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Background: R2* relaxometry and quantitative susceptibility mapping can 
be combined to distinguish between microstructural changes and iron deposition 
in white matter. Here, we aimed to explore microstructural changes in the white 
matter associated with clinical presentations such as cognitive impairment 
in patients with idiopathic normal-pressure hydrocephalus (iNPH) using R2* 
relaxometry analysis in combination with quantitative susceptibility mapping.

Methods: We evaluated 16 patients clinically diagnosed with possible or probable 
iNPH and 18 matched healthy controls (HC) who were chosen based on similarity 
in age and sex. R2* and quantitative susceptibility mapping were compared using 
voxel-wise and atlas-based one-way analysis of covariance (ANCOVA). Finally, 
partial correlation analyses were performed to assess the relationship between 
R2* and clinical presentations.

Results: R2* was lower in some white matter regions, including the bilateral 
superior longitudinal fascicle and sagittal stratum, in the iNPH group compared 
to the HC group. The voxel-based quantitative susceptibility mapping results 
did not differ between the groups. The atlas-based group comparisons yielded 
negative mean susceptibility values in almost all brain regions, indicating no 
clear paramagnetic iron deposition in the white matter of any subject. R2* and 
cognitive performance scores between the left superior longitudinal fasciculus 
(SLF) and right sagittal stratum (SS) were positively correlated. In addition to that, 
R2* and gait disturbance scores between left SS were negatively correlated.

Conclusion: Our analysis highlights the microstructural changes without iron 
deposition in the SLF and SS, and their association with cognitive impairment and 
gait disturbance in patients with iNPH.
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1. Introduction

Normal-pressure hydrocephalus (NPH) is a clinical entity 
proposed by Adams et al. (1) that presents as a triad of cognitive 
impairments, gait disturbances, and urinary incontinence. This 
disease is characterized by enlarged ventricles; nonetheless, the 
cerebrospinal fluid (CSF) pressure is within the normal range, and 
symptoms improve following shunt surgery.

Magnetic resonance imaging (MRI) findings of idiopathic NPH 
(iNPH), also known as disproportionately enlarged subarachnoid 
space hydrocephalus (DESH), include ventriculomegaly, enlarged 
Sylvian fissures, tight high-convexity and medial subarachnoid spaces, 
and localized sulcal dilatation (2, 3). Furthermore, periventricular and 
deep white matter (WM) changes are observed more frequently in 
these patients than in healthy controls (HC) (4). Several studies in 
iNPH patients have reported that diffusion tensor imaging (DTI) can 
detect microstructural changes in the WM that are related to 
symptoms (5, 6). Studies vary in confirming the presence and location 
of changes in fractional anisotropy (FA) and mean diffusivity (MD), 
whereas WM alterations include an increase in FA and/or MD. These 
diffusion-based measures, however highly sensitive, have distinct 
limits in accurately identifying tissue microstructural conditions. This 
may be due to their varying susceptibility to factors such as axon 
density, cell swelling, fiber structure, and axon radius (7).

R2* relaxometry analysis can assess iron deposition on multiple 
spoiled gradient echo sequences (mGRE) and is sensitive to WM 
microstructural changes such as myelin loss (8, 9). This approach has 
advantages over DTI, such as a shorter imaging time, higher spatial 
resolution, and sensitivity to environmental changes in 
WM. According to research, slight demyelination, axonal and 
oligodendrocyte loss, and an increase in extracellular space indicate a 
significant decrease in R2* (10). On the other hand, quantitative 
susceptibility measurement (QSM) is highly sensitive to iron 
deposition (11). Therefore, R2* relaxometry analysis can be used in 
combination with QSM to differentiate between microstructural 
changes and iron deposition, presenting an estimation of the biological 
particularity of WM and promoting our understanding of pathological 
changes in WM in iNPH (10).

Herein, we report the combination of R2* relaxometry with QSM 
in patients with iNPH vs. HCs. We  aimed to evaluate the 
microstructural changes in the WM of patients with iNPH using 
voxel- and atlas-based R2* and susceptibility analyses. Furthermore, 
we aimed to investigated the association between R2* and clinical 
presentations in iNPH. We hypothesized that WM microstructural 
changes without iron deposition are associated with clinical 
presentations in patients with iNPH.

