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Objective: The study aimed to find the difference in functional network topology 
on interictal electroencephalographic (EEG) between patients with drug-resistant 
epilepsy (DRE) and healthy people.

Methods: We retrospectively analyzed the medical records as well as EEG 
data of ten patients with DRE and recruited five sex-age-matched healthy 
controls (HC group). Each participant remained awake while undergoing video-
electroencephalography (vEEG) monitoring. After excluding data that contained 
abnormal discharges, we screened EEG segments that were free of artifacts and 
put them together into 20-min segments. The screened data was bandpass 
filtered to different frequency bands (delta, theta, alpha, beta, and gamma). The 
weighted phase lag index (wPLI) and the network properties were calculated to 
evaluate changes in the topology of the functional network. Finally, the results 
were statistically analyzed, and the false discovery rate (FDR) was used to correct 
for differences after multiple comparisons.

Results: In the full frequency band (0.5–45  Hz), the functional connectivity in 
the DRE group during the interictal period was significantly lower than that in 
the HC group (p  <  0.05). Compared to the HC group, in the full frequency band, 
the DRE group exhibited significantly decreased clustering coefficient (CC), node 
degree (D), and global efficiency (GE), while the characteristic path length (CPL) 
significantly increased (p  <  0.05). In the sub-frequency bands, the functional 
connectivity of the DRE group was significantly lower than that of the HC group 
in the delta band but higher in the alpha, beta, and gamma bands (p  <  0.05). The 
statistical results of network properties revealed that in the delta band, the DRE 
group had significantly decreased values for D, CC, and GE, but in the alpha, 
beta, and gamma bands, these values were significantly increased (p  <  0.05). 
Additionally, the CPL of the DRE group significantly increased in the delta and 
theta bands but significantly decreased in the alpha, beta, and gamma bands 
(p  <  0.05).

Conclusion: The topology structure of the functional network in DRE patients 
was significantly changed compared with healthy people, which was reflected in 
different frequency bands. It provided a theoretical basis for understanding the 
pathological network alterations of DRE.
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1 Introduction

Epilepsy is a common chronic neurological disease with a 
prevalence of 0.5–1% (1). Approximately 30% of patients with 
epilepsy who cannot effectively control seizure are classified as drug-
resistant epilepsy (DRE). According to the International League 
Against Epilepsy definition (ILAE), the definition of DRE is the 
“failure of adequate trials of two tolerated, appropriately chosen and 
used antiseizure medication (ASM) schedules (whether as 
monotherapies or in combination) to achieve sustained seizure 
freedom,” which could be  either three times the prior interictal 
interval or 1 year, whichever is longer (2). At present, the treatment 
of DRE remains a difficult challenge for physicians, and the quality 
of life of patients is often affected by cognitive and emotional 
disorders (3).

For patients with DRE, finding potential therapeutic targets 
and intervention strategies can effectively control seizures and 
improve the quality of life of patients (4). In this context, functional 
network analysis provides a powerful research tool. According to 
the network hypothesis, epileptic seizures can cause brain plasticity 
changes, including axonal sprouting, synaptic reorganization, and 
gliosis, which lead to the formation of abnormal neural networks 
(5). Furthermore, constructing functional networks based on 
neuroimaging or electrophysiological data can further clarify the 
impact of these changes on the overall functional characteristics of 
the brain (6). KM used resting-state magnetic resonance data to 
analyze the functional network of patients with epilepsy. The 
results showed that compared with healthy people, the functional 
network topology of patients with epilepsy was chaotic. The 
information transmission efficiency of the overall network pattern 
was significantly reduced, and it turned to a more random state (7).

Graph theory analysis is a common and important network 
analysis method when it comes to functional network research (8). 
It provides a visualization method for representing functional 
networks. Both the functional network is represented as nodes and 
edges to clearly show the connection relationship and topology 
between nodes. In addition, graph theory analysis also provides a 
series of metrics to describe the topological characteristics of 
functional networks (9). For example, characteristic path length and 
clustering coefficient represent the information transfer efficiency 
and local integration ability of the network. In Boris’s study, the 
functional networks of temporal lobe epilepsy patients and healthy 
people were compared, and the graph theory index was used to 
measure this difference. The results showed that the characteristic 
path length and clustering coefficient of patients increased, and the 
functional network was restructured in patients with temporal lobe 
epilepsy (10). Therefore, graph theory analysis plays an important 
role in the study of epilepsy network, which can help to understand 
the pathological mechanism of epilepsy and identify key nodes and 
functional modules so as to provide a reasonable basis for the 
prediction and control of epilepsy (11).

