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Introduction: Long-term weakness is common in survivors of COVID-19-

associated acute respiratory distress syndrome (CARDS). We longitudinally

assessed the predictors of muscle weakness in patients evaluated 6 and 12months

after intensive care unit discharge with in-person visits.

Methods: Muscle strength was measured by isometric maximal voluntary

contraction (MVC) of the tibialis anterior muscle. Candidate predictors of muscle

weakness were follow-up time, sex, age, mechanical ventilation duration, use

of steroids in the intensive care unit, the compound muscle action potential of

the tibialis anterior muscle (CMAP-TA-S100), a 6-min walk test, severe fatigue,

depression and anxiety, post-traumatic stress disorder, cognitive assessment,

and body mass index. We also compared the clinical tools currently available

for the evaluation of muscle strength (handgrip strength and Medical Research

Council sum score) and electrical neuromuscular function (simplified peroneal

nerve test [PENT]) with more objective and robust measures of force (MVC)

and electrophysiological evaluation of the neuromuscular function of the tibialis

anterior muscle (CMAP-TA-S100) for their essential role in ankle control.

Results: MVC improved at 12 months compared with 6 months. CMAP-

TA-S100 (P = 0.016) and the presence of severe fatigue (P = 0.036)

were independent predictors of MVC. MVC was strongly associated with

handgrip strength, whereas CMAP-TA-S100 was strongly associated with PENT.
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Discussion: Electrical neuromuscular abnormalities and severe fatigue are

independently associated with reduced MVC and can be used to predict the risk

of long-term muscle weakness in CARDS survivors.

KEYWORDS

acute respiratory distress syndrome, COVID-19, muscle weakness, fatigue, electrical

neuromuscular function

1 Introduction

Intensive care unit (ICU) patients surviving critical illness

may suffer prolonged physical, cognitive, and mental health

impairments, collectively known as “post-intensive care syndrome”

(1–4). Physical function is affected in 20%−80% of ICU survivors

and significantly affects the quality of life, independence in

activities of daily living, and the return to work (4–6). Physical

function impairments manifest with reduced limb strength and

range of motion, modified proprioception and balance, pain

(7, 8), fatigue (9), activity limitations, and restrictions on

Abbreviations: CARDS, COVID-19-associated acute respiratory distress

syndrome; CMAP, compound muscle action potential; HGS, handgrip

strength; ICU, intensive care unit; MVC,maximal voluntary contraction; PENT,

peroneal nerve test; TA, tibialis anterior.

FIGURE 1

Follow-up protocol set-up. The patients were asked to position their dominant leg in a carbon ankle ergometer, and the foot was supported with

velcro straps. The common peroneal nerve was stimulated under the peroneal head with a (A) bar stimulator using the CMAP scan technique. (B)

Surface electrodes were placed on the belly and distally on the tendon of the TA muscle to identify the CMAP-TA-S100 value. The (C) ground

electrode was placed on the ankle of the same leg to prevent interference with biopotential signals. (D) The force amplifier amplified the force signal

detected by (E) the load cell during both stimulated contraction and maximal voluntary contraction.

participation in social contexts (10) and are common in COVID-

19 ICU survivors (11–22). ICU-acquired muscle weakness is

described in 43% (interquartile range 25%−75%) of critically ill

patients (23) and is a major predictor of long-term weakness

(24). Post-hospital predictors of long-term weakness have not

been explored.

In a previous study of COVID-19-associated acute respiratory

distress syndrome (CARDS) survivors (11), we found that handgrip

strength (HGS) assessed with dynamometry was 70% of the

predicted normal value at 3 months and was significantly improved

over time. Simplified electroneurography of the peroneal nerve

(PENT) (25) showed a critical illness, polyneuromyopathy, in 23

of 59 patients (39%). However, global muscle strength assessed

using the Medical Research Council (MRC) sum score (MRCss)

found significant weakness (MRCss <48) in only three patients

at 3 months and in one patient at 6 and 12 months. The

MRCss, despite its ability to quickly identify muscle weakness,
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is influenced by subjective judgment, leading to variability and

potential bias, particularly in follow-up assessments conducted

by different operators. MRCss has other limitations, including

a ceiling effect that prevents the detection of milder forms of

muscle weakness, and it does not account for factors such as

muscle length and shortening velocity, which can significantly

affect muscle force generation capacity. To overcome these

limitations, it is essential to use objective measures of force in

muscle groups relevant to daily life activities, such as standing

and walking.