2. Materials and methods

2.1. Participants

In this retrospective, single-center, observational study, 
we enrolled 16 patients with clinically diagnosed possible or probable 
iNPH (nine men and seven women; mean age ± SD:81.9 ± 3.4 years) 
and 18 age- and sex-matched healthy controls (HCs; 10 men and eight 
women, mean age ± SD:81.4 ± 3.8 years). All patients presented with 
DESH and were diagnosed according to the diagnostic criteria 

outlined in the Japanese guidelines for iNPH management (12). 
Cognitive functions were assessed using the Mini-Mental State 
Examination (MMSE) and activities of daily living were scored using 
the modified Rankin Scale (mRS). To classify the symptoms of patients 
with iNPH, we scored gait, cognitive function, and voluntary urinary 
control function using the INPH grading scale (INPHGS 0 = normal; 
4 = severe disability) (13). This study was approved by the Toyokawa 
City Hospital Institutional Review Board.

2.2. Magnetic resonance imaging 
acquisition

Magnetic resonance imaging scans were acquired using a 3 T 
magnetic resonance imaging scanner (Ingenia 3.0 T; Philips Medical 
Systems International, Best, The Netherlands). A three-dimensional 
(3D) multiple spoiled gradient echo sequence (mSPGR) was acquired 
in the axial plane to estimate R2* and perform QSM. The mSPGR scan 
parameters were as follows: FOV, 192 × 192 × 144 mm3; acquisition 
matrix size, 192 × 192 × 144; TR, 34.9 ms; TE, 6.0–30.8 ms at 6.2-ms 
intervals; number of echoes, 5; parallel imaging factor, 2; and flip 
angle, 15°. Then, to spatially normalize R2* and the QSM values, the 
3D T1-weighted images were acquired using a magnetization-
prepared spoiled gradient echo sequence (MP-SPGR) in the sagittal 
plane and with the following scan parameters: FOV, 256 × 256 mm2; 
acquisition matrix size, 224 × 224; number of slices, 144; slice 
thickness, 1.2 mm; TR, 4.2 ms; TE, 2.3 ms; inversion time, 900 ms; 
interval between successive inversion pulses, 2,500 ms; parallel 
imaging factor, 2; and flip angle, 9°. T2-weighted turbo spin echo, 
fluid-attenuated inversion recovery, diffusion-weighted, and 
T2*-weighted images were acquired routinely to identify and exclude 
any brain abnormalities.

2.3. R2* relaxometry analysis for evaluation 
of microstructural changes

To detect microstructural WM changes, R2* relaxometry analysis 
was performed using multiple-magnitude images. The R2* value was 
fitted from the multi-magnitude data to the mono-exponential R2* 
decay using auto-regression on linear operations, which provides a 
fast and accurate R2* estimation using the maximum-likelihood fit of 
an autoregressive model (14). Note that excessive signal loss due to 
macroscopic field inhomogeneity was negligible in the WM. The 
macroscopic field inhomogeneity effect mainly occurs close to the 
brain-air interface, leading to signal leakage in neighboring voxels. 
However, signal loss due to signal leakage was minimized in the WM 
at the center of the brain in the TE range we used (10).

2.4. QSM analysis for evaluation of iron 
deposition

Because iron deposition as well as microstructural WM changes 
contribute to the R2* value, simultaneous evaluation is necessary to 
distinguish between the two (15). We  thus performed the QSM 
analysis, which can detect iron deposition within a voxel, using the 
same dataset that was entered into the R2* relaxometry analysis. The 
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phase images in the mSPGR were subjected to Laplacian-based phase 
unwrapping (16). Each unwrapped phase of each TE was then 
removed from the background field caused by the tissue-air interface 
using sophisticated harmonic artifact reduction for phase data with 
varying kernel sizes (17–19). Weighted averaging was performed on 
the local fields of each TE based on the estimated R2*map (17, 18). 
The susceptibility map was reconstructed from the local field map 
using improved sparse linear equations and the least-squares method 
(20, 21). The mean CSF susceptibility value in the lateral ventricles 
extracted from the R2* map was subtracted from the susceptibility 
map as a zero reference for the susceptibility value (22).

