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Introduction: Radiological assessment is necessary to diagnose spontaneous

intracerebral hemorrhage (ICH) and traumatic brain injury intracranial hemorrhage

(TBI-bleed). Artificial intelligence (AI) deep learning tools provide a means

for decision support. This study evaluates the hemorrhage segmentations

produced from three-dimensional deep learning AI model that was developed

using non-contrast computed tomography (CT) imaging data external to the

current study.

Methods: Non-contrast CT imaging data from 1263 patients were accessed

across seven data sources (referred to as sites) in Norway and Sweden. Patients

were included based on ICH, TBI-bleed, or mild TBI diagnosis. Initial non-contrast

CT images were available for all participants. Hemorrhage location frequency

maps were generated. The number of estimated haematoma clusters was

correlated with the total haematoma volume. Ground truth expert annotations

were available for one ICH site; hence, a comparison wasmade with the estimated

haematoma volumes. Segmentation volume estimates were used in a receiver

operator characteristics (ROC) analysis for all samples (i.e., bleed detected) and

then specifically for one site with few TBI-bleed cases.

Results: The hemorrhage frequency maps showed spatial patterns of estimated

lesions consistent with ICH or TBI-bleed presentations. There was a positive
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correlation between the estimated number of clusters and total haematoma

volume for each site (correlation range: 0.45–0.74; each p-value < 0.01) and

evidence of ICH between-site di�erences. Relative to hand-drawn annotations

for one ICH site, the VIOLA-AI segmentation mask achieved a median Dice

Similarity Coe�cient of 0.82 (interquartile range: 0.78 and 0.83), resulting in a

small overestimate in the haematoma volume by amedian of 0.47mL (interquartile

range: 0.04 and 1.75mL). The bleed detection ROC analysis for the whole sample

gave a high area-under-the-curve (AUC) of 0.92 (with sensitivity and specificity of

83.28% and 95.41%); however, when considering only themild head injury site, the

TBI-bleed detection gave an AUC of 0.70.

Discussion: An open-source segmentation tool was used to visualize hemorrhage

locations across multiple data sources and revealed quantitative hemorrhage site

di�erences. The automated total hemorrhage volume estimate correlated with a

per-participant hemorrhage cluster count. ROC results were moderate-to-high.

The VIOLA-AI tool had promising results and might be useful for various types of

intracranial hemorrhage.

KEYWORDS

computed tomography, intracerebral hemorrhage, stroke, traumatic brain injury,

segmentation, deep learning

1. Introduction

Spontaneous intracerebral hemorrhage stroke (ICH) and

traumatic brain injury hemorrhage (TBI-bleed) are examples of

acute brain conditions where rapid imaging is needed for a

diagnosis. Non-contrast-enhanced computed tomography (CT)

remains the gold standard imaging modality to detect ICH and

TBI-bleed. ICH appears to rise with time and accounts for 9 to 26%

of acute stroke (1, 2). TBI-bleed contributes a high burden due to

the sheer number of head injuries worldwide (3–5).

Radiological features of intracranial hemorrhage provide

information that can help with ICH and TBI-bleed

diagnosis/prognosis. The total haematoma volume is used in

the ICH Score, which is a grading system used clinically (6). The

ABC/2 method is a well-established approach to estimate total

haematoma volume; the expert human measures the maximum

length and width of the haematoma in the axial plane, determines

the number of slices where the haematoma is visible, and divides

the product of these values by two (7). The ABC/2 method

and modified or simplified versions provide good agreement

with contoured hand annotation ground truth (8–10). Once a

haematoma is segmented, it can be analyzed for its location, shape,

number of distinct locations (cluster count), texture, and radiomic

features (11–14).

