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Stroke-induced damage on the
blood–brain barrier

Song Xue, Xin Zhou, Zhi-Hui Yang, Xiang-Kun Si and Xin Sun*

Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China

The blood–brain barrier (BBB) is a functional phenotype exhibited by the

neurovascular unit (NVU). It is maintained and regulated by the interaction

between cellular and non-cellular matrix components of the NVU. The BBB

plays a vital role in maintaining the dynamic stability of the intracerebral

microenvironment as a barrier layer at the critical interface between the blood

and neural tissues. The large contact area (approximately 20 m2/1.3 kg brain)

and short di�usion distance between neurons and capillaries allow endothelial

cells to dominate the regulatory role. The NVU is a structural component of the

BBB. Individual cells and components of the NVU work together to maintain

BBB stability. One of the hallmarks of acute ischemic stroke is the disruption of

the BBB, including impaired function of the tight junction and other molecules,

as well as increased BBB permeability, leading to brain edema and a range of

clinical symptoms. This review summarizes the cellular composition of the BBB

and describes the protein composition of the barrier functional junction complex

and the mechanisms regulating acute ischemic stroke-induced BBB disruption.
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1. Introduction

Proper central nervous system (CNS) functioning requires a highly specific and

dynamically stable intracerebral microenvironment with extremely high metabolic demands

and dependence on electrical and chemical signals for transmitting and processing neural

information. Therefore, the cerebral vasculature has a unique structural function as the

blood–brain barrier (BBB). The structural basis of the BBB is microvascular endothelial

cells, which, with astrocytes, basementmembranes, pericytes, and neurons that are physically

close to the endothelium, form the neurovascular unit (NVU). The corresponding cells, the

accompanying junction complexes, and transport proteins constitute three main functions

of the BBB: physical, transport, and metabolic barriers. These barriers strictly control the

entry of water molecules, ions, proteins, lipids, and cells from the blood into brain tissues

and promptly discharge and degrade metabolites or harmful substances in brain tissues

to maintain brain microenvironment homeostasis and normal neurological functions.

Ischemic stroke structurally and functionally disrupts the barrier function of the NVU,

leading to BBB leakage and triggering a range of clinical symptoms. This review first

deals with the interactions of BBB-related cell types/structures (endothelial cells, glial cells,

pericytes, neurons, and extracellular matrix) in the NVU. This summary outlines the changes

that occur during BBB disruption in ischemic stroke and the main regulatory mechanisms.

Understanding normal BBB function and post-infarction changes in the BBB will help

evaluate and treat ischemic stroke in the future.
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2. Structural components of the BBB:
neurovascular unit (NVU)

NVU is a functional unit consisting of neurons and

microvascular endothelial cells responsible for their blood

supply, interacting with surrounding astrocytes and pericytes

and regulating local blood flow (1). The cerebral vasculature

has a very complex and delicate microscopic structure. First,

brain tissues are highly vascularized, with at least one capillary

supplying blood within 15µm of each nerve cell (2), which can

provide the nutrients required for neural activity and promptly

eliminate metabolic waste. Second, cerebral small vessels and

microvessels, surrounding vascular wall cells (smooth muscle cells

and pericytes), astrocytes, basement membrane, and nerve cells,

form the NVUmicrostructure (Figure 1). Some experts considered

oligodendrocyte precursor cells and microglia as part of the NVU.

The concept of the NVU was formally introduced at the 2001

Stroke Progress Review Group meeting of the National Institute

of Neurological Disorders and Stroke (3), where neuroscientists

emphasize the close relationship between nerve cells and blood

vessels. The microstructure of the NVU is the cellular and

molecular basis for many cerebrovascular-specific functions, such

as neurovascular coupling and the BBB.

The NVU components work in concert to regulate

microvascular permeability, ion homeostasis, nutrient transport,

metabolic toxin efflux, and cerebral hemodynamics. Disruption of

these components can lead to BBB dysfunction (4). Experimental

evidence has demonstrated that the interaction between

developing vascular and neural tissues is crucial for BBB

development, interoperability, and symbiosis (5). Astrocyte

end-feet, pericytes, microglia, and neuronal protrusions surround

the brain microvasculature. Such close intercellular connections

mediate the BBB-specific phenotype (1). Next, we provide an

overview of these NVU components and highlight the features of

ischemic stroke disruption.

2.1. Brain microvascular endothelial cells

The brain microvascular endothelial cells located at the

junction of brain tissues and blood have essential physiological

functions, including barrier function, nutrient transport, receptor-

mediated signal transduction, and leukocyte infiltration (6).

Endothelial cells are characterized by a lack of fenestrae and

the expression of tight junction (TJ)–protein complexes between

adjacent endothelial cells (7). In addition, Peterson et al. found

that endothelial cells have mechanoreceptor properties that

respond to absolute fluid and transmural pressure, contributing

to cerebral blood flow autoregulation (8). As the first barrier

for blood components entering the nervous system, endothelial

cells are the core components of the BBB and have unique

structural and molecular properties, including the following five

main aspects (9): high expression of TJ proteins that control

the paracellular pathway between endothelial cells: TJ proteins:

occludin, claudin, zonula occludens (ZO)-1, ZO-2, ZO-3, cingulin,

afadin-6 (AF-6), and 7H6; adherens junctions (AJs): cadherins

and associated proteins directly linked to actin filaments (6) and

junctional adhesion molecules (JAMs). Lower rates of transcytosis

prevent blood components from crossing the BBB via non-

specific vesicular transport. In stroke, endothelial vesicles increase,

representing an increased transcellular response (10, 11). The high

endothelial glycocalyx layer of the cell membrane reduces the

passive diffusion of blood macromolecules across the BBB. Low

expression of leukocyte adhesion molecules inhibits the adhesion

and transit of blood immune cells into the brain. A comprehensive

molecular transport system includes the high expression of several

transporter proteins (transporting glucose, amino acids, ions,

and lipid molecules), membrane receptors, and efflux proteins

(multidrug resistance proteins, breast cancer resistance proteins,

and multidrug resistance-associated proteins) for transporting

material molecules between the blood and brain tissues (12, 13).