2.5. Preparation of voxel-based analyses

T1-weighted structural images were segmented into WM, gray 
matter, and CSF using statistical parametric mapping 12 (SPM12). 
We visually confirmed that there were no segmentation errors. The 
WM images were spatially normalized, and the volumetric 
information preserved using a study-specific template generated by 
diffeomorphic anatomical registration and the exponentiated Lie 
algebra algorithm (23). The mask for voxel-based analysis was created 
with the SPM12 toolbox (24). To transform the R2* and QSM maps 
into normalized space, the magnitude image of the first echo in the 
mSPGR was co-registered with the T1-weighted images (25–30). The 
R2* and QSM maps were then transformed into standard space using 
the same transformation parameters (10). Both images were smoothed 
using an 8-mm Gaussian kernel.

2.6. Statistical analyses

Statistical analyses were performed using Stata 17.0 (StataCorp, 
College Station, TX, United States). The Mann–Whitney U-test for 
continuous data and Pearson’s chi-square test for categorical data were 
used to identify significant intergroup differences. A voxel-wise 
one-way analysis of covariance (ANCOVA) in SPM 12 was used to 
compare R2* and QSM through the whole brain between groups. 
Using the family-wise error (FWE) method and clusters of ≥100 
contiguous voxels, a significance level of p = 0.05 was applied with 
multiple comparison corrections. The WM atlas created by Johns 
Hopkins University (JHU-WM atlas) was applied in the atlas-based 
ANCOVA to determine the anatomical locations that showed 
significance in the voxel-based analysis (31). Finally, the association 
between R2* and clinical presentations was examined using partial 
correlation analysis. All variables were adjusted for age and sex (used 
as covariates in the analyses).

3. Results

3.1. Participant characteristics

The participant demographics are summarized in Table  1. 
Participants were age- (p = 0.65) and sex-matched (p = 0.97). The 
iNPH and HC groups exhibited significant differences in MMSE 
(p = 0.02) and mRS (p < 0.001) scores. Patients with iNPH presented 
with gait disturbances (94%), cognitive dysfunction (100%), and 

urinary dysfunction (81%), with cognitive symptoms being the 
most severe.

3.2. R2* differences across groups

Representative images of the T1-weighted images, R2* maps, and 
susceptibility maps for the iNPH and HC groups are shown in 
Figure  1. The voxel-based R2* comparisons between the groups 
yielded R2* values that were significantly lower in several WM 
regions, including the bilateral superior longitudinal fasciculus (SLF) 
and sagittal stratum (SS), in the iNPH compared to the HC group 
(FWE-corrected p < 0.05; Figure  2). The significant regions in the 
voxel-based comparisons between groups are listed in Table 2.

3.3. QSM differences across groups

The voxel-based QSM comparisons between the groups showed 
no significant differences in susceptibility values (Figure 2). Before the 
atlas-based analysis, higher paramagnetic and local magnetic 
distortions caused by cerebral microbleeds (QSM > 1.0 ppm) were 
excluded. The results for WM susceptibility were either negative or 
near zero. The average susceptibility values for each of the JHU-WM 
atlas labels are listed in Supplementary File 1. These findings revealed 
no paramagnetic iron deposition in the WM of any subject.

3.4. Correlation between R2* and clinical 
presentations in patients with iNPH

Positive correlations between MMSE scores and R2* were 
observed in several WM regions, notably the left SLF and right SS, and 
MMSE scores had a positive correlation among patients with iNPH 
(R = 0.523, p < 0.05 in the left SLF and R = 0.587, p < 0.02 in the right 
SS; Figure 3), according to partial correlation analyses with covariate 
adjustment. Similarly, there was a negative correlation between 
INPHGS gait disturbance score and R2* in the left SS (R = −0.540, 
p  < 0.05). There was no correlation between INPHGS urinary 
dysfunction score and R2*.