Automated hemorrhage segmentation is desirable for research

purposes, and ideally, such a method should be agnostic to the

CT imaging protocol. Machine learning and deep learning artificial

intelligence (AI) have had a decisive role in this regard, and a recent

review discusses commercial solutions (15). Muschelli et al. (16)

achieved accurate segmentation results based on a random forest

machine learning approach relative to ground truth contoured

annotation. Another approach by Chilamkurthy et al. (17)

demonstrated how an AI system could provide decision support

by detecting hemorrhage-positive cases with an area-under-the-

curve (AUC) classification that exceeded 0.90. Automated methods

can facilitate radiological discovery, particularly for large sample-

sized research cohorts or secondary clinical trial CT imaging data

analysis. Furthermore, open-source software can enable the further

development of the method.

The current study investigates the segmentation results when

a previously trained deep learning neural network called “Voxels

Intersecting along Orthogonal-Levels of Attention” (VIOLA-AI)

is used on de-novo ICH and TBI-bleed cases (18). There are

four aims. First, we created hemorrhage frequency maps for each

data sources/sites. Second, we test whether the number of distinct

contiguous haematoma clusters that are detected will correlate with

the total haematoma volume. Third, we conducted between-site

comparisons for the ICH sites/data sources. Fourth, we evaluated

classification metrics based on the hemorrhage segmentation

through a receiver operator characteristic (ROC) analysis of the

entire sample and secondarily the consecutive cases of patients

presenting with mild TBI.

2. Methods

2.1. Participants

The study recruited individuals with a confirmed intracranial

hemorrhage (ICH or TBI-bleed) or a suspected brain injury (with

or without concomitant bleeding). For inclusion, participants had

to be over 16 years old at the time of the assessment and have

a non-contrast brain CT scan available. Data were grouped from

seven different sources, either sites or research projects (herein

referred to as “sites”). All sites provided original non-contrast CT

head scan images in either DICOM or NIfTI format. Any data
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of low quality, unusable due to artifact after visual inspection, or

consisted of secondary capture DICOM files were excluded from

the analysis. The respective research ethics committees approved

data collection at each site. One public data repository was also

considered as a site. This study benefitted from an external dataset

of 100 diagnosed intracranial hemorrhage cases used in the deep

learning model training (details below).

2.2. Sites

Table 1 provides summary details on the different sites.

Additional details are provided herein (co-author names are

provided as initials).

Akershus: 65 ICH cases were accessed from the Akershus

University Hospital as part of an on-going stroke project that is led

by ESK, OMR, PS. Ground truth segmentations were available for

this site.

Skåne: 223 ICH cases were selected from an existing stroke

database at the Skåne University Hospital in Lund/Malmö, Sweden

(9) and cases were overseen/reviewed by JW and TU.

NorCoast: 57 ICH cases were accessed from a multi-site

stroke research study called NorCoast. One senior neuroradiologist

(TS) was involved in curating these data and reviewing ICH

diagnosis. These ICH patients were accessed clinically at St. Olav’s

Hospital in Trondheim, Norway, or Vestre Viken Hospitals in

Bærum, Norway.

Ullevål stroke: 53 ICH were accessed from the Ullevål site of

Oslo University Hospital and the ICH diagnosis was reviewed by

KS and ECS.

CQ500: 40 CT cases were randomly selected from the open-

access CQ500 database (19). These cases were previously reviewed

by three clinicians linked to CQ500. Based on the tabular

notes (filename: cq500_reads.csv), at least one radiologist scored

ICH in all 40 of these cases where 31 of which were deemed

intraparenchymal, and intraventricular hemorrhage was noted in

as many as 23 cases.

Ullevål TBI: 130 confirmed TBI bleed cases were accessed from

Oslo University Hospital Ullevål and cases were overseen/reviewed

by KS.

Oslo Emergency Unit TBI: 695 cases of suspected TBI were

accessed from the Oslo Accident and Emergency Outpatient Clinic,

Oslo University Hospital, a rapid assessment unit equipped with

a CT scanner. This group consisted of consecutive patients that

presented with suspected TBI between (between 01.01.2016 and

14.04.2016). Cases were overseen/reviewed by KS and inspected for

imaging artifacts by BJM. The anticipated rate of TBI-bleed cases

for these “walk in” patients was expected to be low frequency.