Owing to these properties, the BBB strictly limits the non-

specific entry of blood components into the brain and efficiently

provides the required nutrients to the neural tissue. The TJs

between adjacent endothelial cells, specific transport systems

on the luminal and abluminal endothelial cell membranes, and

the distribution of metabolic enzymes constitute three barrier

functions of the BBB: the physical, transport, and metabolic

barriers, respectively. Physical barrier: the presence of TJs allows

molecules to cross the BBB via a transcellular rather than a

paracellular pathway (1, 7). AJ proteins, inhibition of non-selective

window pores, cellular drinking, high flow across cells, and

inhibition of leukocyte adhesion molecules are also involved in

the physical barrier composition (14). Most molecules cross the

BBB via the transcytosis pathway (15). In contrast, the paracellular

pathway, which depends on the permeability gradient (16–21),

accounts for only a small percentage of TJ limitations (18, 20, 22).

Transport barrier: much lower rates of endocytosis/transcytosis,

mainly through the transcellular pathway. Transcellular diffusion:

diffusion locations are on the luminal and abluminal membranes

of endothelial cells. They are constrained to gases such as O2

and CO2 and small lipophilic molecules <400 Da (17, 19, 20,

23, 24). Carrier-mediated transport: active or passive substrate-

specific transport (21, 24). Glucose transporter 1 (GLUT1),

monocarboxylate transporter 1 (MCT1), L-type amino acid

transporter 1 (LAT1), and major facilitator superfamily domain-

containing protein 2a (Mfsd2a) carry glucose, lactic, amino, and

fatty acids, respectively (25–29). GLUT1, a large neutral amino

acid and nucleoside transporter protein, is essential for maintaining

BBB homeostasis (30). Transcytosis remains the preferred pathway

for the selective transport of plasma macromolecules such as

albumin and low-density lipoproteins, despite limited transcytosis

in CNS endothelial cells (31). Receptor-mediated transcytosis:

major transport pathways for molecules without a specific carrier

(30). These molecules bind to cell-surface receptors and form

endocytic vesicles that cross the BBB (22). Adsorptive transcytosis:

charge interaction between the compound and the luminal

membrane of endothelial cells, inducing endocytosis (32). Efflux

transport is concentrated on the luminal side of the membrane

(29). To prevent the accumulation of toxic compounds across

the BBB, substances are extracted from the nervous system into

the bloodstream by moving a series of small molecules up to a

concentration gradient (20, 21). For example, sodium-dependent

amino acid transporters present in the endothelial cell membrane

can remove amino acids from the brain, and these accumulated
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FIGURE 1

Schematic diagram of NVU. Microvessels adjacent to highly vascularized brain tissues provide blood flow to the surrounding nerve cells. Brain

microvascular endothelial cells, pericytes, astrocytes, basement membrane, neurons, and microglia form the neurovascular unit.

amino acids may evoke neurotoxicity during stroke (33–35).

Brain microvascular endothelial cells are more abundant in the

mitochondria than in the endothelial cells of other organs, which

laterally reflect the energy demand that depends on adenosine

triphosphate (ATP) transport (6, 36). Metabolic barrier: enzymes

that constitute this barrier include ectoenzymes (peptidase and

nucleotidases) and intracellular enzymes (monoamine oxidase and

cytochrome p450) (37).

In contrast to the importance of TJ proteins, the role

of cytosolic transport in regulating BBB permeability has

been traditionally ignored or underestimated. Researchers have

recognized the importance of cytosolic transport in the last few

years, which has become a research hotspot in the BBB field.

Low levels of cytosolic transport inhibit BBB permeability during

embryonic development and adult physiological states, whereas

elevated levels contribute significantly to BBB disruption under

various pathological conditions, including chronic hypoperfusion,

stroke, and cortical depolarization (38, 39).

Excellent and pioneering work in this area was carried

out by Prof. Chenghua Gu’s team at Harvard Medical School,

who identified that Mfsd2a on the cell membrane is highly

expressed in cerebrovascular endothelial cells, which promotes

BBB formation and function mainly by maintaining a low rate

of transcytosis and effectively inhibiting fossa-mediated cytosolic

transport (40). Therefore, it reduces the non-specific transport of

blood components into the brain and maintains the functional

integrity of the BBB (41). Further studies have shown that

the phospholipid transport function of Mfsd2a alters the lipid

composition of endothelial cell membranes, thereby inhibiting cell

membrane fossa formation, which inhibits fossa-mediated cytosolic

transport (42). In addition, related studies have reported that

Mfsd2a transports omega-3 fatty acids across CNS endothelial cells

(43, 44). Future studies need to determine the relationship between

these two functions (45, 46).

2.2. Astrocytes

Astrocytes coat more than 99% of the BBB endothelium

(1, 5, 47, 48). Astrocyte end-feet form the BBB and maintain its

integrity (1, 49, 50). They have multiple functions, including

nutrition, structural support, BBB formation, neuronal

metabolism, extracellular environment maintenance, cerebral

blood flow regulation, intercellular communication stabilization,

immune response control, neurotransmitter synthesis, and

resistance to oxidative stress (51–54).

Astrocyte–endothelium interactions are essential for electrolyte

homeostasis in the brain under both normal and pathological

conditions (4). Perivascular astrocyte end-feet are highly structured

and contain orthogonal arrays of particles, composed of the

abundant water channel aquaporin-4 (AQP4) and the Kir4.1K+

channel, which are involved in ion volume regulation (1, 48,

55). AQP4 is associated with cytotoxic edema during ischemic

stroke (4).