TABLE 1 Demographic and clinical characteristics of participants.

iNPH Control p value

n [male/female] 16 [9/7] 18 [10/8] 0.97

Age (years) 81.9 (3.4) 81.4 (3.8) 0.65

MMSE 18.3 (6.2) 23.3 (4.0) 0.02

mRS 2.6 (0.7) 1.1 (0.3) < 0.001

iNPHGS

 Gait disturbance 1.8 (0.5) -

 Cognitive impairment 2.4 (0.7) -

 Urinary incontinence 1.6 (0.89) -

Data presented as mean (standard deviation). iNPH, Idiopathic normal pressure 
hydrocephalus; MMSE, Mini-mental state examination; mRS, modified Rankin Scale; 
iNPHGS, Idiopathic normal pressure hydrocephalus grading scale.
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4. Discussion

In this study, voxel-based R2* values were compared between 
patients with iNPH and HCs to evaluate WM alterations. We found 
that R2* values in the iNPH group were lower in some WM regions, 
including the SLF and SS, and that microstructural changes without 

iron deposition in the SLF and SS were associated with cognitive 
impairment and gait disturbance in patients with iNPH.

According to the concepts of R2* relaxometry analysis, iron 
deposition as well as microstructural changes in WM, such as 
demyelination, are affected (9). In the voxel-based QSM comparisons, 
we found no significant differences in susceptibility values between 

FIGURE 1

Representative T1-weighted images and R2* and susceptibility maps. Representative T1WI images (A,D), R2* map (B,E), and susceptibility map (C,F) for 
the iNPH and HC groups. iNPH, idiopathic normal-pressure hydrocephalus; HC, healthy control; T1WI, T1-weighted image.

FIGURE 2

Results of a whole-brain group comparison of R2*. R2* is lower in the iNPH group than the HC group (A). The specific anatomical regions are listed in 
Table 2. There are no significant differences in susceptibility values between the iNPH and the HC groups (B). iNPH, idiopathic normal-pressure 
hydrocephalus; HC, healthy control.
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the two groups. Additionally, the negative average susceptibility values 
in each group indicated that R2* depended exclusively on myelin 
content and accompanying microstructural changes. Furthermore, 
these findings suggests that myelin content and microstructural 

differentiation, rather than iron deposition, determine the 
susceptibility contrast in the WM in iNPH.

The significant decrease in R2* we observed in patients with iNPH 
in the voxel-based analysis indicates slight demyelination and 

TABLE 2 Whole-brain comparisons of R2* between patients with iNPH and HC.

Peak MNI coordinates

Group comparison Cluster size 
(number of 

voxels)

X Y Z Peak T-value Anatomical region

HC > iNPH 10,786 12 −16 36 9.81 Genu of corpus callosum

Body of corpus callosum

Splenium of corpus callosum

Retrolenticular part of 

internal capsule, L

Anterior corona radiata, R, L

Superior corona radiata, R, L

Posterior corona radiata, R, L

Posterior thalamic radiation, 

R, L

Sagittal stratum, L

Cingulum, R, L

Fornix/ Stria terminalis, L

Superior longitudinal 

fasciculus, R, L

452 39 −18 −15 6.48 Retrolenticular part of 

internal capsule, R

Posterior thalamic  

radiation, R

Sagittal stratum, R

Fornix/Stria terminalis, R

iNPH, idiopathic normal pressure hydrocephalus; HC, healthy control; R, right; L, left.