2.3. Image data and analysis

CT images were collected according to the clinical acute

head protocols at the respective sites. The acquisition details

tended to vary in spatial resolution and head coverage. The

VIOLA-AI model was previously tested and developed as part

of the INSTANCE 2022 intracranial hemorrhage segmentation

challenge (18). The CT external training data consisted of 100

cases of intraparenchymal and intraventricular hemorrhage cases,

including subdural, epidural, and subarachnoid hemorrhages.

Ground truth segmentations were provided by the INSTANCE

2022 organizers and inspected visually by neuroradiologists from

the current study (KS, TS). Images were reconstructed with

voxel dimensions of 0.45mm x 0.45mm x 5.0mm and the

following ranges: x-resolution: 0.37 to 0.60mm; y-resolution: 0.37

to 0.60mm; z-resolution: 4.40 to 7.07 mm.

Ten models based on three-dimensional neural networks were

trained, with five-fold validation and a test set to yield the Viola-

AI tool ensemble. The first five models were implementations

of the no-new U-Net (nnU-Net, monai.io); these models were

solely trained with hyperparameter tuning without architectural

changes. Five more models were trained after incorporating

attention modules during the decoding branch of the U-Net.

This architecture is called “Voxel Intersecting along Orthogonal

Levels Attention U-Net” (VIOLA-U-Net). The architecture was

specifically designed to make segmentations for hemorrhage-

positive cases. Model training was performed on the Digital

Research Alliance of Canada’s high-performance cluster. We used

four metrics to appraise the performance of the VIOLA-AI model:

dice similarity coefficient, Hausdorff distance, normalized surface

dice, and relative absolute volume difference. For the current study,

no new training was performed.We refer to the ensemble of models

as VIOLA-AI tool.

Original CT data were accessed and stored on local secure

servers. The VIOLA-AI tool was run as a docker (Docker, Inc.,

Palo Alto, CA), with each site considered as a batch and invoking

a graphics processing unit to calculate each segmentation mask as

an inference. Each segmentation was saved as a binary mask in a

prediction folder.

Since these data had high spatial resolution images, a group

template CT image was created from the Akershus site using the

Advanced Normalization Toolkit (antsRegistration). The CT group

average template was oriented into MNI152 standard space to

facilitatemask overlays. Original CT images were linearly registered

to the group template using an affine registration tool called

FLIRT with 12 degrees of freedom as part of the FMRIB Software

Library. The transformation matrix (original CT to group average

standard space) was applied to the corresponding binary mask

segmentations. An average segmentation mask was generated per

site for an estimated frequency map. This enabled visualization of

the average locations of suspected hemorrhages.

Two radiological metrics were calculated per patient: the

total estimated haematoma volume and the number of distinct

haematoma clusters. For the former, the number of voxels in the

segmentation mask was multiplied by the voxel volume for the

given acquisition to yield volume units (mL). For the latter, we note

that an ICH and TBI-bleed can produce distinct groups of voxels

that make up individual haematoma clusters, which we determined

using a cluster command provided by in FMRIB Software Library.

2.4. Statistics

We calculated the centroid location based on the average

number of clusters and total haematoma volume to summarize

the VIOLA-AI results per site. Correlations were performed per
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TABLE 1 Study characteristics are provided.

ICH Mixed TBI

Group Akershus Skåne NorCoast Ullevål CQ500 Ullevål Oslo Emergency

N 65 223 57 53 40 130 695

Mean haematoma
volume mL and range

26.44; 0.02 to
210.32

37.28; 0.00 to
239.80

20.11; 0.00 to
134.91

47.95; 0.24 to
241.55

37.41; 0.00 to
151.90

24.79; 0.00 to
197.57

0.37; 0.00 to 36.20

Mean number of clusters
(range)

2.66; 1.00 to
21.00

3.68; 0.00 to
23.00

2.18; 0.00 to
11.00

3.79; 1.00 to
17.00

9.38; 0.00 to
31.00

4.39; 0.00 to
29.00

0.63; 0.00 to 13.00

The first four columns were ICH sites/data sources. CQ500 data were ICH and TBI-bleed cases. The last two columns were TBI sites. Mean estimated total haematoma volume and number of

distinct locations (i.e., clusters) are provided. See Supplementary Table 1 for imaging details.

