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The endovascular intervention technique has gained prominence in the treatment

of intracranial aneurysms due to its minimal invasiveness and shorter recovery

time. A critical step of the intervention is the shaping of the microcatheter,

which ensures its accurate placement and stability within the aneurysm sac.

This is vital for enhancing coil placement and minimizing the risk of catheter

kickback during the coiling process. Currently, microcatheter shaping is primarily

reliant on the operator’s experience, who shapes them based on the curvature

of the target vessel and aneurysm location, utilizing 3D rotational angiography

or CT angiography. Some researchers have documented their experiences

with conventional shaping methods. Additionally, some scholars have explored

auxiliary techniques such as 3D printing and computer simulations to facilitate

microcatheter shaping. However, the shaping of microcatheters can still pose

challenges, especially in cases with complex anatomical structures or very small

aneurysms, and even experienced operators may encounter di�culties, and there

has been a lack of a holistic summary of microcatheter shaping techniques

in the literature. In this article, we present a review of the literature from

1994 to 2023 on microcatheter shaping techniques in endovascular aneurysm

embolization. Our review aims to present a thorough overview of the various

experiences and techniques shared by researchers over the last 3 decades,

provides an analysis of shaping methods, and serves as an invaluable resource

for both novice and experienced practitioners, highlighting the significance

of understanding and mastering this technique for successful endovascular

intervention in intracranial aneurysms.
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Introduction

In light of recent advancements in technology and material

sciences, endovascular intervention techniques have emerged

as significant therapeutic modalities for managing intracranial

aneurysms (1). These techniques have garnered preference from

both patients and clinicians owing to their minimally invasive

nature and expedited recovery period (2, 3). Nonetheless, the

execution of endovascular embolization therapy, whether it

employs simple coil embolization or is supplemented by stents

or balloons, faces a principal technical challenge in accurately

navigating the microcatheter into the aneurysm sac and ensuring

its stability therein (4). Optimal shaping of the microcatheter

enhances its stability within the aneurysm sac, promotes effective

coil placement, and curtails the risk of catheter kickback during

the coiling process. Therefore, in order to successfully complete

intracranial aneurysm embolization, shaping the microcatheter

into an appropriate form is crucial, and achieving proper

microcatheter shaping is a critical step (5, 6).

At present, the procedure of microcatheter shaping primarily

depends on the experience of the operator, who bends them

to approximate the desired shape according to the curvature

of the target vessel and the position of the aneurysm with

three-dimensional (3D) rotational angiography or computed

tomography angiography (CTA) (7). Notably, in exceptional

instances involving complex anatomical structures or diminutive

aneurysms, even experienced operators might have to reshape the

microcatheter multiple times or face challenges in accomplishing

successful shaping (8). Additionally, in the process of evolving

from an inexperienced novice to a skilled interventionalist,

understanding comprehensively the technique of microcatheter

shaping, and gradually accumulating experience, is also an

important step in learning the technique of endovascular

intervention (9). Hence, despite microcatheter shaping being

a routine step in endovascular aneurysm embolization, its

implementation can be challenging.

Concerning the topic of microcatheter shaping, diverse

researchers have contributed their experiences with conventional

shaping methods. Moreover, certain scholars have utilized auxiliary

techniques such as 3D printing and computer simulations to assist

with microcatheter shaping (10, 11). Despite these contributions, a

comprehensive synthesis of microcatheter shaping techniques, to

the best of our knowledge, is still lacking in scholarly literature.

Consequently, this article aims to collate and review previously

reported techniques in microcatheter shaping.

Methods and search strategy

The literature search was performed to identify studies

regarding the application of microcatheter shaping in intracranial

aneurysm embolization. We identified key terms and phrases

related to microcatheter shaping in the treatment of intracranial

Abbreviations: 3D, three-dimensional; CTA, computed tomography

angiography; GDC, Guglielmi detachable coil; DSA, digital subtraction

angiography; ICA, internal carotid artery; DICOM, digital imaging and

communications in medicine.

aneurysms, such as “Microcatheter,” “Shaping,” “Intracranial

Aneurysms,” “Endovascular Treatment,” and “Neurointervention.”

We combined these terms using Boolean operators to formulate

our search strings. The literature search was conducted based on

the PubMed, Web of Science, Scopus, ScienceDirect, J-STAGE, and

CNKI databases for relevant publications from January 1994 toMay

2023. Additionally, we utilized Google Scholar to ensure broader

coverage. Literature types included all English and Chinese articles,

such as original articles, case reports, and reviews. Meta-analyses

were not included as there were no published ones in this field.