FIGURE 3

Relationship between MMSE and R2*. MMSE scores show a positive correlation with R2*. The relationship between R2* and MMSE scores in the 
(A) right sagittal stratum and (B) left superior longitudinal fascicle is shown. MMSE, mini-mental state examination.
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extracellular space enlargement (10). Pathologically, damage to both 
the myelin and myelin-sheathed axons has been detected in iNPH (32, 
33). Additionally, extracellular space enlargement can be described 
radiologically by increased MD in iNPH (5). Our findings are 
consistent with previous diffusion-based analyses of iNPH. Although 
water molecular diffusion can be used in DTI analyses to detect WM 
changes, quantitative DTI measures tend to render indispensable 
effects from a variety of factors (7). In contrast, R2* relaxometry 
analysis combined with QSM aims to separate microstructural 
changes from iron deposition, offering a more accurate and 
biologically true assessment of WM. However, the pathogenic 
significance of WM changes identified by R2* remains undetermined, 
and the exact cause of iNPH is still debatable. Chronic 
ventriculomegaly develops due to abnormal CSF dynamics, such as 
increased CSF pulsatility and decreased CSF drainage. One 
consequence is CSF diapedesis, which causes periventricular edema, 
disturbs normal brain homeostasis, has mass effects, and leads to local 
hypoperfusion/hypoxia. This crucial pathology leads to a series of 
sequential brain damage events, such as blood–brain barrier 
disruption, astrogliosis, neuroinflammation, and metabolic 
disturbance. All these events can cause white and gray matter lesions 
to form, which are the foundation for the clinical symptoms of 
iNPH (34).

This study observed an association between R2* changes and 
cognitive function in the SLF and SS. On diffusion MRI, the SLF has 
been linked to executive functions, which is also crucial to language 
and language disorders as well as the neurological basis of higher 
brain function in general (35, 36). On the other hand, SS is related 
to information processing speed (37) and may influence 
performance on the Frontal Assessment Battery (FAB) and the Trail 
Making Test (TMT) (35). Additionally, SS has been associated with 
nonverbal semantic processing, visuospatial processing, face 
recognition, and visual memory (38). Thus, our findings are 
consistent with previous studies that used DTI to assess cognitive 
dysfunction in patients with iNPH (39). This study also observed 
an association between R2* changes and gait disturbance in the 
SS. In a single photon emission computed tomography study, the 
supplementary motor area, medial primary sensorimotor area, the 
striatum, the cerebellar vermis, and the visual cortex were found to 
be activated during voluntary walking in normal subjects (40). Our 
findings suggest that SS-associated visuospatial cognitive function 
may be related to gait disturbance in iNPH. Previous DTI studies 
have reported that anterior thalamic radiation, forceps minor, 
anterior limb of the left internal capsule, left supplementary motor 
area, and corpus callosum regions were correlated with gait 
disturbance (41–43).

However, this study has several limitations. First, because 
we compared patients based on their clinical diagnosis, we could 
not directly confirm the correlation between clinical presentations 
and pathological changes. Future studies should attempt to relate 
pathological changes to the regions detected in this study (44). 
Second, we were unable to completely rule out the possibility of 
other causes of dementia in our participant group. iNPH can 
be complicated by vascular dementia or Alzheimer’s disease, but 
no criteria are available to ensure that these conditions are 
excluded. Third, we used MMSE scores as a proxy of cognitive 
dysfunction (45). However, the FAB has been reported to 

be sensitive to frontal lobe dysfunction and is already routinely 
used in reports, because executive dysfunction is a characteristic 
of cognitive dysfunction in patients with iNPH. Further 
evaluations are therefore expected to use tools such as the FAB 
and TMT instead. Fourth, we used INPHGS as an index of gait 
disturbance. For a more detailed evaluation, it is necessary to 
examine the relationship with the timed up and go test, as has 
been previously reported. Fifth, we did not evaluate therapeutic 
effects; the usefulness of this marker in indications for treatment 
needs to be examined in future studies. Further studies are also 
expected to evaluate the efficacy of shunting in patient groups 
similar to those we investigated here.

5. Conclusion

Our voxel-based group comparisons yielded a lower R2* in our 
iNPH group in some WM regions, including the SLF and SS, and 
showed that microstructural changes without iron deposition in these 
regions were associated with cognitive impairments. These findings 
indicate the possibility of using R2* relaxometry analysis for assessing 
cognitive impairment in iNPH. Further studies are required to 
establish the utility of R2* relaxometry as a biomarker of cognitive 
impairment in patients with iNPH.
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