TABLE 2 Summary of performance metrics for the VIOLA-AI tool that was trained on 100 diagnosed ICH and TBI-bleed cases and evaluated using

five-fold cross validation.

Model Dice similarity
coe�cient

Hausdor� distance Normalized surface
dice

Relative absolute
volume di�erence

VIOLA-AI ensemble 0.7953± 0.172 21.557± 25.021 0.5681± 0.125 0.1980± 0.180

Performance metrics were calculated from 20 cases held out during each of the five folds. The Dice Similarity Coefficient, for instance, reached an average level that indicates good segmentation

agreement between the estimated and ground truth.

site to test whether the total estimated haematoma volume was

associated with the number of distinct haematoma clusters. We

conducted a non-parametric Kruskal-Wallis Rank Sum for the four

ICH sites to test for a site effect based on median total haematoma

volume estimates. The Kruskal-Wallis test for a site effect was

also performed for the median cluster number. A p-value of 0.05

was considered significant. For one ICH site, we quantified the

difference in haematoma volume (ground truth—estimate) vs. the

average haematoma volume of the estimate and ground truth.

Receiver operator characteristic (ROC) analysis was performed

for: (a) the entire sample and (b) the consecutive suspected

TBI cases from the Emergency Oslo Unit. The purpose was

to evaluate the classification performance metrics between

hemorrhage-positive vs. hemorrhage-negative individuals, e.g., for

the Emergency Oslo Unit, this classification amounted to TBI-

related hemorrhage: yes/no. The statistics were performed using

R (R version 3.6.2, R Core Team) “pROC” library to produce

the following estimates: area-under-the-curve (AUC), sensitivity,

specificity, positive predictive value (PPV), and negative predictive

value (NPV).

3. Results

The VIOLA-AI tool produced segmentation estimates in all

cases. A single segmentation inference took 16 sec using a graphics

processing unit (standard deviation: 2.7 sec). Figure 1 shows the

segmentations for one ICH and one TBI case. Table 1 shows

haematoma summary information (Table 2).

Figure 2 shows the estimated hemorrhage segmentation masks

(per site or data source) in standard space and it is possible to

visually discern site differences. The ICH sites tended to show

hemorrhage segmentations in deeper brain structures, while TBI

sites tended to show haematoma locations along the surface of the

brain. The low number of hemorrhage cases for the Emergency

Oslo Unit site is reflected in the color map with the lowest

frequency for the group.

Figure 3 shows scatterplots for four ICH sites and two TBI sites.

All groups showed a significant relationship between the number of

clusters and total haematoma volume; the correlation coefficients

ranged from 0.289 to 0.736 (p-values for each site were < 0.01). For

the four ICH sites, the Kruskal-Wallis test (chi-squared = 19.294

and degrees of freedom = 3) revealed a significant site effect with

p-value= 0.000238; i.e. the Ullevål ICH site had the highest median

total haematoma volume relative to three other ICH sites. The

Kruskal-Wallis test (chi-squared = 12.636, degrees of freedom =

3) also showed a site effect for the number of haematoma clusters

with a p-value= 0.00549.

For one ICH site, the agreement between estimated and

ground truth masks was high with a median Dice Similarity

Coefficient value of 0.82, and the interquartile range was 0.777

to 0.863. The median difference in the haematoma volume

(ground truth—estimated) was −0.47mL (interquartile range of

−1.75 and −0.04mL, and maximum overestimate and maximum

underestimate of−93.19 and 3.09 mL).

