714

Number location −0.035 0.771 −0.135 0.276 −0.076 0.543 −0.001 0.996 −0.116 0.344

Cube analysis 0.117 0.332 −0.06 0.628 0.205 0.096 0.083 0.534 −0.181 0.137

BDT 0.086 0.478 −0.142 0.251 −0.039 0.755 −0.045 0.735 −0.17 0.162

BDT Plus −0.047 0.7 −0.116 0.35 −0.056 0.655 −0.051 0.703 −0.239 0.058

CBTT-block span −0.037 0.768 0.047 0.716 −0.019 0.88 −0.033 0.81 −0.175 0.168

CBTT-total score −0.111 0.374 0.025 0.845 −0.085 0.507 −0.1 0.472 −0.186 0.14

vHIT-ipsi, video head impulse test-ipsilesional; HC, horizontal semicircular canal; UW, unilateral weakness; VEMP, vestibular evoked myogenic potential; AR, asymmetry ratio; PTA, pure 
tone audiometry. The correlations between vestibular function tests and visuospatial cognition parameters were assessed using Spearman’s nonparametric bivariate correlation.
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have indicated that a loss of half of the vestibular afferents causes 
spatial memory and navigation dysfunction during the acute 
phase of vestibular damage. The swift recovery of spatial 
cognitive performance in AUPV patients is due to vestibular 
compensation and adaptation, which restore the reduced activity 
in the ipsilateral vestibular nuclei and rebalance activity between 
both sides. Recent studies that focused on visualizing the relative 
changes in glucose metabolism (rCGM) found significant 
asymmetries in the vestibular nuclei complexes and related 
structures of the vestibulo-cerebellum, thalamus, vestibular 
cortex, hippocampus, and amygdala during the acute stage of 
UVD (10). This was followed by a rebalance of rCGM within 
these structures. Additional research has identified abnormalities 
in cortical and subcortical activations following AUPV. For 
instance, in a functional MRI study, significant decreases were 
observed in resting-state activities of the medial aspect of the 
superior parietal lobule, posterior cingulate cortex, middle 
frontal gyrus, middle temporal gyrus, parahippocampal gyrus, 
anterior cingulate cortex, insular cortex, caudate nucleus, 
thalamus, and midbrain (47). Thus, central compensation of 
unilateral peripheral vestibular loss involves numerous structures 
of the bilateral central vestibular network from the vestibular 
nuclei complexes to vestibular cortex and hippocampus to 
improve the different vestibular assignments from vestibulo-
ocular reflexes at brain stem level to cognitive tasks like spatial 
orientation and navigation at subcortical/cortical level.

A limitation of this study is the lower sensitivity of the clinical 
behavioral tests employed, and the absence of functional 
imaging-based evidence to support the observed cognitive 
performance findings. Although we  observed no marked 
differences in general cognition or subjective dizziness, the 
results do not negate potential general cognitive abilities or 
attentional deficits. Given the limited sensitivity of the MMSE, 
our chosen cognitive test, interpretations should be approached 
with caution. Further research using more sensitive cognitive 
assessments is warranted. Additionally, the study exclusively 
involved right-handed patients, indicating a need for 
further  research with left-handed AUPV patients for a 
comprehensive understanding.

In conclusion, for the first time, we  assessed visuospatial 
perception and memory cognition in AUPV patients during 
the  acute phase and early compensation stages. Specifically, 
AUPV patients demonstrated varying sensitivities in spatial 
cognition areas, such as spatial memory, based on the affected ear 
side, with improvements observed as vestibular compensation 
progressed in the subsequent weeks. We  suggest examining 
both objective and subjective visuospatial cognitive measures and 
the development of cognitive behavioral tests capable of 
discerning and identifying potential visuospatial cognitive 
deficits that may  arise following acute or chronic unilateral 
vestibular impairments.

Data availability statement

The original contributions presented in the study are included in 
the article/supplementary material, further inquiries can be directed 
to the corresponding author.T
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