Maximum voluntary contraction (MVC) serves as an excellent

alternative in this regard; MVC is based on an objective value

that remains uninfluenced by the operator’s subjective perception,

ensuring measurement reproducibility over time and enabling

accurate monitoring of changes in muscle strength. Furthermore,

MVC can detect even subtle variations in strength, increasing

its sensitivity.

Similarly, PENT focuses on the evaluation of nerve function

in specific muscles of the foot that may not be associated with

the ankle movements that are more relevant for individual and

functional independence. Robust electrophysiological measures

(e.g., compound muscle action potential, CMAP) of targeted

muscles that are important for daily life activities may be more

appropriate for evaluating the rate of neural impairment of specific

muscle groups.

The aims of this study were (1) to identify the post-hospital

predictors of long-term muscle strength, as measured by isometric

MVC of the tibialis anterior (TA) muscle, and (2) to compare

the clinical tools currently available for evaluating neuromuscular

function (HGS, MRCss, and PENT) using objective and robust

measures of force (MVC) and electrophysiological evaluation of

nerve function (CMAP) on the TA muscle for its essential role in

ankle control.

2 Methods

We conducted an observational longitudinal study of adult

(≥18 years old) ARDS survivors with confirmed SARS-CoV-

2 infection admitted to the ICUs of the ASST Spedali Civili

University Hospital of Brescia, Italy, from 25 February 2020 to

17 November 2021. In this study, we used data from our follow-

up clinic that was founded in 2014 and partnered in 2020 by

a research center on LOng-Term Outcomes (called LOTO) in

critical illness survivors (26). The LOTO database contains data

from 2014 and continuously records data on patients visited at the

follow-up clinic.

ARDS was diagnosed according to the Berlin criteria, and

all patients received invasive mechanical ventilation. The Ethics

Committee of Brescia approved this study (study title: The

PIC syndrome: follow-up of the intensive care patient; approval

number: NP3369; approval date: 11 December 2018), and written

informed consent was obtained from all participants (or substitute

decision-makers) before data collection. The study was carried out

according to the Declaration of Helsinki of 1975 and the EU GCP-

ICH Guidelines. Patient demographic and clinical characteristics at

ICU admission were obtained from hospital records. We adhered

TABLE 1 Demographic characteristics and ICU variables of patients

enrolled in the study.

6 months (N = 52)

Sex, men, N (%) 38 (73.1%)

Age (years), mean (SD) 61.3 (8.75)

BMI at ICU admission (kg/m2), mean
(SD)

28.3 (3.58)

SAPS II, mean (SD) 30.3 (9.37)

Use of NIV pre-ICU, N (%) 36 (69.2%)

Duration of mechanical ventilation
(days), mean (SD)

11.7 (15.1)

Pronation, N (%) 25 (48.1%)

Tracheostomy, N (%) 17 (32.7%)

Use of steroids, N (%) 37 (71.2%)

Catecholamines, N (%) 21 (40.4%)

Comorbidities

No comorbidity 5 (9.6%)

1 comorbidity 18 (34.6%)

2 comorbidities 11 (21.2%)

3 comorbidities 1 (1.9%)

≥4 comorbidities 5 (9.6%)

ICU LOS (days), mean (SD) 16.2 (17.0)

H LOS (days), mean (SD) 37.8 (29.0)

SD, standard deviation; BMI, body mass index; SAPS II, simplified acute physiology score;

NIV, non-invasive ventilation; iNO; ICU, intensive care unit; H, hospital; LOS, length of stay.

Missing values [number of patients (percentage)]: SAPS II: 12 (23.1%); use of pre-ICU

admission NIV: 3 (5.8%); mechanical ventilation duration: 3 (5.8%); pronation: 3 (5.8%);

tracheostomy: 6 (11.5%); steroids: 13 (25.0%); catecholamine: 4 (7.7%); comorbidities:

12 (23.1%).

to the STROBE reporting guidelines (27). The present study was

registered at ClinicalTrial.gov (NCT: NCT04608994).

2.1 Follow-up protocol

Patients were invited to attend a post-ICU clinic, where a

standardized assessment of physical, cognitive, and mental health

status was performed for each patient at 6 and 12 months after

ICU discharge. A detailed presentation of the protocol has been

published elsewhere [see appendix of (11)].