The AUC for the entire sample was 0.92 based on a haematoma

minimum volume threshold of 0.69mL. The sensitivity and

specificity were 83.28 and 95.41%, respectively. The PPV and

NPV were 95.73 and 82.21%, respectively. Considering only the

Oslo Emergency Unit, we removed cases with imaging motion or

metallic artifacts (n = 25) and duplicates (n = 109), resulting in

n = 564 cases suitable for the secondary ROC. For this site, the

AUC was 0.69, which was based on classifying 33 cases (out of 37

diagnosed) as TBI-bleed while the remaining 531 were hemorrhage

negative. The hematoma minimum volume threshold was 0.34mL,

with sensitivity and specificity of 95.92 and 25.00%, respectively,

and PPV and NPV that were 91.99 and 40.54%, respectively.

4. Discussion

In the current study we used the VIOLA-AI tool to segment

hemorrhage location among patients with ICH, TBI-bleed, or

suspected TBI-bleed. This study involved multiple data sources
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FIGURE 1

Representative data from ICH (left) and TBI-bleed (right) cases. The original CT images are shown in the top row and the bottom row shows the

Viola-AI-based segmentation in red.

as a means of characterizing radiological features of intracranial

hemorrhage. The frequency maps revealed spatial patterns for

hemorrhage locations that were consistent within disease groups.

These maps were suggestive of between-site differences, as

reflected in significant between-site differences in the total

haematoma volume specifically among the four ICH sites. Each site

demonstrated a strong positive association between the number of

haematoma clusters and the estimated haematoma volume.Manual

annotations were performed at one ICH site and suggestive of a

good agreement with ground truth. The VIOLA-AI segmentation

tool achieved good classification performance as reflected by the

ROC area-under-the curve for the total sample and the site with

consecutive suspected TBI.

We note that the estimated ICH locations tended to include

lobar, basal ganglia, thalamus, internal and external capsule regions.

The spatial patterns observed in the current study tended to

align with previous work, although it should be noted there were

limited estimates in infratentorial locations (20–22). The most

frequent locations for the ICH segmentations (in standard space)

did not exceed 25% of the sample at any given site. This finding

tends to align with work by others, who collectively reported on

supratentorial locations, putamen, and thalamus as being common

ICH locations, in addition to the cerebral hemispheres and ventricle

locations (9, 23, 24). Future work is needed to characterize the

locations of ICH in relation to radiological notes because there is

renewed interest in location specific haematoma volume cut-offs in

relation to outcomes (14).

The TBI frequency maps’ spatial pattern was markedly different

compared to ICH. The ring-like pattern near the skull is to be

expected, and there were no locations that exceeded 12% of the

sample site. Others report there is a propensity for TBI-bleeds to be

superficial lesions in frontal, temporal, orbitofrontal and anterior

temporal regions (25). Mild TBI tends to be in frontal and temporal

regions while others report more diffuse patterns for subdural

haematomas (26); these spatial patterns are relatively consistent

across studies (27).

The current study included an estimate of the number of

distinct hemorrhage clusters, a by-product of the VIOLA-AI

segmentation tool. In doing so, we observed robust associations

between the number of clusters and the estimated total haematoma

volume. ICH is often characterized by a primary parenchymal

hemorrhage that can expand into other locations and/or tissue

spaces; hence multiple clusters are evident. Up to 43% of ICH will

involve intraventricular hemorrhage, which indicates that multiple

hemorrhage clusters are expected (24). Indeed, intraventricular

hemorrhage is an independent factor associated with mortality

and morbidity and for which a radiological scoring system has

long since been established (10). Future work is needed to relate

the binary segmentation masks in terms of their underlying and

potentially multi-focal tissue constituents. More research is needed

to connect the radiological-derived features with clinical variables

as well as biophysical hemorrhage models that explain spatial

expansion patterns (28).

The discrepancy between estimations and ground truth lesion

volumes from the ICHAkershus site was small based on themedian

difference. There was one clear case of a failed segmentation for

this site where the discrepancy between the VIOLA-AI estimate

and ground truth was very large and constituting an overestimate

by the model. Future work is needed to determine the factors

contributing to these discrepancies and whether the VIOLA-AI

volume estimates can improve.