Astrocyte–endothelial interactions strengthen the TJ, minimize

the gap junctional area of endothelial cells, and contribute to

regulating cerebral blood flow (52). Both are involved in the

induction and modulation of unique endothelial cell phenotypes

(6, 56, 57). Astrocytes do not appear in the NVU until birth (14, 58).

They are not directly involved in the physical properties of the

BBB and may modulate its phenotype (6, 59). An experiment was

conducted in 1969 to demonstrate this phenomenon. Horseradish

peroxidase injected into the brain passes directly through astrocyte

end-feet, and diffusion is blocked on the abluminal membrane of

the endothelium. Studies over the past two decades have shown

that astrocytes mediate barrier function, mainly by modifying

the morphological composition and chemical expression of TJ

(60, 61). The main molecules involved were TJ-related proteins,

platelet endothelial cell adhesion molecule-1, ZO-1, and claudin-5

(60, 62). Astrocytes release several pro-barrier phenotype regulators
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(63), including nitric oxide (NO), which regulates vasodilation

(64); sonic hedgehog, which governs TJ formation; and vascular

endothelial growth factor (VEGF), which is associated with

vasogenic edema in ischemic stroke (65). Astrocytes have different

morphologies and phenotypes, depending on the region where they

are located (66); 8 of the 11 common phenotypes were associated

with vascular cross-talk (1). Multiple astrocyte morphologies can

upregulate and strengthen these three barriers, making the TJ more

robust, increasing the expression and polarization of transporter

proteins, including Pgp24, and refining the enzyme system (67–69).

Similar to amino acid efflux transporters in endothelial cells,

the excitatory amino acid transport proteins are expressed in

astrocytes: excitatory amino acid transporters 1 and 2. These

proteins remove extra glutamate from synapses and maintain

the relative stability of excitatory neurotransmitters in the brain

(70). Astrocytes play an important role in ischemic stroke-

induced neuroinflammation.

2.3. Pericytes

Pericytes are kidney-shaped cells with nuclei that protrude from

the lumen. They contain a small cytoplasm and are distributed

irregularly along the brainmicrovessel wall (71–74). Pericytes cover

at least 80% of the brain microvascular wall, and cell protrusions

emanating from pericytes penetrate the cellular matrix to cover 20–

30% of the microvascular perimeter (6). Such dimensional contact

with the vasculature serves as a support for the endothelium of

the NVU. It plays important physiological roles in endothelial

cell development (6), BBB formation and integrity maintenance,

vascular maturation and stabilization, and immune cell trafficking.

Experimental evidence suggests that pericytes have contractile

properties and that contractile pericytes–coat cerebral microvessels

(71, 72, 75) regulate capillary blood flow and influence cerebral

blood flow autoregulation. A recent scRNA-seq study identified the

molecular mechanisms by which pericytes regulate vessel diameter.

Strong evidence for the role of pericytes in controlling vessel

diameter is provided by the presence of receptors for vasoactive

factors, such as L-type voltage-gated calcium channels, and those

involved in the contraction of smooth muscle cell actin on pericytes

(76). To a certain extent, pericytes act as the “vascular smooth

muscle cells” of the brain’s microvasculature.

Evidence for pericyte–endothelial cell interactions has also

been found. The absence of pericytes in mice by experimental

means revealed the downregulation of Mfsd2a expression (43).

Pericyte deletion leads to increased endothelial transcytosis without

affecting the integrity of TJs (59, 77). Recent studies have shown

that pericytes regulate endothelial transcytosis by binding to

integrins in endothelial cells through vitronectin expression (78).

2.4. Neurons

As mentioned previously, neurons and their nearby

cerebral microvasculature are in close contact, and there is

an intimate interaction between neurons and their matching

vessels. Although direct neuron–endothelial contact has been

demonstrated (66, 79), neuronal communication in the NVU

is primarily mediated by astrocytes (80). Little is known

about the other structural and functional contributions

of neurons to the BBB (80). The suggested pathological

factors, such as ischemic stroke-induced BBB disruption, are

anatomical and usually accompanied by selective compensatory

changes in cerebral blood flow (81–83). This indicates that

interactions between neurons and microvessels can modulate

BBB permeability.

2.5. Extracellular matrix (ECM)

The ECM layer generated by the basal cell membrane

serves as a signaling site for cell-cell interactions (1). The ECM

is divided into two layers: the vascular basement membrane

produced by pericytes and endothelial cells and the glial

basement membrane secreted by astrocytes (84). The structural

proteins that comprise the ECM include collagen type IV,

laminin, fibronectin, elastin, thrombospondin, and various

proteoglycans that are readily degraded by proteases. Their

degradation is associated with increased BBB permeability

during ischemic stroke (85, 86). The ECM wraps around

endothelial cells and pericytes. It separates and anchors

cells through adhesion receptors. Astrocytes and pericytes

secrete integrin and dystroglycan families of matrix adhesion

receptors that are distributed in the ECM and mediate NVU

function (87).

2.6. Tight junction (TJ)

TJ is an essential junction complex between adjacent epithelial

cells. TJs comprise intact membrane and cytoplasmic accessory

proteins, including occludin, claudins, JAMs, ZO proteins,

and cingulin. Actin is a cytoskeletal protein that maintains

endothelial structure and function. TJ proteins are linked

to cytoskeletal actin by accessory proteins. The tightness of

the TJ connections determines the paracellular permeability

of water-soluble molecules (6, 49). The BBB transendothelial

electrical resistance (TEER) is a measure of the degree of

permeability and efficiency of TJs in the BBB (88). The TEER

of peripheral microvessels is typically 2–20 ohm.cm2, while

the TEER of the brain endothelium can reach 1,000 ohm.cm2

(1). The polarity of the luminal and abluminal membranes of

endothelial cells contributes to barrier function. The concept

of polarity is derived from quantitative biochemical studies (6).