Neuromuscular function was assessed with MVC, HGS, MRCss,

CMAP of the TA (CMAP-TA-S100), and PENT. We also assessed

fatigue andmental and cognitive variables because we hypothesized

that they could influence muscle strength.

Muscle strength was primarily assessed with the measurement

of the MVC (lower limb dynamometry; Figure 1). Briefly, patients

were asked to perform maximal isometric ankle dorsiflexion with

their dominant leg. The foot was strapped to the plate of a custom-

made carbon dynamometer equipped with a load cell (model SM-

100N) to measure the applied tension during ankle dorsiflexion.

The knee was fully extended (180◦), with the ankle placed in a

neutral position (110◦) (28). Patients performed three MVCs in
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dorsiflexion of the foot with a 1.5-min rest between each trial.

Each trial allowed 3 s to reach the maximal contraction, which was

maintained for another 3 s. During the trial, researchers verbally

encouraged participants, and the maximal force recorded was used

as a measure of MVC.

HGS was measured using a dynamometer (upper limb

dynamometry). Three repetitions were performed, and the

maximal value was used as a measure of HGS. We also reported the

HGS as a percentage of the predicted normal value standardized per

age and sex (29).

In addition, we assessed the MRCss, which provides a global

measure ofmuscle strength. AnMRCss of<48 indicated significant

weakness (30). We also considered an MRCss of ≤55 to indicate

mild weakness (31).

Electrical neuromuscular function was assessed by measuring

the CMAP of the deep peroneal nerve at the level of the TA muscle

(CMAP-TA) and of the extensor digitorum brevis muscle (PENT).

The PENT, obtained by the minimum stimulation amplitude that

evokes the maximal activation of the extensor digitorum brevis

muscle, was considered abnormal if the amplitude was <5.26mV

in both legs (25, 32). The CMAP-TA, which was obtained at the

level of the TA muscle to better correlate the strength performance

measured with the isometric ankle dorsiflexion, was recorded using

a novel CMAP scan application on a Viking Select EMG system

(CareFusion, San Diego, CA; Figure 1). Briefly, CMAP-TA was

obtained from the TA of the dominant leg using surface electrodes.

The negative and positive electrodes were placed on the TA belly

and distally on the tendon, respectively, and the ground electrode

was placed at the ankle of the same leg. The leg positioning was the

same as for the previously described MVC. The common peroneal
nerve was stimulated under the peroneal head with a bar stimulator
(Spes Medica Srl, Genoa, Italy) with an interelectrode distance of

2.5 cm while patients remained fully relaxed. The stimulation was
started at 0mA and then was increased by 0.1mV in intensity.

Two thresholds were recorded: (1) the minimum stimulation

intensity needed to obtain a visible action potential (S0) and (2)

the minimum stimulation intensity needed to elicit a maximal

response from the TA (S100). The detection of these two threshold

values allowed the identification of the interval within which

500 stimuli (frequency 2Hz and duration 0.2ms) were applied

in decrements from S100 to S0. The action potential amplitude

in millivolts obtained at S100 (CMAP-TA-S100) was used as the

main measure of neuromuscular function. PENT is a simplified

neurophysiological technique with high sensitivity (100%) and

good specificity (85%) that has been validated as a screening test

for critical illness polyneuropathy and myopathy (25, 32).

Activity limitation was evaluated by the 6-min walk test

(6MWT) as a performance-based measure and the fatigue severity

score (FSS). For 6MWT, predicted values were calculated according

to Enright et al. (33). Self-reported fatigue was assessed using the

Fatigue Severity Score (FSS), a 9-item scale with questions about

how fatigue has affected the person’s activities and lifestyle during

the past 2 weeks. An FSS score of≥36 indicated severe fatigue (34).

Mental health assessment was performed by administering (1)

the Hospital Anxiety and Depression Scale (HADS) questionnaire,

on which a score≥8 for both subdomains of depression and anxiety

TABLE 2 Summary of physical, mental health, and cognitive function variables and neuromuscular electrophysiological measurements at 6 and 12

months.