In this study, functional networks were constructed by collecting 
EEG data from DRE patients and healthy people. The graph theory 
analysis was used to measure the topological structure differences and 
functional mode changes between DRE and HC. We hope that this 
study will provide a reasonable basis for further exploring the 
functional network characteristics of DRE and improving 
treatment methods.

2 Materials and methods

2.1 Participants

A total of 10 patients diagnosed with DRE were enrolled in this 
study. Their clinical information was obtained from the electronic 
medical record system of the Fifth Affiliated Hospital of Zhengzhou 
University. The inclusion criteria were as follows: (1) the age of the 
subjects ranged from 18 to 60 years; (2) the patients had undergone a 
complete long-duration video electroencephalogram (VEEG) test 
lasting for more than 1 h; (3) the seizure and treatment were fully 
documented in the medical records; and (4) patients having no history 
of invasive brain surgery or non-invasive nerve stimulation. 
Additionally, we included five healthy adults who were matched for 
age and sex as controls. The control group was excluded if the patients 
(1) had a previous history of psychological disorders or seizures, (2) 
had abnormal brain structures in the magnetic resonance imaging 
(MRI), and (3) had a history of prior head trauma or surgery. 
Approximately 1 h of EEG data were collected from all healthy subjects 
while they were awake. This study was approved by the Ethics 
Committee of the Fifth Affiliated Hospital of Zhengzhou University 
(KY2020027).

2.2 Methods of EEG data collection

All participants were advised to avoid taking antiseizure 
medication and sedative drugs within 24 h before EEG acquisition to 
avoid influencing the analysis results. Throughout the EEG data 
collection process, participants were instructed to remain awake and 
were isolated in a quiet room. EEG data were recorded using the 
international 10-20 electrode placement system with the Nicolet 
system. The resistance of each recording electrode did not exceed 
5 KΩ, and the binaural mastoid process was utilized as the reference 
electrode. The EEG data were uniformly sampled at a frequency of 
500 Hz. For the recorded EEG data, we  selected data from 19 
electrodes (Fp1, Fp2, F3, F4, F7, F8, Fz, T3, T4, T5, T6, C3, C4, Cz, P3, 
P4, Pz, O1, and O2) for analysis.

2.3 Data selection and preprocessing

Two experienced neurophysiologists selected appropriate data 
from collected electroencephalogram (EEG) data. The data selection 
process was based on EEG waveforms and patient video recordings, 
following the following criteria: (1) EEG waveforms were stable, 
without abnormal sharp waves or slow waves; (2) participant video 
recordings showed closed eyes but alertness while sitting in a chair; 
and (3) electromyography (EMG) signals were stable, without 
significant artifacts. A 120-s resting state EEG segment was selected 
from each participant’s data and assembled into a 20-min fragment. 
For healthy participants, the data selection criteria were as follows: (1) 
no abnormal waveforms or abnormal leads in the EEG; (2) stable 
muscle EMG signals without significant interference artifacts. 
Approximately 240 s of data were selected for each healthy subject, 
composing a 20-min segment. Finally, the selected EEG data were 
preprocessed using the EEGLAB toolbox, with bandpass filtering 
ranging from 0.5 Hz to 45 Hz. Average reference and independent 
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component analysis (ICA) were used for denoising and artifact 
removal. Based on computational considerations and the sampling 
frequency of the data, we divided the data into 2-s epochs for brain 
network construction. To conduct in-depth statistical compa.risons of 
brain network properties across different frequency bands, the EEG 
signals were bandpass filtered to standard frequency bands for 
analysis: δ (0.5–4 Hz), θ (4–8 Hz), α (8–13 Hz), β (13–30 Hz), and γ 
(30–45 Hz).