TJs perform a structural gate function (1), limiting paracellular

permeability. Its fence function separates the apical and basal

regions of the cell membrane (89), allowing endothelial cells

to exhibit apical–basal polarization properties. The luminal

and abluminal polarization of receptors, ion channels, and

enzymes in endothelial cells makes the functional partitioning

of endothelial cells more refined and rational (6). TJ proteins

exist in different isoforms because of their tissue origins (4).

Phosphorylation regulates the activities of TJ and accessory

proteins (5).
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2.7. Occludin

Occludin is a 65-KDa protein with 504 amino acids (6,

90). Occludin has two extracellular loops and one intracellular

loop, and its carboxyl and amino terminals are anchored to

the cytoplasm. The carboxy-terminal serine residues of occludin

are linked to the cytoskeleton via ZO-1 and ZO-2, allowing

occludin to bind to the basal cellular membrane. Occludin

phosphorylation regulates its functional state (91). The volume

of occludin in endothelial cells is much higher in the CNS

than in the periphery (90, 92). Recent studies have shown that

occludin is a key factor in regulating BBB permeability (93–

96). A study in 2017 using a rat model of ischemic stroke

found that the occludin protein in TJs of brain microvessels

caused by cerebral ischemia rapidly degraded. Elevated blood

occludin levels show a time-dependent correlation with the

degree of BBB injury. Therefore, occludin proteins in the

blood may serve as a clinically relevant marker of ischemic

stroke (97).

2.8. Claudins

Claudins comprise numerous proteins. They have two

extracellular loops through which adjacent endothelial cells

are connected, forming the major sealing component of

TJs (98). The two intracellular loops of claudins can bind

to ZO-1, ZO-2, and ZO-3 through their carboxyl termini

(99, 100). Claudins are morphologically similar to occludins

but do not share sequence homology (90). Claudin-5 plays

a crucial role in the early development of the CNS as a

symbol of the BBB (101). The phosphorylation pathway

can regulate the functional activity of claudin-5 (102, 103).

The phosphorylation of claudin-5 at Thr207 increases the

permeability of TJ. In experimental models of pathological

conditions, such as ischemic stroke, claudin-1 is lost in the

cerebral vasculature (49), claudin-5 expression is reduced

(104, 105), and the interaction between claudin-5 and occludins is

disrupted (106).

2.9. Junctional adhesion molecule (JAM)

JAMs are a family of immunoglobulin superfamily

proteins that localize to intercellular slits. JAM-A, JAM-

B, and JAM-C are expressed in endothelial cells and are

involved in the construction and maintenance of the TJ

(4, 107). The extracellular portion of the transmembrane

structural domain of JAMs consists of two immunoglobulin-

like loops formed by disulfide bonds (107). JAMs mainly bind

to the intracellular components ZO-1, partitioning defective

protein-3(PAR-3), AF-6, and multi-PDZ-protein-1(MUPP-

1) (108). Like claudins, JAMs participate in homophilic

and heterophilic interactions between cells (107). Deficiency

in JAM protein expression and BBB disruption are directly

related (109–112).

2.10. Membrane-associated guanylate
kinase (MAGUK) proteins

MAGUK proteins are also called cytoplasmic accessory

proteins. MAGUK proteins are accessory components of TJ

structures. Their multiple structural domains are involved in

protein–protein interactions (113), forming protein complexes

attached to the cell membrane. The MAGUK proteins associated

with TJ are ZO-1, ZO-2, ZO-3, and the newly identified cingulin,

7H6, and AF-6 (5, 113). ZO-1, a 220-KDa phosphoprotein, is

expressed in epithelial and endothelial cells (114, 115). ZO-1

bridges the TJ proteins with the actin cytoskeleton (91, 116–118).

ZO-1 transmits the TJ state to the intracellular zone and vice

versa. Decreased ZO-1 expression is associated with increased

BBB permeability (118). ZO-2, a 160-KDa phosphoprotein, shares

homology with ZO-1 (119, 120). Immunofluorescence microscopy

studies conducted in 2003 showed that ZO-3 was enriched in the TJ

of epithelial cells (121). Although it is expressed in the epithelium,

its role in TJ has not been fully elucidated (122). Cingulin is a 140–

160-KDa phosphoprotein. It is localized to the cytoplasmic surface

of TJs and is associated with the ZO proteins, myosin, JAM-A, and

AF-6 (123, 124). As a vital scaffolding protein of TJs, it can form

various junctions and transmit mechanical forces generated by

cytoskeletal contraction, thus regulating BBB permeability (5, 125).

7H6, a 155-KDa phosphoprotein, reversibly detaches from TJ when

ATP is depleted, increasing paracellular permeability (126, 127).

AF-6, a 180-KDa protein, is involved in TJ regulation by linking

it to ZO-1 (103).

2.11. Adherens junction (AJ)

AJ: An intercellular junction, also called zonula adherens

(1), is a specific type of intercellular interaction consisting of

cadherins, catenins, vinculin, and actinin (128). However, the effect

of AJ on BBB permeability in pathological states has not been

fully elucidated. However, its interaction with vascular endothelial

growth factor (VEGF) receptor-2 and vascular endothelial (VE)-

cadherin-mediated upregulation of claudin-5 suggests that AJ plays

a central role in angiogenesis and the regulation of TJ integrity

(129, 130).

3. Ischemic stroke

Ischemic stroke is a leading cause of death and disability

worldwide. It imposes substantial economic and emotional burdens

on patients, families, and society. Ischemic stroke is characterized

by a sudden reduction or cessation of oxygen and blood supply

due to local arterial occlusion of the brain tissues, resulting in

irreversible cell death and tissue damage in the infarct core. The

surrounding penumbra may regain function by restoring cerebral

blood flow owing to mild ischemia. Various functions of the

cerebral vasculature, such as BBB and blood flow regulation, are

also affected by acute ischemic–hypoxic injury. Disruption of the

BBB is a hallmark of ischemic stroke (131). The mechanisms

of BBB disruption induced by stroke include phosphorylation
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of TJ proteins, regulation of transporter protein expression,

neuroinflammation, and abnormal enzyme function (132).