After completing the data retrieval, two authors independently

screened the titles and abstracts of the literature, while all authors

collectively assessed the full texts of potentially relevant articles

and whether they could be included in our study (illustrated in

Figure 1).

The shapability of di�erent microcatheters

Initiating the microcatheter shaping process necessitates an in-

depth comprehension of the shapability performance of different

microcatheter types. In the past, several publications have reported

scholarly research focusing on this particular aspect (Table 1).

The first literature report on the comparative study of shapability

performance of different types of microcatheters was illustrated

by Abe et al. (12). In their study, the distal tip of five types

of microcatheters were shaped into a 90◦ turn with distal

straight segment lengths of 3, 5, or 7mm, respectively. The

authors investigated the modifications in the curvature of the

shaped microcatheters under various conditions: post-insertion

into a guiding catheter, post-microguidewire insertion through

the microcatheter, and post-Guglielmi detachable coil (GDC)

placement through themicrocatheter. Kiyosue et al. (13) conducted

an evaluation and comparison of 12 microcatheter types. Following

the insertion of shapingmandrels into themicrocatheters, the distal

tips were flexed at 90◦ and 150◦, respectively, and measured using

a goniometer. The microcatheters were then exposed to steam for

20 s, followed by immersion in 17◦C water for an additional 20 s.

Upon the removal of the shapingmandrels, the shaping angles were

measured and subjected to further analysis.

In another study, Fujimoto et al. (15) assessed the shapability

of four microcatheter types, including Excelsior SL-10 (Stryker,

Kalamazoo, MI, USA), Echelon-10 (Medtronic, Minneapolis, MN,

USA), XT-17 (Stryker, Kalamazoo, MI, USA), and Headway-17

(MicroVention TERUMO, Tustin, CA, USA). In their method,

a mandrel was inserted into a microcatheter, and the distal

end was coiled with a diameter of 4mm for 1, 2, and 3

turns, respectively, before being steam-shaped for 30 s. The

microcatheter was subsequently immersed in 37◦C physiological

saline for 10min. Subsequently, a microguidewire was inserted

into the microcatheter, extending 2 cm from the distal end of

the microcatheter. Their findings demonstrated that immediately

after steam shaping and removal of the mandrel, all four types

of microcatheters, when coiled for one turn, displayed a semi-

circular shape (204◦, average diameter of 8.7mm). Those coiled

for two turns had an average remaining coil of 1.2 turns (472◦,

average diameter of 7.7mm), while the ones coiled for three
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FIGURE 1

Flow diagram for literature screening.

turns had an average remaining coil of 1.8 turns (671◦, average

diameter of 7.9mm). No significant differences in morphology

were observed among the three shaping conditions. Nevertheless,

after immersion in physiological saline for 10min, there were

substantial morphological changes in Excelsior SL-10 and Echelon-

10 microcatheters, whereas Headway-17 and XT-17 microcatheters

exhibited better shape retention capabilities. Despite the numerous

types of microcatheters available in the current market, research

on the performance of microcatheters remains limited, and the

understanding of shaping techniques is largely dependent on the

personal experience of interventionalists. Based on our center’s

experience, we believe that the Headway-17 microcatheter can

achieve a 1:1 shaping ratio based on the angle between the

parent artery and the long axis of the aneurysm. Additionally,

microcatheters such as Excelsior SL-10, Echelon-10, and Echelon-

14 can achieve a 1:2 shaping ratio (illustrated in Figure 2).

The heating condition for shaping

After manipulating the mandrel, the usual procedure for

interventionalists involves applying heat for a certain duration,

then immersing it in cold water, with the expectation that the

distal end of the microcatheter will maintain this particular shape

reliably. Akihiko et al. (17) explored this issue of heating methods

in their research. They examined the effects of different heating

durations on the shaping of the headway microcatheter using four

commonly used equipment, namely, a heating plate + kettle, an

electric kettle, a steamer, and a hot air gun. The results indicated

that under the temperature measurement condition at a distance of

25mm, the heating plate + kettle, electric kettle, and steamer took

a longer time to reach a stable peak temperature, which were 80,

95, and 60◦C, respectively. In contrast, the hot air gun reached a

stable peak temperature rapidly upon activation though the actual

measured temperature was 20◦C below the set value. Regarding the

effect of heating on the microcatheter, their result indicated that

the headway microcatheter retained its optimal shaping after being

subjected to heating at 100◦C for 90 s, with no significant surface

damage observed. Hence, they concluded that using a hot air gun

to maintain a heating duration of 90 s at 100◦C resulted in the

best shaping effect for the microcatheter. In another study, Tomio

et al. (18) explored the optimal shaping conditions for Echelon-10

and Excelsior SL-10 microcatheters using a similar methodology.