2.4 Construction of functional network

The research study has shown that the weighted phase lag index 
(wPLI) is highly sensitive to reducing the volume conduction effect 
while describing the synchronization of the electroencephalogram 
(EEG) time series (12). Therefore, in this study, wPLI was employed 
to quantify the functional connectivity strength between nodes and a 
functional brain network was constructed using the wPLI values 
between pairs of nodes. The specific calculation formula for wPLI is 
as follows:

 
wPLI
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where Y refers to the cross-spectrum of the two-time series and ξ 
represents the virtual portion of the cross-spectrum. The wPLI values 
are usually between 0 and 1, with 0 indicating no synchronization 
between the two time series and 1 indicating complete synchronization.

2.5 Calculation of network properties

We utilized the Brain Connectivity Toolbox (BCT) to compute the 
graph theory metrics of each network (13). Graph theory metrics are 
employed to assess the brain network’s small-worldness, i.e., whether 
it exhibits a high degree of clustering and short characteristic path 
lengths, features that enhance the efficiency of information 
transmission within the network. By calculating these metrics, we gain 
insights into the topological structure and information transfer 
characteristics of functional brain networks, aiding a deeper 
understanding of the brain’s functional connectivity patterns.

The primary metrics computed include the average node degree, 
average clustering coefficient, characteristic path length, and global 
efficiency of the network. The average degree (D) of the network is 
defined as follows:
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where N  represents the number of nodes in the network and wij  
represents the strength of the connection between node i and node j .

The clustering coefficient (CC) is typically used to measure the 
local connectivity and clustering characteristics of a network. It is 
defined by calculating the ratio between the actual number of 
connecting edges that exist between neighboring nodes near a given 
node i and the maximum possible number of connecting edges 

between neighboring nodes. The average clustering coefficient of the 
network is the mean of the clustering coefficients for N nodes, 
reflecting the degree of closeness in connections among all nodes in 
the network. The calculation formula is as follows:
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where mi is the number of nodes adjacent to node i , ei  is the 
number of actual connection edges between nodes mi , and 
m mi i −( )1 2/  is the maximum number of possible connection edges.

The characteristic path length (CPL) is the average of the shortest 
path lengths between all pairs of nodes in a network and is used to 
describe the network’s global properties. The formula for calculating 
the characteristic path length is as follows:
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where N  is the number of all nodes in the network and lij is the 
shortest path length between node i and node j .

Global efficiency (GE) is a global network characteristic used to 
measure the efficiency of information transfer within a network. The 
formula for calculating global efficiency is as follows:
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(5)

2.6 Statistical analysis

Statistical tests were employed to identify significant differences 
in brain network connections and the graph theory metrics between 
the drug-resistant epilepsy (DRE) group and the healthy control (HC) 
group. First, an independent two-sample t-test was utilized to compare 
significant alterations in functional connectivity between brain 
regions in the DRE group relative to the HC group. Specifically, each 
connection between corresponding nodes in each network was 
represented by the weighted values of wPLI, resulting in a total of 600 
weighted values across all networks. We conducted statistical tests on 
these 600 wPLI values between the two groups to discover significantly 
different brain region connections. To account for multiple 
comparisons between different brain regions in the wPLI matrix, false 
discovery rate (FDR) correction was applied (14). For the analysis of 
network properties, non-parametric rank-sum tests were employed 
for statistical assessment, with a significance level set at 0.05.

3 Results

3.1 Demographics and clinical data

The clinical information of ten DRE patients was collected, 
including gender, age, medical history, seizure type, and type of 
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antiseizure medication (Table  1). All patients with DRE were 
prohibited from taking antiseizure medication for 24 h before 
receiving EEG data acquisition to avoid their effects on EEG 
activity (15).