3.1. Ischemic phase and biphasic nature of
barrier permeability

Ischemic stroke occurs chronologically during the ischemic

and reperfusion phases, during which a series of cellular changes

occur (4). The BBB is incomplete long before neuronal damage

occurs (133, 134), and the concept of NVU emphasizes that

BBB disruption in ischemic stroke damages the cell structure

and disrupts intercellular interactions (135, 136). Although called

a barrier, the BBB is not a physical wall (137). In fact,

the breakdown of the BBB caused by brain infarction is a

dysregulation of molecular proteins associated with its three

functional barrier properties.

Blockage of cerebral blood flow and rapid hypoxia in the

ischemic core triggers a chain of events in the infarct area,

including ATP depletion; neurotransmitter leakage: dopamine,

excitotoxic glutamate, arachidonic acid, and ceramide efflux

that produce extremely acute neurotoxic effects; ion imbalance:

increased intracellular calcium; metabolic disorders and increased

acidosis; endothelial cells, astrocytes, neurons swelling due to lactic

acid accumulation; cerebral microvascular diameter reduction;

oxidative stress; neuroinflammation activation; protease induction

and promotion of extracellular matrix degradation at the BBB

(138, 139). Hypoxia disrupts the localization or expression of TJ

proteins in several in vitromodels of cerebral infarction (118, 140).

Fischer et al. demonstrated that ZO-1 and ZO-2 translocate to the

nucleus in a hypoxic environment in vitro (141). In addition, the in

vitro hypoxic environment altered the cell membrane localization

and expression of claudin-5, whereas TEER decreased (142). To

date, there have been some new developments regarding BBB

disruption after ischemic stroke. In 2014, Knowland et al. observed

that barrier function was impaired as early as 6 h after stroke,

with increased endothelial vesicles and transcytosis in a transgenic

mouse stroke model. In contrast, the TJ showed severe structural

defects after only 2 days. This suggests that early BBB defects are

caused by defective transport barriers (10). Data from a study by

Haley and Lawrence subsequently demonstrated that endothelial

vesicle upregulationmight exacerbate BBB permeability in the early

stages of cerebral ischemia and that the number of endothelial

vesicles correlates with the degree of BBB disruption (143).

Krueger et al. established various experimental models of focal

cerebral ischemia, and their experimental data strongly suggest

that ischemia-associated BBB deficits are primarily caused by

endothelial cell degeneration (144).

Opening of the BBB is a biphasic phenomenon in preclinical

models of ischemic stroke (145). First, after the onset of acute

ischemic stroke, initial reperfusion permeability can occur at the

time of acute elevation of the regional cerebral blood flow (rCBF),

followed by biphasic permeability of the BBB (4). Animal models

and human studies have documented that the first phase occurs in

the hyperacute phase of acute ischemic stroke, usually within 6 h

of onset (146–149). The second phase occurs in the acute phase of

acute ischemic stroke, usually within 72/96 h after onset, when the

initial cytotoxicity-induced neuroinflammation further disrupts the

BBB. A second peak infiltration rate is observed during this phase

(146–148, 150). It is worth noting that other studies, including

those in humans, have shown that elevated BBB permeability can

persist for several weeks after stroke (149, 151) (Figure 2).

3.2. Brain edema

Ischemic brain injury can rapidly lead to cerebral edema,

with excessive fluid retention in the intracellular or extracellular

spaces of the brain (36). Cerebral edema is a leading cause of

clinical deterioration and death in ischemic stroke and is divided

into cytotoxic and vasogenic edema (152, 153). Cytotoxic edema

appears within minutes of ischemia, after which the BBB breaks

down and vasogenic edema emerges (154, 155). The dysfunction

of ion transporters in the BBB is an important mechanism

that leads to brain edema. Cytotoxic edema: after ischemia, the

activity of Na+/H+ exchangers, Na+-K+-Cl cotransporters, and

calcium-activated potassium channel KCa3.1 at the BBB increases,

facilitating the transport of Na+ and Cl− across the cells into the

relatively intact BBB (156–158). Cerebral edema gradually develops

as Na+ intake increases (156, 157). The endothelial cells showed

initial nuclear swelling and moderate cytoplasmic swelling within

2 h. Swelling of astrocytic end-feet begins within 5min of energy

depletion after cerebral infarction, leading to the detachment of the

end-feet from the endothelium (159–161). Tagaya observed that 2 h

after middle cerebral artery occlusion, there was no expression of

α1β1, α3β1, and α6β1 on endothelial cells and α6β4 on astrocytes

(162). Vasogenic edema arises from changes in the TJ, which

increase the permeability of macromolecules and cause fluid to flow

outside the blood vessels (163).

AQP, a highly permeable water channel, is highly enriched

in the astrocyte end-feet. It is involved in maintaining fluid

homeostasis in the brain. In several ischemic stroke models,

AQP4 contributes to brain edema formation, and its absence

disables cellular water uptake (164, 165). The structure of the

NVU determines the complexity of BBB disruption induced by

ischemic stroke, and there is no general way to regulate it. The

main modulators of this process are described below. Studies on

TJ protein modifications after ischemic stroke have focused on

phosphorylation (36). Phosphorylation is the primary regulatory

mechanism of protein effects on the BBB (5). The phosphorylation

and dephosphorylation states of TJs depend on the amino acid

residues that undergo phosphorylation and the type of stimulus (6).

Some functionally relevant protein kinases are summarized below.

3.3. Related protein kinases

Calcium-dependent protein kinase C (PKC) subtypes may

be involved in TJ regulation, including α, βI, βII, and γ.