The ROC analysis for the entire sample showed high

performance metrics, while the performance metrics were lower

for the suspected TBI site. Several other studies have reported on

hemorrhage detection using CT scans (9, 19) and these efforts

used considerably larger sample sizes than the external CT cases

for the current VIOLA-AI tool. It is intriguing that the VIOLA-AI

tool achieved adequate classification performance for all samples,

but the scores decreased when considering the low yield cases of

consecutive mild TBI cases (29). This suggests that VIOLA-AI is

currently better suited for ICH and confirmed TBI-bleeds rather

than as a detection tool for mild TBI sites.
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FIGURE 2

Binary lesion segmentation masks were overlaid on a reference coordinate space to visualize the average location of the hemorrhage on a per site

basis. (A–D) show the results for the four ICH sites. (E) shows the results from the open access CQ500 ICH and TBI-bleed cases. (F) is from the

confirmed TBI-bleed site, while (G) is the consecutive cases of suspected TBI. Probability values are provided using a heat map colour panel in the

top right corner for each panel.

The current study has novel elements as well as limitations.

The VIOLA-AI tool was trained using a three-dimensional neural

network architecture; hence, the entire 3-dimensional ground

truth annotation mask was considered during model training,

which differs from segmentation tools using a 2-dimensional

model (30). The VIOLA-AI tool is an ensemble of ten separately

trained deep-learning neural networks, which may lead to more

robust/consistent results. No model was re-trained for the data

in the current study. This research adds to the growing AI

literature of CT-based ICH segmentation (31–33). On-going

efforts are needed to improve performance of TBI-bleed, which

can be challenging to detect and segment due to their close

proximity to the skull giving high attenuation artifacts, or are

more subtle when confined to one sulci. An advantage of

VIOLA-AI is that original DICOM data were used, and no

pre-processing was needed beyond converting the images to

NIfTI format. Although the INSTANCE2022 Data Challenge

external data were relatively diverse, it was not balanced for all

the forms of intracranial hemorrhage. Hence, re-training would

be advisable by including more epidural, subdural hematomas,
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FIGURE 3

The number of detected clusters is plotted against the total hemorrhage volume per site. Information on the site name and patient group are

provided in each panel title. Each data point corresponds to an individual patient. Each panel shows a greyscale ellipse that is the 95% confidence

interval for the site and the centroid coordinate is provided. Bivariate correlation coe�cients were calculated per site and a range of correlations

were observed (lowest r = 0.289, highest r = 0.736); all correlations were statistically significant (P < 0.01).

and subarachnoid hemorrhage cases. Another limitation is that

only non-contrast CT images were considered; segmentation

estimates are likely to fail for images containing signals from

exogenous contrast. Another limitation is the data were restricted

to the initial CT; repeat imaging was beyond the scope of the

current study.

In conclusion, several data sources were accessed and

demonstrated that the VIOLA-AI tool was capable of segmenting

ICH and TBI-related hemorrhage on non-contrast CT images.

We found a consistent relationship between hemorrhage volume

and cluster count, and these radiological features significantly

differed between the ICH sites. It is important to determine

whether inclusion criteria, patient demographics, disease severity,

or other health service factors influenced these differences. An

example of future work is multi-class hemorrhage segmentation

(9, 34, 35) because hemorrhage location is important for

prognosis and potential treatment efficacy (36). The hemorrhage

frequency maps were overlaid on a standard coordinate space

atlas and can help assess lesion locations. Running the VIOLA-

AI tool in a batch mode would be conducive to analysis of

existing CT images that were collected as part of ICH or TBI

clinical trials.
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SUPPLEMENTARY FIGURE 1

Summary of VIOLA-AI estimates aggregated by site. The total estimated

haematoma volume [mL (A)] and number of haematoma clusters [number

(B)] are provided. Site names are shown on x-axis. S, ICH stroke; T, head

injury/TBI.

SUPPLEMENTARY TABLE 1

Imaging details show the range of non-contrast CT data that were used,

which is representative of di�erent clinical imaging protocols.
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