Their result revealed that by subjecting the microcatheters to

continuous heating for 30 s at a set temperature of 120◦C using

a hot air gun, both types of microcatheters achieved the desired

shaping curvature under a twice-bending status. Additionally, these
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TABLE 1 Summary of published studies on the shapability performance of microcatheters.

Study Type of
microcatheters

Shaping
angles

Bending
length

Steam method Stability test method

Abe et al. (14) FasTracker-10, 90◦ 5mm Steaming then placed in water Inserting microguidewires 10 times

Excel-14,

Excelsior SL-10,

Prowler-14

Abe et al. (12) FasTracker-10, 90◦ 3mm, Steaming then placed in 37◦C water Inserting microguidewires 10 times,

Excel-14, 5mm, Inserting GDC 5 times

Excelsior SL-10, 7mm

Prowler-14,

Prowler-14

Preshaped

Kiyosue et al.

(13)

Excelsior 1018, 90◦ , 5mm Steaming for 20s and placed in 17◦C

water for 20 seconds

Inserting microguidewires 5 times

Tracker Excel-14, 150◦

Excelsior SL-10,

Progreat 2.0F,

Rebar-14,

FasTracker-10,

Rapid Transit,

Prowler Plus,

Renegade-18,

Progreat 2.4F,

Microferret,

Prowler Plus MX

Fujimoto et al.

(15)

Excelsior SL-10, 180◦ , 4mm

(diameter)

Steaming for 30 s and placed in 37◦C

physiological saline

Inserting microguidewires 10 times

Echelon-10, 360◦ ,

Headway-17, 720◦

Excelsior XT-17

Wattanasatesiri

et al. (16)

Progreat lambda

1.7F,

90◦ (L shape), 5mm Steaming (80◦C) for 60 s and then

placed in 24◦C water for 20 s

Passing through a 5F catheter and

inserting microguidewires

Progreat alpha 2.0F, 180◦ (U shape),

Veloute 1.7F, 360◦ (O shape)

Radiostar 1.9F,

Carnelian 1.8F

GDC, Guglielmi detachable coil.

microcatheters were able to endure 2–3 reshaping cycles under this

heating condition.

Conventional microcatheter shaping
method

In the current process of endovascular embolization for

intracranial aneurysms, the prevalent method of microcatheter

shaping involves the operator, utilizing three-dimensional

reconstructed images after completion digital subtraction

angiography (DSA) examination, in conjunction with their own

experience, to manually shape the microcatheter by inserting a

mandrel into the tip of the microcatheter and manipulating it to

match the morphological traits of the lesion site. Over the past

few decades, some scholars have analyzed and reported on these

methods and experiences (Table 2). Kwon et al. (19) shared their

experience of microcatheter shaping in the treatment of paraclinoid

aneurysms. They encompassed 132 paraclinoid aneurysms and
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FIGURE 2

Diagram illustrating the shaping ratio of the microcatheter. (A) Insert the mandrel into a linear Echelon microcatheter. Subsequently, flex the segment

proximal to the tip to an angle of 90◦ (indicated by the blue solid line) and the segment distal to the tip to 180◦ (denoted by the red dashed arrow). (B)

Upon co-heating the microcatheter with the mandrel for shaping and subsequently extracting the mandrel, the segment of the microcatheter

proximate to the tip rebounds to an approximate angle of 45◦ (blue solid line), while the segment distal to the tip rebounds to an angle of 90◦ (red

dashed arrow). This attribute is denominated as the capability to achieve a 1:2 shaping ratio.

categorized the shaping forms into straight, primary curves (45◦,

90◦, and J-shaped), C-shaped, pigtail-shaped, and S-shaped.

For paraclinoid aneurysms growing superiorly or medially, they

found the S-shaped (54.5%) and pigtail-shaped (60.2%) forms

to be the most frequently used, respectively. After analysis, they

suggested that an S-shaped for superiorly directed aneurysms and

a pigtail-shaped for medially directed aneurysms appear to be

suitable for microcatheter shapes. In a further delineation, Wang

et al. (20) subdivided paraclinoid aneurysms into four subtypes

based on location and direction and proposed four corresponding

microcatheter shaping strategies: “straight shaped,” “S-shaped,”

“C-shaped,” and “primary curve.”