3.2 Functional connectivity changes in the 
full-frequency band as well as in the 
sub-frequency band

First, we constructed the functional connectivity matrix for the 
full-frequency band (0.5–45 Hz) (see Figure 1A) and conducted a 
statistical analysis of inter-nodal functional connections between the 
DRE group and the HC group to identify connections with significant 
differences. The results revealed a significant decrease in functional 
connectivity in the DRE group compared to the HC group across the 
full frequency band (p < 0.05). We presented the statistically significant 
differential connections in the top 10% of the results (see Figure 1B). 
The choice of using a 10% threshold was based on the fact that, after 
applying FDR correction, the remaining significantly different 
connections were fewer than 10% or 15%. This threshold selection 
ensured the retention of the majority of connections while excluding 
weaker ones. Furthermore, these significantly decreased connections 
were primarily located within the internal regions of the frontal lobe 
and between the frontal and parietal lobes. Simultaneously, 
we  conducted the same analysis for non-drug-resistant epilepsy 
patients and drug-resistant epilepsy patients (see 
Supplementary Figures 1–5).

Subsequently, to investigate differences in network connectivity 
within sub-frequency bands, we constructed functional connectivity 
matrices for DRE patients compared to the HC group using the same 
method within sub-frequency bands (see Figure 2).

In Figure 2, it is visually evident that the functional connectivity 
changes within sub-frequency bands for the DRE group relative to the 
HC group are not consistent. Functional connectivity decreases in the 
delta band, while it increases in the alpha, beta, and gamma bands. To 
quantitatively illustrate these differences, we  have presented the 
statistically analyzed results (see Figure  3). In the figure, red 
connections represent significantly enhanced connections in the DRE 

group relative to the HC group, while blue connections indicate 
significantly decreased connections in the DRE group compared to 
the HC group. The results across frequency bands indicate that the 
changes in functional connectivity for the DRE group relative to the 
HC group are frequency dependent, with a significant decrease in the 
delta band (p  < 0.05), no significant difference in the theta band 
(p > 0.05), and significant increases in the alpha, beta, and gamma 
bands (p < 0.05).

3.3 The network property changes in the 
full-frequency band and sub-frequency 
band

In order to further clarify the changes in the key features of the 
functional network of DRE patients. We  calculated the network 
properties of the functional networks of the two groups and performed 
statistical analysis.

The results of the full-band analysis showed that the functional 
network structure of DRE patients is more deviated from the small-
world property than that of healthy people. Compared with healthy 
participants, CC, D, and GE in DRE patients were significantly 
decreased, while CPL was significantly increased (p  < 0.05) (see 
Figure 4).

In the sub-frequency band, the network properties were also 
different between the two groups of subjects. In the delta band, D, CC, 
and GE of DRE patients were significantly decreased compared with 
healthy participants, while CPL was significantly increased (p < 0.05). 
In the theta band, GE was significantly increased, and CPL was 
significantly decreased in DRE patients compared with healthy 
participants (p < 0.05). In alpha, beta, and gamma bands, DRE patients 
significantly increased D, CC, and GE, while CPL significantly 
decreased (p < 0.05) compared with healthy participants (see Figure 5).

4 Discussion

With the continuous development of the network hypothesis, 
people gradually realize that DRE is a disease involving complex brain 
network disorders (16). In this study, we collected interictal EEG data 
of DRE patients and healthy people to construct functional networks 
and calculated the network properties, including CC, D, GE, and 
CPL. However, after excluding spike–wave discharges, it was difficult 
to detect differences between EEG waveforms of DRE patients and 
healthy people by visual inspection (17). We found that the brain 
network of DRE patients was slightly decreased in functional 
connectivity and deviated from the small-world property compared 
with healthy people in the full band during the interictal period. This 
phenomenon provided an important basis for studying the 
pathological mechanism and treatment of DRE (18).

The change of synchrony in an epileptic patient brain network 
is a complex spatial dynamic process. At present, there is still 
controversy about the synchronization changes of functional 
network in epilepsy patients, which is mainly caused by different 
calculation methods and the types of experimental data (19). In 
Fernando’s study, a non-linear model was established to study the 
changes in synchrony in patients with epilepsy. The results showed 
that the degree of synchronization in the alpha band and beta band 

TABLE 1 Clinical information of DRE patients.