Myosin light-chain (MLC) phosphorylation regulates endothelial

cell paracellular permeability. MLC phosphorylation leads to actin–

myosin contraction via calcium/calmodulin-independent MLC-

kinase (MLCK) phosphorylation (166, 167). This process increases

the permeability of the TJ, allowing F-actin, ZO-1, and occludins
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FIGURE 2

Molecular composition of BBB tight junctions and major changes in acute ischemic stroke. The TJ consists of three integral membrane proteins,

claudins, occludin, and junction adhesion molecules (JAMs), and a number of cytoplasmic accessory proteins including zonula occludens 1, 2, and 3

(ZO-1, 2, 3), cingulin, afadin-6 (AF-6), and 7H6. Membrane proteins are connected to actin by cytoplasmic proteins. The carboxy-terminal serine

residues of occludin are linked to the cytoskeleton via ZO-1 and ZO-2. Adherens junctions are formed by cadherins, catenins, vinculin, and actinin.

Among the important molecules are vascular endothelial cadherin (VE-cadherin) and platelet endothelial cell adhesion molecules (PECAM). The

figure shows the changes in blood-brain barrier permeability at di�erent times after the onset of ischemic stroke, as well as the main

pathophysiological processes in each stage. Acutely elevated local cerebral blood flow can lead to initial reperfusion permeability. The opening of

the BBB presents a biphasic phenomenon. The first phase usually occurs within 6h after an acute cerebral infarction. The second phase usually

occurs within 72h after the onset of an acute cerebral infarction. Elevated Ca2+ concentration in the endothelial under ischemic hypoxic conditions

regulates TJ proteins’ stability through multiple pathways. PKC α can act on VE-cadherin to participate in AJ degradation. PKC βII and PKC γ cause TJ

changes by regulating NO activity. Src phosphorylates occludin and ZO-1. Elevated MMP-9 reduces ZO-1 expression and its cytoplasmic

translocation, leading to barrier disruption.

to redistribute (168). PKC inhibitors can reduce endothelial

cell permeability by introducing several factors (thrombin,

bradykinin, VEGF, hydrogen peroxide, platelet-activating factor,

and neutrophils) (169, 170). The expression of PKC α, βI, and

ε shows an increase in hypoxic or hyperglycemic environments

(171). Following ischemia, hyperglycemia, and inflammatory

insults, endothelial cells exhibit increased permeability via a PKC

α-dependent pathway (172–175). PKC α is also involved in the
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catabolism of AJs via VE-cadherin, which leads to increased

paracellular permeability (175). Increased expression of PKC βII

and PKC γ can regulate NO synthase, indicating that PKC may

affect TJ changes by regulating NO activity (176). Mitogen-

activated protein kinases (MAPKs) belong to the serine/threonine

kinases family. The most studied MAPKs are extracellular signal-

related kinases (ERK1/2), c-Jun N-terminal kinases (JNK), and

p38-protein (170). Studies in consecutive years have demonstrated

that the integrity of TJ is associated with increased levels of

cyclic adenosine monophosphate (cAMP) (177–179). The effect

of cAMP is most likely mediated by the protein kinase A

(PKA) pathway. PKA stabilizes cytoskeletal proteins, mediates the

dephosphorylation of MLC, enhances cell-matrix adhesion, and

detaches F-actin from myosin (180–182). Protein kinase G (PKG)

is a serine/threonine-specific protein kinase activated by cyclic

guanosine monophosphate (cGMP). Both in vivo and in vitro

studies have demonstrated that factors relevant to ischemic stroke,

including bradykinin, histamine, NO, tumor necrosis factor (TNF)-

α, platelet-activating factor, and VEGF, can lead to increased NO-

cGMP dependent paracellular permeability (141, 170, 183). Protein

tyrosine kinases (PTKs) act as intracellular signal transduction

molecules that regulate endothelial paracellular permeability. PTK

can be classified as receptor and non-receptor-mediated types.

Occludin phosphorylation diminishes its ability to bind to ZO-

1 and ZO-2, leading to increased paracellular permeability (140,

184, 185). Phosphorylation of AJ proteins unanchors them to the

cytoskeleton and affects TJ permeability (186). Among the non-

receptor-mediated PTKs, the Src family plays a vital role in TJ

regulation (187, 188). Interleukin (IL)-1β, reactive oxygen species

(ROS), and tumor necrosis factor (TNF) modulate Src and increase

endothelial permeability of the BBB (189–191). Phosphorylation

of myosin MLCK by Src enhances actin-myosin interactions

and increases paracellular permeability (192, 193). Studies have

demonstrated that cerebral infarction-related oxidative stress-

induced endothelial cell permeability is associated with Src, which

phosphorylates occludin and ZO-1 (184, 194, 195). Oxidative stress

can also lead to F-actin redistribution and stress fiber formation

(196, 197).

3.4. Ca2+

Under physiological and pathological conditions, TJ responds

rapidly to intracellular signals that regulate junctional complexes

(6). Molecules that regulate BBB permeability are induced by

altering intracellular Ca2+ (49). Early studies have demonstrated

that Ca2+, a second messenger, is a key component in the

regulation of TJ through multiple pathways (such as PKC, MAPK,

and phospholipase-A2) (198). Elevated intracellular Ca2+ triggers

a signaling cascade response that regulates TJ transcriptional

expression and alters TJ post-translational distribution (199).

The endothelial Ca2+ concentration increases in an ischemic–

hypoxic environment, the ATP-dependent efflux mechanism is

disrupted, and the control of intracellular Ca2+ by the cytoplasmic

endoplasmic reticulum Ca2+-ATPase fails (199, 200). Increased

Ca2+ in endothelial cells enables the activation of MLCK (166,

167), induces actin reorganization, changes cell shape, and

increases cell permeability (201, 202). Ca2+ directly affects the

stability of BBB endothelial cell membranes and TJ proteins by

promoting phospholipase-A2 activation, which allows membrane

phospholipids to release free fatty acids (4).