For proximal anterior cerebral artery aneurysms, Chang

et al. (22) underlined the necessity of tailored-shaped or S-

shaped microcatheters based on three-dimensional reconstructed

images. In another study on endovascular treatment of proximal

anterior cerebral artery aneurysms, Lee et al. (23) utilized various

microcatheter shaping forms and deduced that a Z-shaped

morphology at the tip of the microcatheter facilitated smooth

access into the proximal aneurysmal sac in the A1 segment and

provided a stable embolization pathway. In another study focused

on 11 cases of anterior cerebral artery aneurysms, the authors

also documented the application of “S-shaped” or “Z-shaped”

microcatheter shaping strategies by the operators (25). Moreover,

in a case series reported by Huo et al. (24) involved 15 patients

with anterior cerebral artery aneurysms, the microcatheter-shaping

strategies were further categorized into several types based on the

location and growth direction of the aneurysms.

It is important to note that these conventional shaping

methods largely originate from the accumulation of experiences

and personal insights of different operators. Additionally, the

cases reported in the above literature primarily focus on relatively

common sites within the intracranial anterior circulation system.

Therefore, the universal applicability of conventional shaping

methods in addressing the individual characteristics of different

cases, as well as complex cases, and the understanding and learning

needs of inexperienced novices still pose considerable challenges.

Improvement attempts on conventional
shaping methods

Building upon the previously mentioned microcatheter

shaping methods, some scholars have also attempted to make

improvements in order to achieve greater stability of the

microcatheter. Jia et al. (5) presented a microcatheter shaping

technique called “loop technique” based on the principle of

the interaction forces between the vessel wall opposite to the

aneurysm neck and the curved portion of the proximal vessel

wall with the microcatheter for coil embolization of paraclinoid

aneurysms. In this technique, the distal part of the microcatheter

was steam-shaped into a loop, forming the second curve, while the

tip was further shaped to align with the long axis of the aneurysm,

creating the first curve. The third curve was designed to align with

the cavernous genu portion of the internal carotid artery (ICA). By

utilizing the interaction forces, the aim was to enhance the stability

of the microcatheter during the embolization procedure. However,

the author also pointed out that this approach made it more

challenging to adjust the microcatheter tip toward the aneurysmal

sac. Additionally, this method carries risks of damaging the vessel

wall and getting hooked with the coil loops.

Another improvement came fromOhshima et al. (31). Building

upon the conventional shaping techniques, they introduced a

modification where the distal 1–2mm of the microcatheter tip

was bent and formed a “Ŵ” shape. They observed that the

microcatheters with the “Ŵ” tip demonstrated improvedmovement
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TABLE 2 Summary of published studies on the conventional shaping method.

Study Type
of
articles

Number
of

aneurysms

Location Shaping strategy Type of
microcatheters

Result
measurement

Toyota et al.

(21)

Cohort 10 Paraclinoid 3D rotational angiography and

volume-rendering images on the

monitor

Excelsior SL-10 -

Kwon et al.

(19)

Cohort 132 Paraclinoid Straight 6 (4.5%) Excelsior 1018, Complete occlusion 76

(57.6%)

Primary shape (45◦/90◦/J) 34 (25.8%) Excelsior SL-10, Neck remnant 43 (32.6%)

C-preshaped 13 (9.8%) Prowler-14, Residual aneurysm 13 (9.8%)

Pigtail-shaped 58 (43.9%) Prowler Select

S-shaped 21 (15.9%)

Chang et al.

(22)

Cohort 13 A1 Tailored shape, - Complete occlusion 8 (2.7%)

S-shaped Neck remnant 2 (15.4%)

Residual aneurysm 3 (23.1%)

Lee et al. (23) Case

report

4 A1 Z-shaped 2 (50.0%) Excelsior SL-10 Complete occlusion 2 (50.0%)

S-shaped 2 (50.0%) Residual aneurysm 1 (25.0%)

Abort operation 1 (25.0%)

Xiaochuan

et al. (24)

Cohort 15 A1 S-shaped 7 (46.7%) Echelon-10, Complete occlusion 15

(100%)

Z-shaped 2 (13.3%) Headway-17

U-shaped 2 (13.3%)

No shaped 4 (26.7%)

Wang et al.