6 months
(N = 52)

12 months
(N = 52)

Estimated
di�erence (95% CI)

P-value P-adjustedd

BMI (kg/m2), mean (SD) 27.4 (3.79) 28.0 (3.74) 0.61 (0.27 to 0.96) 0.001 <0.001

MRCssa , median (IQR) 60 (60–60) 60 (60–60) 0.11 (−0.24 to 0.56) 0.533 0.630

MVC (kg), mean (SD) 20.2 (8.55) 23.6 (8.41) 3.43 (2.05 to 4.82) <0.001 0.003

Dominant hand grip strength (kg), mean
(SD)

30.5 (10.4) 32.4 (9.72) 1.95 (0.928 to 2.96) <0.001 <0.001

Dominant hand grip strength (% predicted)b ,
mean (SD)

79.7 (20.5) 85.0 (17.6) 5.39 (2.71 to 8.07) <0.001 <0.001

6MWT, mean (SD) 450 (108) 474 (96.1) 24.0 (−4.89 to 52.8) 0.096 0.156

6MWT, (%predicted)c , mean (SD) 87.9 (21.8) 91.2 (19.0) 4.41 (−1.46 to 10.3) 0.132 0.190

CMAP-TA-S100 (mV), mean (SD) 7.09 (1.99) 7.36 (2.07) 0.4 (0.02 to 0.8) 0.049 0.106

PENT (mV), mean (SD) 6.21 (4.80) 6.82 (5.21) 1.19 (0.52 to 1.86) 0.001 0.003

Fatigue (Fatigue Severity Score ≥36), N (%) 16 (30.8%) 11 (21.2%) −3.0 (−0.31 to−6) 0.076 0.141

Presence of depression (HADS >7), N (%) 10 (19.2%) 6 (11.5%) −15.2 (−24.1 to−1.18) 0.781 0.831

Presence of anxiety (HADS >7), N (%) 7 (13.5%) 10 (19.2%) 0.138 (−1.13 to 1.4) 0.831 0.831

Cognitive impairment (MoCA <26), N (%) 11 (21.2%) 8 (15.4%) −1.45 (−3.59 to 0.69) 0.185 0.241

BMI, body mass index; SD, standard deviation; MVC, maximal voluntary contraction; MRCss, Medical Research Council Sum Score; CMAP, the compound muscle action potential; TA, tibialis

anterior; PENT, PEroneal Nerve Test; HADS, Hospital Anxiety and Depression Scale; MoCA, Montreal Cognitive Assessment.

Missing value (6–12 months): MRCss: 9 (17.3%) to 2 (3.8%); HADS: 12(23.1%) to 0 (0%); PTSD: 0 (0%) to 2 (3.8%); MoCA: 3 (5.8%) to 0 (0%).
aNone of the patients had an MRCss <55.
bCalculated using established reference values provided by Gilbertson et al. (29).
cPredicted value for the 6MWT was calculated according to Carenzo et al. (18) and Enright et al. (33).
dP-adjusted using Benjamini and Hochberg (BH) correction.
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FIGURE 2

Violin plot for the considered variables at 6 and 12 months. Boxes indicate the first and third quartiles. Black thick lines in the bar graphs denote the

median value. The whiskers extending from the box show the range of the data, excluding outliers. Patients exhibited significant changes from 6 to

12 months in BMI (p-adjusted <0.001), MVC (p-adjusted = 0.003) and HGS (% predicted, p-adjusted <0.001). BMI, body mass index; MRCss, Medical

Research Council Sum Score; MVC, maximal voluntary contraction; HGS, handgrip dynamometry; 6MWT, 6-min walk test; CMAP, the compound

muscle action potential; TA, tibialis anterior.

was considered abnormal (35), and (2)Cognitionwas assessed using

the Montreal Cognitive Assessment (MoCA), a short cognitive

screening tool that has been validated as a general cognitive

screening test (22, 36).

2.2 Statistical analyses

Quantitative variables were described with means ±

standard deviations (SD) or median ± interquartile range

(IQR), while categorical variables were summarized with

counts and percentages. We assessed the normality of the

variables using the Shapiro-Wilk test. The relationship

between the measured physical performance variables and

the follow-up times (6 and 12 months) was modeled using

linear mixed models (LMMs) or generalized LMMs, as

appropriate. All models were fit while assuming participants

as the random intercept and follow-up visit time as a

fixed effect.