Patients Sex Age History Type Medicine

P1 Male 43 3 GTCS VA + LMT

P2 Female 27 7 MAS CBZ + LMT

P3 Male 20 4 GTCS VA + TOP

P4 Female 30 10 CPS VA + LCM

P5 Male 51 5 MAS TOP+LCM

P6 Female 34 9 GTCS VA + LMT

P7 Male 36 6 SPS LMT + OXC

P8 Female 29 5 SPS LMT + OXC

P9 Female 40 8 CPS CBZ + LMT

P10 Female 39 12 GTCS VA + TOP

VA, valproic acid; TOP, topiramate; CBZ, carbamazepine; LMT, lamotrigine; OXC, 
oxazepine; LCM, lacosamide; GTCS, generalized tonic–clonic seizures; MAS, myoclonic-
atonic seizures; SPS, simple partial seizure; CPS, complex partial seizure.
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was significantly increased in patients with epilepsy (20). However, 
by collecting EEG data of patients with temporal lobe epilepsy and 
healthy people and constructing functional networks for 

comparison. Liao et al. found that the degree of synchronization in 
the alpha, beta, and gamma bands of patients with temporal lobe 
epilepsy was significantly decreased (21).

In this study, it was found that the synchronization of DRE 
patients in the full frequency band was reduced compared with 
healthy people. However, in different frequency bands, the changes in 
patient synchrony showed the opposite trend. The synchrony 
decreased in the delta band and increased in the alpha, beta, and 
gamma bands. In the neural network of DRE patients, the synaptic 
remodeling between neurons leads to abnormal structural and 
functional connectivity (12). This affects the transmission of 
information and reduces the degree of synchronization. In addition, 
due to the lack of effective control of seizures, the patient’s neuronal 
activity will appear as abnormal synchronicity and rhythmicity (13). 
Previous studies have found that different frequency bands are related 
to the symptoms of patients with epilepsy (14). The synchronization 
changes in the delta band reflect the disturbance of consciousness and 
cognitive impairment of patients, while the synchronization changes 
in the beta and gamma bands reflect the abnormal synchronization 
and severity of seizures (22). Therefore, the results of the present study 
may suggest a relationship between the clinical manifestations and the 
degree of network synchronization in DRE patients, with the decrease 
of delta band synchronization associated with the impairment of 
consciousness and cognitive function, and the increase of beta and 
gamma band synchronization may be  associated with 
recurrent seizures.

According to the results of the study, the CC, D, and GE of DRE 
patients decreased while CPL increased in the full band. This trend 
indicated that the local aggregation and interconnection of nodes in 
the functional network of DRE patients decreased (23). At the same 
time, the increase in the average path length between nodes reduces 
the efficiency of information transmission in the global scope. In 
previous studies, by comparing the functional network structure of 
patients with temporal lobe epilepsy and healthy people, it was found 
that the increase in CC and CPL in patients with epilepsy led to the 
development of a functional network with a more regular structure 
(24). This regular network structure was more vulnerable to the 
influence of abnormal discharge compared with the small-world 
network (10). However, the network properties of DRE patients 
showed different changes in our study, which indicated that the 

FIGURE 1

Functional connectivity and differences in the full frequency band. (A) Functional connectivity matrix for the full frequency band. (B) Significant 
differential connections in the DRE group compared to the HC group, where blue indicates connections significantly decreased in the DRE group 
relative to the HC group after multiple comparison correction (p  <  0.05).

FIGURE 2

Functional connection matrix for each group in the different 
frequency bands.
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network structure of DRE patients did not change to the regular 
network but only deviated from the small-world property.

In the comparison of network properties in different frequency 
bands, the functional network structure on the delta band deviated 
from the small-world network. However, the functional network 
structure of the alpha band, beta band, and gamma band was more 
inclined to a small-world network. This phenomenon complemented 
the changes in functional connectivity in the network. Compared with 
functional connectivity, the network properties can further evaluate 
the stability of the overall structure of the brain network (25). 
Summarizing the above results, we found that the network properties 
of DRE patients were further enhanced based on the increased 
functional connectivity. This result was similar to previous studies in 
that the increased functional connectivity between brain regions 
represented the increased coupling of neuronal activities, and the 
network structure was biased toward the mode transition with higher 
information transmission efficiency (26).