(20)

Cohort 64 Paraclinoid Straight Echelon-10, Complete occlusion 23

(35.9%)

S-shaped Echelon-14, Neck remnant 22 (34.4%)

C-shaped Excelsior SL-10, Residual aneurysm 19

(29.7%)

Primary shape Prowler-14

Ko et al. (25) Cohort 11 A1 S-shaped - Complete occlusion in 11

(100%)

Z-shaped

Cho et al. (26) Cohort 50 A1 Straight 10 (20%) Excelsior SL-10 Complete occlusion/Neck

remnant 38 (76.0%)

S-shaped 30 (60%) Residual aneurysm 12

(24.0%)

Primary shape (45/90◦) 10 (20%)

Ahn et al. (27) Cohort 43 OA Straight 5 (11.6%) - Complete occlusion 14

(32.6%)

S-shaped 21 (48.8%) Neck remnant 23 (53.5%)

Pigtail-shaped 14 (32.6%) Residual aneurysm 6 (13.9%)

Primary shape (45◦/90◦) 3 (6.9%)

Cho et al. (28) Cohort 59 Paraclinoid Pigtail-shaped 41 (69.5%) Excelsior SL-10 Complete occlusion 9 (15.3%)

Primary shape (45◦/90◦) 11 (18.6%) Neck remnant 35 (59.3%)

S-shaped 7 (11.9%) Residual aneurysm 15

(25.4%)

(Continued)
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TABLE 2 (Continued)

Study Type
of
articles

Number
of

aneurysms

Location Shaping strategy Type of
microcatheters

Result
measurement

Shiwei et al.

(29)

Cohort 51 PcomA 3D rotational angiography and

volume-rendering images on the

monitor

- Complete occlusion 43

(84.3%)

Neck remnant 8 (15.7%)

Chung et al.

(30)

Cohort 80 Paraclinoid S-shaped Excelsior SL-10 -

J-shaped

C-shaped

A1, the A1 segment of the anterior cerebral artery; OA, the ophthalmic artery segment of the internal carotid artery; PcomA, posterior communicating artery.

and oscillation during coiling and reduced coil protrusion into the

parent artery and decreasedmicrocatheter kickback. However, their

study was limited to in vitro experiments and lacked corresponding

clinical case applications. Additionally, based on our experience,

the “Ŵ” tip carries the risk of getting hooked with coil loops,

especially when coiling the neck of the aneurysm. If there was no

prior plan for a stent-assisted or balloon-assisted approach, dealing

with such an issue can be challenging once it arises.

Furthermore, Kwak et al. (32) reported a case of endovascular

treatment for an ultrawide-necked circumferential aneurysm of

the middle cerebral artery. During the procedure, the authors

shaped two microcatheters into a spring form and positioned

them at the distal portion of the aneurysm. The intention was for

the microcatheters to coil around the stent after its deployment,

allowing the coils to distribute evenly within the aneurysm sac. In

this article, the authors proposed a novel microcatheter shaping

technique for the treatment of circumferential aneurysms or

fusiform aneurysms. However, it should be noted that the authors

utilized the LVIS BLUE (MicroVention TERUMO, Tustin, CA,

USA) stent, which was a flow-diverting device with a tight mesh

design and minimized the coil encroachment into the stent. In this

study, whether this method is applicable to laser-cut or braided

stents was not addressed.

Di�erent attempts in the process of
conventional shaping

As mentioned above, in the conventional microcatheter

shaping process, the operator shaped and heat the microcatheter

with inserting the mandrel into the tip. However, for complex

lesion structures or cases requiring significant reshaping, the

insertion of the mandrel may cause changes in the curvature of

the microcatheter tip, leading to a reduction in shaping accuracy.

Therefore, several scholars have attempted different approaches

in the shaping process. Tomotaka et al. (33) proposed a shaping

process named microcatheter shaping cast. In their report, the

operators utilized a metallic introducer to coil the mandrel 4–

5 times, creating a stent-like handmade cast. Subsequently, the

microcatheter was inserted into the cast, and manual bending was

performed according to the morphology of the lesion with a hot air

gun for shaping. However, the authors of this article did not provide

any demonstration of the practical application of this method in the

actual case. Furthermore, we attempted to apply thismethod during

endovascular treatment procedures but encountered difficulties in

achieving uniform coiling of the mandrel and bending of the cast,

which in turn affected the shaping process.

Another attempted process for forming the shape of

the microcatheter was called “intravascular placement” or

“endovascular shaping.” In Shinya et al. (34) reported on this

method first in a series of 15 cases. They delivered an SL-10 straight

microcatheter to the neck of the aneurysm and left it in the parent

artery for 5min. After pulling out the microcatheter, it acquired

a certain curvature. Subsequently, based on the 3D reconstructed

images of the vessel and aneurysm, the tip of the microcatheter

was steam-shaped into the corresponding form. In another

report, Katsunari et al. (35) used an XT-17 microcatheter and

employed the same method to treat vertebral basilar aneurysms.