3.5. Neuroinflammation

Neuroinflammation is an integral part of the pathophysiology

of cerebrovascular diseases, particularly ischemic stroke. Many

studies have shown that poststroke neuroinflammation is an

important factor in the long-term prognosis of ischemic stroke.

After a stroke, various factors, such as ROS formation, necrotic

cells, and damaged tissues, can activate inflammatory cells,

resulting in an inflammatory response. Several substances have

been found in the cerebrospinal fluid (CSF) of stroke patients, and

studies suggest that TNF-α and IL-1β initiate neuroinflammation in

ischemic stroke (4). Cyclooxygenase inhibition can eliminate TNF-

α-, IL-1β-, and IL-6-induced increase in endothelial paracellular

permeability, suggesting a role for arachidonic acid in increasing

BBB permeability during ischemic stroke (203, 204). The

production and release of chemokines chemoattractant protein

monocyte chemoattractant protein-1 (MCP-1) and cytokine-

induced neutrophil chemoattractant (CINC) are regulated by

regulatory factors. In the pathological context of stroke, MCP-1

is a major factor associated with leukocyte entry into the brain

(205). The biphasic BBB permeability that occurs during hypoxic

reperfusion is consistent with an increase in the secretion of MCP-1

by astrocytes and endothelial cells in the brain (206). Biphasic BBB

permeability is associated with the redistribution of occludin, ZO-

1, ZO-2, and claudin-5 (206). IL-1 is associated with the induction

of endothelial cell adhesionmolecules during ischemic stroke. IL-β-

induced increase in paracellular permeability of the BBB is related

to the loss of occludin and ZO-1 in the junctional complex (207).

3.6. Enzyme activities

Matrix metalloproteinases (MMPs) are a family of zinc-

dependent endopeptidases that can degrade fibronectin and

laminin (50) and have been identified as key factors in BBB

disruption in ischemic stroke (208). The basement membrane

is a scaffold for brain endothelial cells and is composed of

type IV collagen, laminin, fibronectin, elastin, thrombospondins,

various proteoglycans, and heparin sulfate. MMPs exhibit substrate

specificity for type IV collagen, laminin, and fibronectin, which

degrade basement membranes. MMPs have been identified as the

apparent initiators of BBB disruption. After the onset of ischemic

stroke, MMP expression is upregulated and activated through pro-

inflammatory cytokine pathways (via NF-kB) or activation of HIF-

1a and furin (50, 209). A clinical study showed that MMP-9 levels

were significantly elevated in patients with acute ischemic stroke

(210). MMP-mediated BBB opening in ischemic stroke may be

regulated by NO signaling. The activation of MMP-2 is thought to

initiate TJ protein degradation (211). In the late stages of stroke-

induced BBB disruption, MMP-9 expression triggers devastating

injury (211). The reason for the disruption of barrier function
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caused by elevatedMMP-2/9 levels is the reduced expression of ZO-

1 and its cytoplasmic translocation (212). Another study confirmed

that the degree of BBB damage is consistent with reduced MMP-

2/9 expression (213). Therefore, inhibition of MMPs may benefit

patients with stroke (214, 215). Notably, despite their destructive

effects in the acute phase of stroke, MMPsmay play a beneficial role

in the recovery phase of stroke (216–218). MMP-9 is upregulated in

the peri-infarct region 7–14 days after stroke and may be involved

in vascular remodeling. Interestingly another study demonstrated

that MMP-13 promotes stroke injury in the acute phase but

improves angiogenesis during the repair phase (217).

3.7. Actin polymerization

Actin is not a tight junction protein by traditional definition,

but it has an important role in BBB stabilization (219). The actin

cytoskeleton normally provides anchoring sites for tight junction

proteins (220, 221). Dynamic stabilization between the cytoskeleton

and tight junction proteins is important for BBB maintenance

(222, 223). Actin is usually distributed uniformly throughout

the endothelial cell in the form of short filaments and diffuse

monomers (220). Unpolymerized globular actin polymerizes into

the filamentous-actin (F-actin) form via an ATP-promoted process

(224). Phosphorylation of myosin light chain (MLC) promotes the

formation of dense stress fibers from short F-actins and induces

actin contraction (225, 226). After ischemia and hypoxia, the

normal actin cytoskeleton polymerizes into linear stress fibers

spanning the endothelial cell interior (220). Increased contraction

and tension of the actin cytoskeleton after polymerization occurs,

leading to cell shrinkage, impaired tight junctions, and ultimately

disruption of the BBB (225–227). Experimental evidence shows

that actin polymerization after acute ischemic stroke induces the

formation of stress fibers in the cytoskeleton, exposing the BBB

to greater vulnerability to damage by MMPs (221). MMP-9 is

usually considered to be the initiating factor of BBB disruption after

acute ischemic stroke (228). Contrary to previous perceptions, the

tension generated by stress fibers promotes the breakdown of tight

junction proteins (229). Preliminary studies have shown that long

before MMP-9 begins to degrade tight junctions, the redistribution

of junctional complex proteins induced by actin polymerization

causes structural changes in endothelial cells that disrupt the BBB

(221). The structural disruption makes BBB more susceptible to

degradation by MMP-9. Therefore, slowing down the cytoskeletal

structural changes of endothelial cells in the early phase of ischemic

stroke may bring a new therapeutic target for the protection of the

BBB (230, 231).

3.8. Zinc

Zinc is the second most abundant essential trace element in

the human body (232). It plays a crucial role in brain growth and

development as a neurotransmitter or neuromodulator. Imbalances

in zinc are closely associated with brain disorders (233). Most of the

zinc ions in the human body are bound to zinc-binding proteins,

while another portion exists as free zinc ions in organs, tissues,

body fluids, and secretions (234). Zinc transport proteins regulate

and maintain zinc ion homeostasis. Zinc-regulated transporter

(ZRT)/iron-regulated transporter (IRT)-like protein (ZIP) family

increases zinc intake, while the zinc transporter family (ZnTs)

mediates the efflux of zinc from the cytoplasm, increasing the

plasma zinc concentration.