MVC was modeled using LMM with random intercepts

(participants). The final models were defined using a backward

variable selection based on the Akaike Information Criterion

(AIC), starting from a full model that included the following

variables as candidate predictors: follow-up time, sex, age, body

mass index (BMI), mechanical ventilation duration, use of steroids

in the ICU, SAPS II, 6MWT, CMAP-TA-S100, severe fatigue

using the FSS, HADS scores for depression and anxiety, the

presence of cognitive impairment using the MoCA scale, and

all pairwise interaction terms between follow-up time and all

variables included in the model. The formula for the model was

as follows:

MVC ∼ 1 + follow up time + variables + (1 | record_id)
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TABLE 3 E�ect estimates and corresponding 95% confidence intervals (CIs) formuscle strength prediction using maximal voluntary contraction (MVC in

kg) computed using a linear mixed model (LMM) with random intercept.

Coe�cient Model MVC (kg)

Estimates 95% CI P-value

12 months vs. 6 months 2.51 −0.43 to 5.45 0.092

Sex (men) 3.88 −1.29 to 9.05 0.137

Age (years) −0.18 −0.45 to 0.09 0.184

Body mass index (kg/m2) 0.54 −0.11 to 1.19 0.103

Mechanical ventilation duration (days) −0.09 −0.21 to 0.04 0.164

Use of steroids in ICU −6.31 −16.09 to 3.48 0.200

SAPS II −0.06 −0.27 to 0.14 0.538

6MWT (%predicted) −0.05 −0.15 to 0.06 0.382

CMAP-TA-S100 (mV) 1.40 0.28 to 2.52 0.016

Presence of anxiety (HADS >7) 0.12 −0.63 to 0.87 0.743

Presence of depression (HADS >7) 0.52 −0.15 to 1.19 0.122

Cognitive impairment (MoCA <26) −1.32 −5.63 to 2.99 0.540

Fatigue (Fatigue Severity Score ≥36) −4.88 −9.43 to−0.34 0.036

Marginal R2/conditional R2 0.579/0.778

The variables included in the final model were selected using a backward procedure using the AIC criterion.

CIs, confidence intervals; SAPS II, Simplified Acute Physiology Score; CMAP, Compound Muscle Action Potential amplitude; TA, tibialis anterior; HADS, Hospital Anxiety and Depression

Scale; MoCA, Montreal Cognitive Assessment. The bold values represent statistically significant results (P-value < 0.05).

To analyze the correlations between MVC, HGS, and MRCss
and between CMAP-TA-S100 and PENT, we used LMM with a

random intercept (participant). All tests were two-sided, and a P-
value of < 0.05 was considered statistically significant. No data
imputation was performed, and all analyses were conducted using

R (version 4.1.1).

3 Results

A total of 52 patients, 38 (73.1%) men, were enrolled in the

study and visited at 6 and 12 months. The demographic and clinical

characteristics of patients during their ICU stay are presented in

Table 1.

Muscle strength improved over time. MVC improved at 12

months [estimate difference (ED) = 3.43 kg when compared with

6 months, P-adjusted = 0.003). HGS improved at 12 months

as both absolute values in kilograms and percentage predicted

value (ED =5.39%, P-adjusted <0.001). An MRCss was ≥48 in all

patients. CMAP-TA-S100 (ED 0.4mV, P-adjusted = 0.106) did not

improve at 12 months, whereas PENT (ED 1.19mV, P-adjusted =

0.003) improved at 12 months (Table 2, Figure 2). Severe fatigue

was reported by 30.8% at 6 months and 21.2% at 1 year, without

significant improvement over time. Cognitive impairment was

present in a significant proportion of patients (21.2% at 6 months

and 15.4% at 12 months).

Multivariable analysis showed that MVC was independently

associated with CMAP-TA-S100 (ED 1.4 kg for each millivolt

increase in CMAP-TA-S100, P= 0.016) and fatigue (ED−4.88 kg in

patients with fatigue, P= 0.036). There was no interaction between

follow-up time and the selected variables (Table 3, Figure 3).

MVC was strongly associated with HGS (ED 0.41 kg (95%

confidence intervals: 0.26–0.56) increase in HGS for each 1-kg

increase in MVC, P < 0.001) but not with an MRCss (ED= 0.25, P

= 0.712). CMAP-TA-S100 was strongly associated with PENT (ED

0.21mV increase in PENT for eachmillivolt increase in CMAP-TA-

S100, P < 0.001). Patients with abnormal PENT (<5.26mV) had

a mean (SD) CMAP-TA-S100 of 6.87 (1.94) mV, whereas patients

with normal PENT had a mean (SD) CMAP-TA-S100 of 7.95

(1.83) mV.