Ultimately, accurate microcatheter shaping was achieved in

all five cases, and the procedures were successfully completed.

Moreover, Shinoda et al. (36) employed the same shaping method

to treat a case of blister-like aneurysm. Yoshiki et al. (37) reviewed

10 cases of bifurcation aneurysms treated using this shaping

method and similarly obtained satisfactory results. We believe

that “endovascular shaping” can be attempted for cases with more

complex structures or cases where multiple reshaping attempts

have been unsatisfactory. However, compared to conventional

shaping methods, an additional 5-min microcatheter delivery

procedure theoretically increases the risk of complications

such as vascular injury and intravascular thrombus formation.

Furthermore, this procedure will prolong the duration of

microcatheter shaping and overall operational time.

Shaping based on 3D model reconstruction
and printing technology

During the microcatheter shaping process, 3D rotational

angiography provided assistance to the interventionalists in

understanding the structural morphology of the lesion. However,

this observation was achieved solely through a two-dimensional

computer screen, lacking a correct depth perception (38).

Therefore, some scholars have attempted to use in vitro 3D

models and printing technology to gain a more comprehensive
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TABLE 3 Summary of published studies 3D model reconstruction and printing technology.

Study Number of
aneurysms

Type of
microcatheters

DICOM Shaping method Shaping
reference

In vitro

validation
In vivo

performance
Immediate outcome

Namba et al. (40) 10 Echelon-10 3D-DSA Manually mandrel bent Solid 3D vessel

model

Hollow 3D

aneurysm model

Appropriate

position 10 (100%)

Complete occlusion 5 (50.0%)

Excelsior 1018 Stability 9 (90.0%) Neck remnant 3 (30.0%)

Residual aneurysm 2 (20.0%)

Ishibashi et al. (10) 27 Excelsior SL-10 3D-DSA Manually mandrel bent Solid 3D vessel

model

- Appropriate

position 20 (74.1%)

-

Headway-17

Echelon-10

Excelsior 1018

Xu et al. (42) 13 Headway-17 3D-DSA Manually mandrel bent 3D-DSA Solid 3D

microcatheter

model

Appropriate

position 13 (100%)

-

Stability 13 (100%)

Quan et al. (43) 30 - CTA Manually mandrel bent Profile 3D vessel

model

Profile 3D vessel

model

Appropriate

position 30 (100%)

Complete occlusion 30

(100%)

Stability 30 (100%)

Xu et al. (8) 9 Excelsior SL-10 CTA Intra-model placement with

heating water

Hollow 3D

aneurysm model

Hollow 3D

aneurysm model

Appropriate

position 8 (88.9%)

Complete occlusion 5 (55.6%)

Stability 9 (100%) Neck remnant 3 (33.3%)

Residual aneurysm 1 (11.1%)

Nakajima et al. (44) 14 Headway 17 3D-DSA Mandrel inserting into the

hollow model

Hollow 3D

aneurysm model

Hollow 3D

aneurysm model

Appropriate

position 13 (92.9%)

-

Excelsior SL-10 Stability 13 (92.9%)

Song et al. (11) 16 Headway-17 3D-DSA Intra-model placement with

heating water

Hollow 3D

aneurysm model

Hollow 3D

aneurysm model

Appropriate

position 13 (81.3%)

Complete occlusion 14

(87.5%)

Stability 15 (93.8%) Residual aneurysm 2 (12.5%)

Zeng et al. (41) 31 Echelon 10 CTA Manually mandrel bent Hollow 3D

aneurysm model

Hollow 3D

aneurysm model

Appropriate

position 22 (70.9%),

-

Echelon 14 Stability 26 (83.9%)

DICOM, digital imaging and communications in medicine; 3D-DSA, 3D rotational digital subtraction angiography; CTA, computed tomography angiography.
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understanding and analysis of the lesion structure, thus aiding

in the precise shaping of the microcatheter (Table 3). Kenichi

et al. (39) reported for the first time the creation of a specific

silicone vascular model of the lesion site in a patient with

anterior communicating artery aneurysm based on 3D rotational

angiography. They performed preoperative simulated treatment,

focusing particularly on microcatheter navigation and tip shape.