BBB regulates zinc homeostasis in the brain. Studies have

shown that under normal physiological conditions, the BBB

isolates zinc between the plasma and the brain (235). Studies in

animal models have shown that zinc homeostasis is critical for

BBB integrity. Both zinc deficiency and zinc overload lead to

BBB disruption under pathological conditions. In the experiment,

dynamic magnetic resonance imaging measurements revealed that

zinc deficiency leads to a significant increase in BBB permeability

in rats exposed to high oxygen levels (236). In a rat model of

cerebral ischemia, accumulation of zinc in ischemic microvessels

was observed, leading to the loss of tight junction proteins

(occludin and claudin-5). Accumulated zinc mediates cerebral

ischemia-induced BBB injury by upregulating superoxide and

MMPs. Chelated zinc reduces BBB permeability in ischemic rats

(237). Interestingly, during the recovery phase of cerebral ischemia,

zinc has been shown to alleviate brain ischemic atrophy, promote

neural function restoration, and facilitate angiogenesis in the

process of cerebral ischemic repair through the astrocyte-mediated

HIF-1α/VEGF signaling pathway (238). A study compared the

serum zinc concentration levels between ischemic stroke patients

and healthy controls, and the results showed a significant decrease

in serum zinc concentration in stroke patients. Zinc may represent

an independent risk factor for stroke (239). Another study

compared the serum zinc concentrations in patients with acute

ischemic stroke to those with transient ischemic attacks. The results

showed that stroke patients had significantly lower serum zinc

concentrations (240). The fate of reduced serum zinc needs further

study. MicroRNA-30a (miR-30a) is a member of the miR-30 family

and is abundant in human endothelial cells. Experiments in cellular

and animal models of ischemic stroke demonstrated that miR-30a

can mediate BBB damage. miR-30a can directly negatively regulate

ZnT4. Inhibition of miR-30a decreases BBB permeability, prevents

degradation of tight junction proteins, and reduces intracellular

free zinc in endothelial cells (241). This suggests that miR-30a may

be an effective therapeutic target for ischemic stroke.

4. Discussion

Over the past 40 years, studies from animal models to clinical

studies have elucidated the occurrence, development, composition,

and maintenance of the BBB. The emergence of the NVU concept

has dramatically changed the field of cerebrovascular research,

prompting researchers to study and understand BBB physiology

and pathology from a systematic perspective. We now recognize

that the BBB is more than a simple physical anatomical barrier;

endothelial cells, astrocytes, and other cells work together as

functional complexes to regulate the barrier function. The basic

structure of the BBB is now well understood; however, new

insights into its fine structure are emerging. New technologies,

such as two-photon microscopy, may be used in future studies for

further in-depth investigation (41, 59, 77). Interactions between
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the components of the BBB are intricate. As mentioned above,

many common points of phosphorylation are concentrated in

the BBB cytoskeleton. We need to identify the processes that

regulate the barrier and the core of the pathway. The recently

discovered Mfsd2a protein is a current research hotspot, and

further clarification of its role in physiology and pathology will help

us better understand the BBB (41, 42). Future preclinical studies

should consider multiple cell types in the NVU and the effects of

peripheral systems on the NVU.

To date, the mechanism of BBB disruption in ischemic

stroke remains unclear, and significant discoveries have been

made regarding barrier permeability after disruption, such as the

discovery of biphasic barrier permeability. However, the timing of

the occurrence and maintenance of biphasic permeability must be

clarified to provide a basis for the timing of stroke treatment. We

also need an in vitro system to reliably reproduce the in vivo barrier,

in which changes in the BBB can be dynamically observed using a

stroke model. This ideal in vitro barrier requires the expression of

essential components; however, the endothelial cells of the CNS can

quickly lose their barrier properties in culture (242, 243). Recently,

different research teams have made progress in perfecting the in

vitro BBB model. In 2011, Hatherell et al. co-cultured endothelial

cells with astrocytes and pericytes to recapitulate NVUs in vitro,

increasing TEER (244). In 2013, Paolinelli et al. demonstrated that

activation of the Wnt/β-catenin pathway in vitro increased the

restrictiveness of endothelial cell monolayers without the need for

co-culture with other cell types (245). Lippmann’s study showed

that endothelial cells with barrier properties can be generated from

human pluripotent stem cells (246, 247). These new developments

provide insights for the establishment of in vitro models. In vitro

BBB models derived from stem cell sources may provide an ideal

experimental setting for future studies.

In ischemic stroke-induced BBB disruption, the destructive

factors may exhibit protective effects at different times, for example,

MMPs. We need to clarify the role of these “dual nature”

factors at different times to inform the timing of treatment for

cerebral infarction. Studies on BBB disruption have revealed that

endogenous barrier transport proteins may be potential targets for

CNS drug transport (248). Neuronal protection alone may not

improve the neurological prognosis for treating cerebral infarction.

Therefore, therapeutic approaches that favor multiple cell types

must be considered. Astrocytes are one of the most abundant and

widely exposed cellular components. Thus, these compounds can

potentially serve as therapeutic targets (52).

These detectable components are clinically valuable when

structural proteins leak into the blood or CSF following BBB

disruption after a stroke. For example, CSF albumin, IgG per

serum albumin, or IgG ratio measurement can be used as clinical

biomarkers to assess the integrity of the BBB (249–253). Serum

S100B is a protein expressed by astrocytes in the brain and is

considered a possible candidate for detecting BBB damage caused

by astrocytes (254). Future research should focus on finding easily

detectable BBB-related markers of cerebral infarction injury to

provide a new basis for diagnosis and treatment.
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