Considering that the study of functional networks in patients with 
epilepsy is easily interfered by related factors, we  need to further 
discuss the experimental procedures and the application of 
computational methods in this study to make the results representative 

(27). First, considering the influence of ASM on EEG results, ASM and 
sedative drugs were prohibited for all participants within 24 h before 
data collection to avoid their influence on the experimental results (28). 
Although we have tried our best to avoid the interference of drugs, the 
blood concentration of ASM in participants may still exceed the 
normal value. Therefore, we will further discuss the influence of ASM 
on the results of functional network analysis in the follow-up study 
(29). Since a 19-channel lead system was used for the acquisition of 
EEG data in this study, the calculated network properties include CC, 
D, CPL, and GE. However, the small world index (SWI) was not used 
to measure the topological changes of functional networks (30). This is 
mainly due to the fact that EEG data containing only 19-channel leads 
cannot provide sufficient spatial information about the network, thus 
limiting the accurate assessment of the network topology (31). In 
addition to this, using only 19-channel lead EEG data to calculate SWI 
may miss some potentially important brain region connections. 
Because these connections may be located in regions beyond the range 
of the selected channel, this may lead to a lack of confidence in the 
results of the calculation of the small-world indicator (32).

In this study, wPLI values and network properties were computed 
by segmenting the data into appropriate time lengths. However, it is 

FIGURE 3

Functional connections with significant differences between the DRE group and the HC group. (A) Delta band; (B) alpha band; (C) beta band; 
(D) gamma band (red connections represent significantly enhanced functional connections, while blue connections represent significantly decreased 
functional connections at a p-value of <0.05).

https://doi.org/10.3389/fneur.2023.1238421
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Ding et al. 10.3389/fneur.2023.1238421

Frontiers in Neurology 07 frontiersin.org

worth noting that different computational methods and epoch lengths 
can have an impact on the construction of functional networks (33). 
Moreover, the temporal characteristics of frequency bands in different 

frequency ranges vary, which may result in the final analysis results 
not fully capturing the periodic characteristics of EEG (34). Therefore, 
we compared the functional connectivity of the HC group in the delta 

FIGURE 4

Comparison of network properties between the two groups in the full frequency band. (A) Clustering coefficient. (B) Degree. (C) Global efficient. 
(D) Characteristic path length (*indicated statistically significant difference at a p-value of <0.05).

FIGURE 5

Comparison of network properties between the two groups in the sub-frequency band. (A) Clustering coefficient. (B) Degree. (C) Global efficient. 
(D) Characteristic path length (*indicated statistically significant difference at a p-value of <0.05).
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band at a 500 Hz sampling rate, including epochs of 2 s, 4 s, and 8 s, as 
well as at a 256 Hz sampling rate with 4-s epochs and a 128 Hz 
sampling rate with 8-s epochs. The results showed that at a sampling 
rate of 500 Hz, the wPLI values gradually decreased with increasing 
epoch length (see Supplementary Figure 6). When the epoch length 
was the same, there were no significant differences in functional 
connectivity, even with different sampling rates (see 
Supplementary Figure  7). Although functional connectivity 
significantly decreased with increasing epoch length, the synchrony 
trend in the network did not change significantly. Bai et al. used scalp 
EEG data to compare the interictal functional connectivity of temporal 
lobe epilepsy patients at different time scales and found that both 
showed a similar trend of changes (35). Therefore, considering 
sampling rates and computational load, we  opted for 2-s EEG 
segments for our analysis to strike a balance between temporal 
resolution and estimation stability, while ensuring an adequate sample 
size (33). The 2-s time window also provided better coverage of 
functional connectivity changes across various time scales.

In this study, by comparing the functional network of patients 
with drug-resistant epilepsy (DRE) and healthy individuals, it was 
demonstrated that there are significant differences in the functional 
network of DRE patients relative to healthy individuals. The results 
showed that the interictal functional network in DRE patients was 
synchronously decreased, and the network structure deviated from 
the small-world property. However, due to the small sample size 
included in this study and the relatively simple calculation method 
adopted, the spatial features of EEG were not further explored. 
Therefore, a large number of neuroimaging and electrophysiological 
data of DRE patients need to be further included in future studies to 
help explore the pathological mechanism and treatment 
options of DRE.
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