In another study, Katsunari et al. (40) reported the use of 3D

printing rapid prototyping technology to assist in microcatheter

shaping. The authors created a 3D solid aneurysm model based

on digital imaging and communications in medicine (DICOM)

data to guide microcatheter shaping, followed by the use of a

hollow 3D aneurysm model to test the accuracy of the shaping.

Subsequently, the pre-shaped microcatheter was used to perform

coil embolization treatment. Ultimately, in their series of cases,

all 10 patients achieved accurate microcatheter shaping. Toshihiro

et al. (10) and Zeng et al. (41) expanded the number of

cases using this shaping method. In their report, a total of 27

aneurysms and 31 aneurysms were treated with the assistance of

3D printing technology for microcatheter shaping, respectively,

and the authors concluded that this tailor-made shaping method

yielded satisfactory outcomes.

Xu et al. (8) adopted a more ingenious approach to utilize

3D printing technology in assisting microcatheter shaping. They

created hollow and translucent 3D models that were immersed

in water. Subsequently, the microcatheter was introduced into the

target position in themodels, and the water temperature was heated

to 50◦C for 5min to achieve the desired shape of the microcatheter.

Finally, the embolization procedures were successfully performed.

In another study, Song et al. (11) applied the same method

to treat 16 patients with aneurysms. Additionally, they made a

small improvement to this method by creating perforators on

the surface of the model to facilitate steam heating. In a similar

manner, Nakajima et al. (44) inserted a mandrel into a 3D-

printed hollow model to create an ideal shape to assist in shaping

the microcatheter under the condition of heating with a hot

air gun.

3D reconstruction modeling and printing technology provided

operators with a relatively accurate and customized microcatheter

shaping aid for specific patients, which theoretically facilitated

the implementation of endovascular treatment procedure and

improved its safety. However, this method still had certain

limitations. Due to the process of obtaining DICOM data and

forming the models, as well as the time required for model

FIGURE 3

Delineates the process of employing artificial intelligence technology in the shaping of microcatheters [reprinted with permission from Liu et al. (6), ©

2022 Elsevier Inc.] (A) The procedure begins with the generation of a three-dimensional vascular image, constructed using DICOM data obtained

from CTA or DSA. (B) The subsequent phase involves the segmentation of arteries within the defined region of interest. (C) The centerline is then

extracted, serving dual purposes: as the simulation path and as the central axis of the parent artery. (D) The process progresses with the detection of

the aneurysm, along with the determination of the target for the microcatheter tip. (E) The artificial intelligence algorithm is then utilized to simulate

the path of the microcatheter. (F) The final phase encompasses the creation of the mandrel and microcatheter shapes. This is based on the simulated

path and the characteristics of various microcatheter types. The red line symbolizes the optimal mandrel shape, determined through

software-calculated parameters and the elasticity features of the microcatheter, exemplified here by the Echelon microcatheter.
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sterilization, it typically takes ∼1 day. Therefore, for patients

requiring emergency operations for ruptured aneurysms, the

application of 3D printing technology posed difficulties.

Computer simulation technology assisted
shaping

In recent years, with the continuous development of computer

technology, computer algorithm-based simulation techniques have

gradually been applied in the field of cerebral endovascular therapy

(45–47). Song et al. (48) introduced an intelligent microcatheter

shaping method platform named UKnow, developed by Union

Strong (Beijing) Technology Co. Ltd., based on a computer

algorithm model, and validated it on the in vitro silicone

models, which provided a novel method and system for assisting

intracranial aneurysm embolization. In their algorithm model,

the computer software performed a 3D reconstruction of the

parent artery and aneurysm based on the acquired DICOM data,

utilized “collision detection” and “centerline constraint” algorithms

for path simulation and correction, as well as automatically

generated the expected microcatheter shape and mandrel shape.

Finally, the interventionalist applied the computer-generated

solution to the physical microcatheter and mandrel for shaping

operations.

Based on this software and algorithm (illustrated in Figure 3)

(6), we conducted a preliminary study on its clinical application.

We utilized this microcatheter shaping technique to treat

a total of 30 aneurysms in 24 patients. Ultimately, all 30

microcatheters accurately entered the aneurysmal sac, while 25

achieved satisfactory results in terms of position within the sac and

intraoperative stability (illustrated in Figure 4) (6). In a recently

published multicenter randomized controlled study on the clinical

application of this software (49), 101 patients underwent treatment

with computer-assisted microcatheter shaping technology (CAMS

group), while another 100 patients underwent conventional manual

microcatheter shaping methods (MMS group). The result indicated

that the CAMS group showed significant superiority over the MMS

group in terms of the success rate of the first attempt (96.0 vs.