4 Discussion

In this longitudinal, 1-year study of CARDS survivors, we

found that muscle weakness in COVID-19 patients improved

at 12 months and was associated with electrical neuromuscular

dysfunction (measured using CMAP-TA-S100) and severe fatigue.

Moreover, we found a strong correlation between HGS and

lower limb dynamometry (MVC) and between CMAP-TA-S100

and PENT.

MVC was independently associated with CMAP amplitudes

measured from the TA muscle: muscle strength increased by

1.4 kg for each millivolt increase in CMPA-TA-S100 amplitude.

These findings indicate that CARDS patients have abnormal

CMAP-TA-S100 and thus impairments in MVC generation, with

improvements observed at 1-year post-hospital discharge. Reduced

MVChas previously been reported in quadriceps and biceps brachii

in COVID-19 survivors (11).
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FIGURE 3

Forest plot of the estimated di�erence for the adjusted mixed model on MVC. BMI, body mass index; ICU, intensive care unit; SAPS II, simplified acute

physiology score; CMAP, the compound muscle action potential; TA, tibialis anterior; HADS, hospital anxiety and depression scale; MoCA, Montreal

cognitive assessment.

MVC was independently associated with severe fatigue

(patients with fatigue had a mean MVC of 5 kg lower than patients

without fatigue). Fatigue was present in 30% of our patients at

6 months without a significant improvement over time, in line

with our previous result (37, 38), and two recent meta-analyses

on post-COVID fatigue (39). To the best of our knowledge, this is

the first study to demonstrate that severe fatigue predicts muscle

weakness in critically ill survivors. Post-COVID fatigue, defined

as an overwhelming and sustained subjective sense of physical,

emotional, and/or cognitive exhaustion that is not related to recent

physical activity (40), has been associated with a distinct pattern

of pathological brain changes involving the thalamus and the

basal ganglia (41), which support important cognitive functions

such as memory, motivation, and reward-guided behavior, among

a wide range of functions in addition to motor control. Our

findings that the persistent subjective experience of fatigue is

related to peripheral measures of physical performance may

have implications for future treatments, such as self-guided or

health professional-guided physical and cognitive interventions

(25, 32).

The strong association between CMAP-TA-S100 and PENT

amplitudes is important for two reasons. First, it confirms

that electrical neuromuscular alterations are diffuse so that the

recording site when a peroneal nerve is stimulated (i.e., TA

versus extensor digitorum brevis) does not lead to differences in

diagnostic findings. Second, CMAP-TA-S100 requires specialized

personnel and instruments, and values in a normal population

are not available. In contrast, the PENT is a rapid screening

test that has been validated in multi-center studies (42) and can

be quickly administered. Despite a strong association between a

risk factor (i.e., altered electrical neuromuscular activity assessed

with CMAP-TA-S100 or PENT) and the disease outcome (muscle

weakness), not every predictor is a cause (43), and validation

studies are needed before the altered electrical neuromuscular

function can be considered causally related to muscle weakness in

CARDS survivors.
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HGS was strongly associated with MVCmeasured from the TA

muscle (for each 0.5-kg increase in HGS, there was a 1-kg increase

in MVC, P < 0.001), suggesting that HGS is a representative of

global muscle strength in CARDS survivors and might serve as

a quick screening tool for repeated muscle strength assessment

during follow-up (43). However, further studies are needed to

validate the diagnostic accuracy of HGS compared with MVC in

a new cohort of patients.

The MRCss was mostly normal, regardless of the

timing of assessment and despite abnormalities in

MVC, HGS, and electrophysiological parameters. This

result confirms that the MRCss misses an important

group of CARDS patients with milder weakness at

long-term follow-up.

The study limitations should be considered in the

interpretation of our results. This study was conducted at a

single center, and the findings need to be externally validated

in an independent cohort. Patients were followed up for 1

year, but assessment at all time points for all patients was

not possible because of restricted hospital access and patient’s

unwillingness to continue participation in the study. Moreover,

the study was conducted in patients with CARDS, and the

generalization to patients with classic ARDS is not possible,

although plausible. Finally, the associations we found do not

imply causality.

5 Conclusion

Electrical neuromuscular abnormalities (CMAP-TA-S100) and

the presence of severe fatigue were independently associated with

reduced MVC and can be used to predict the risk of long-term

muscle weakness in CARDS survivors.
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