66.0%, P < 0.001), success rate of microcatheter placement within

5min (96.0 vs. 72.0%, P < 0.001), microcatheter stability (97.0

FIGURE 4

Illustrative case demonstrating computer-assisted microcatheter shaping [reprinted with permission from Liu et al. (6), © 2022 Elsevier Inc.]. (A)

Three-dimensional (3D) reconstructions of the aneurysm and the parent artery were generated in the software. The planned trajectory and form of

an Echelon microcatheter are denoted by a purple line, while the simulated shaping mandrel is represented by a red line. Adjustable markers in

yellow and blue (highlighted by a red arrow) permit the calculation of the distance between them, which is displayed in the green box (measured

distance: 5.82mm). (B) Angular measurements are also enabled at each curve of the simulated shaping mandrel, as indicated by a red arrow. The

calculated angle is displayed in the green box (measured angle: 110.69◦). (C) The aneurysm is visualized through 3D-DSA, marked by a white arrow.

(D) The microcatheter is shaped in vitro, adhering to the pre-calculated trajectory and form. (E) The shaped microcatheter is successfully utilized to

access the aneurysm sac on the first attempt, and the tip positioning is deemed satisfactory, as indicated by a red arrow. (F) Successful embolization

of the aneurysm is achieved, as denoted by a black arrow.
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vs. 84.0%, P = 0.002), and excellent delivery performance without

microwire guidance (45.5 vs. 24.0%, P < 0.001). At the same

time, Wu et al. (50). reported on another computer simulation-

assisted microcatheter shaping system, AneuShapeTM, which was

developed by ArteryFlow Technology Corporation, Hangzhou,

China. They applied this system to treat 55 aneurysms, achieved

favorable results in terms of accessibility (45/55, 81.8%), positioning

(47/55, 85.5%), and stability (46/55, 83.6%), and demonstrated a

promising outcome. Furthermore, Gangqin Xu et al. (51) reported

a method based on computational fluid dynamics for simulating

cerebral blood flow streamline to assist microcatheter shaping,

which was successfully applied to seven patients.

The emergence of computer algorithm-assisted solution has

provided convenience for microcatheter shaping and decision-

making during the neurointerventional procedure, particularly

for insufficiently experienced interventionalists. It overcame the

limitations of the conventional shaping method that heavily relies

on the interventionalist’s experience, resulting in less accurate

shaping. Additionally, it offered a potential advantage in enhancing

the safety of procedure. However, it should be noted that how to

precisely translate computer-generated shaping schemes to actual

mandrels and microcatheters on a 1:1 scale, rather than relying

on observation and manual manipulation by the interventionalist,

remains an issue that computer simulation technology-assisted

shaping needs to confront.

Shaping with steerable articulating tip

In recent years, the introduction of the steerable guidewire

and microcatheter has provided a new option for interventional

procedures (52, 53). Due to the characteristic of a manipulable

bending tip, the steerable guidewire and microcatheter also

present a new paradigm for neurointerventionalists in terms

of microcatheter shaping and navigation technique. Recently,

studies have reported the clinical applications of a microcatheter

named Bendit in the field of neurointervention, especially

for cases that are traditionally challenging to manage, such

as those where intravascular navigation is difficult (54–56).

The steerable microcatheter has demonstrated commendable

controllability, impressively navigating through intricate

vascular structures. Currently, while the application of steerable

microcatheters in neurointervention is still in its preliminary

phase with small sample sizes, it is believed that with continuous

improvements in material and design, along with accumulating

clinical experience, steerable microcatheters will offer more

possibilities in neurointerventional techniques, ultimately

benefiting patients.

Conclusion

In recent years, with the development of neurointerventional

theory, techniques, and materials, microcatheter shaping, as an

important part of neurointerventional procedure, has undergone

various advancements. The shaping methods have evolved from

conventional manual shaping to incorporating composite bending,

then to 3D model assistance, and now to the emergence

of computer algorithm-assisted techniques. Researchers and

interventionalists have been continuously exploring and improving

these techniques. Accurate insertion and stable placement of

microcatheters within aneurysmal sacs are crucial for the success

of interventional embolization procedures. Therefore, achieving

greater accuracy in microcatheter shaping is an ongoing goal for

every interventionalist. In future, the combination of computer

algorithm assistance and 3D model printing under sterile

conditions in the operating room may represent a new direction

and application for the microcatheter shaping method. We believe

that the development of these methods and technologies will bring

more benefits to interventionalists and patients.
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