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Objective: This study aimed to evaluate the progression of clinical and preclinical

trials in Charcot-Marie-Tooth (CMT) disorders.

Background: CMT has historically been managed symptomatically and with

genetic counseling. The evolution of molecular and pathologic understanding

holds a therapeutic promise in gene-targeted therapies.

Methods: ClinicalTrials.gov from December 1999 to June 2022 was data

extracted for CMT with preclinical animal gene therapy trials also reviewed by

PubMed search.

Results: The number of active trials was 1 in 1999 and 286 in 2022.

Academic settings accounted for 91% and pharmaceutical companies 9%.

Of the pharmaceutical and academic trials, 38% and 28%, respectively, were

controlled, randomized, and double-blinded. Thirty-two countries participated:

the United States accounted for 26% (75/286). In total, 86% of the trials were

classified as therapeutic: 50% procedural (21% wrist/elbow surgery; 22% shock

wave and hydrodissection therapy), 23% investigational drugs, 15% devices,

and 11% physical therapy. Sixty-seven therapeutic trials (49%) were designated

phases 1–2 and 51% phases 3–4. The remaining 14% represent non-therapeutic

trials: diagnostic testing (3%), functional outcomes (4%), natural history (4%), and

standard of care (3%). One-hundred and three (36%) resulted in publications.

Phase I human pharmaceutical trials are focusing on the safety of small molecule

therapies (n = 8) and AAV and non-viral gene therapy (n = 3). Preclinical animal

gene therapy studies include 11 di�erent CMT forms including viral, CRISPR-Cas9,

and nanoparticle delivery.

Conclusion: Current CMT trials are exploring procedural and molecular

therapeutic options with substantial participation of the pharmaceutical industry

worldwide. Emerging drug therapies directed at molecular pathogenesis are

being advanced in human clinical trials; however, the majority remain within

animal investigations.
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Introduction

Charcot-Marie-Tooth (CMT), also known as hereditary motor

and sensory neuropathy (HMSN), refers to a group of inherited

neuropathies of divergent genetic etiologies that affect motor

greater than sensory peripheral nerves, typically without autonomic

nervous system involvement (1). Collectively, CMT is globally

the most common inherited neuropathy with PMP22 duplications

(CMT1A) and its reciprocal deletionHNPP (hereditary neuropathy

with pressure palsies) common. Specifically, PMP22 deletions

are reported in 1:1698 newborns (2), and when considering the

reciprocal duplication, a much higher overall rate must exist for

PMP22 mutations. Clinical features of CMT typically include

childhood or adolescence onset, gradual progressive declines,

length-dependent motor deficits, stocking-glove sensory loss (large

fiber sensory predominant), and foot and ankle deformities (pes

cavus, hammertoes, and pes planus). Accompanying motor deficits

include muscular atrophy in the legs, decreased deep tendon

reflexes, and balance difficulties leading to frequent tripping and

ankle sprains. Quality of life and disabilitymeasures are comparable

to stroke patients when upper extremity hand dysfunction is

included in the disability assessments (3). Exome sequencing

has allowed for an understanding of the range of genotype–

phenotype correlations, including the overlap of CMT with

previously considered discordant disorders such as hereditary

motor neuropathy (HMN) and hereditary sensory and autonomic

neuropathies (HSAN) (4). When considering this overlap, there are

well over 100 genes responsible for CMT phenotypes (1).

Historically, interventional therapies for CMT have been

limited to supportive measures including genetic council,

orthopedic support, and surgical interventions of the feet and

ankles (5). Recently, drug-based genetic therapies have begun

to emerge in other neuromuscular disorders including spinal

muscular atrophy (6), transthyretin amyloidosis (7, 8), and adrenal

leukodystrophy (9). These interventions have translated into

meaningful improved morbidity and mortality with relative

safety now approved by the FDA. Gene editing strategies include

the application of targeted antisense oligonucleotide therapies,

pre-RNA splicing therapy, gene replacement therapy by adeno-

associated virus (AAV) viral vectors, clustered regularly interspaced

short palindromic repeats (CRISPR) with CRISPR-associated

protein 9 (Cas9) therapy, and lentivirus (LV) hematopoietic stem

cell transplant. The success in the treatment of these previously

fatal disorders has created optimism for the development of similar

approaches in CMT patients.

In this study, we aimed to retrospectively assess the progression

of clinical trials in CMT and review current laboratory strategies

anticipating future therapeutic options.

Methods

ClinicalTrials.gov was reviewed from December 1999 to June

2022 for CMT or HMSN. This included trials that contained CMT

or HMSN as a MeSH term (keywords that are manually assigned

by librarians at the National Library of Medicine) or included CMT

and HMSN in the research links provided by the National Library

of Medicine. Trials that were categorized as withdrawn, suspended,

or terminated were excluded. The remaining trials were categorized

based on various parameters, including intervention type (e.g.,

procedural, drug, device, and functional outcomes), study design,

whether the trial occurred in an academic or pharmaceutical

setting, trial status (recruiting, active, and completed), and the

country where the trial was conducted. Each trial was further

researched to determine whether any associated publications

existed. Publications were verified by comparing titles, trial dates,

and listed authors.

For the up-to-date review of animal studies, a PubMed search

was performed for studies over the past 5 years. The queried

search included the key terms “gene therapy”, “animal studies”

and “Charcot-Marie-Tooth” or “Hereditary Motor and Sensory

Neuropathy”. Identified manuscripts that were reviewed articles

were included and the original manuscripts reviewed as related

specifically to gene therapy.

Results

Human clinical-trial review

Five hundred eighty-nine trials were identified in

clinicaltrials.gov, of which 286 of the current trials met the

inclusion criteria, with details summarized along with available

links to publications in the Supplementary Table 1. The largest

number of trials occurred in the United States (26%), followed

by Taiwan (10%) and Turkey (9%) (Figure 1). These trials were

primarily conducted in academic settings (91%; 261/286), with

the remainder conducted in pharmaceutical settings (9%; 25/286).

In total, 29% (82/286) were randomized, double-blinded, and

controlled, making up 28% (73/262) of academic trials and 38%

(9/24) of pharmaceutical trials.

The cumulative number of trials increased from 1 in 1999

to 41 in 2012 and 286 by 2022, with the most growth occurring

in the last two decades (Figure 2). In total, 86% (245/286) of

the trials were therapeutic testing of active interventions versus

14% non-therapeutic (diagnostic testing, functional outcomes,

natural history, and standard of care). Most current therapeutic

trials (50%; 124/245) were procedural interventions (Figure 3).

The most frequently studied procedure was carpal/cubital tunnel

release surgery (21%; 26/124), followed by extracorporeal shock

wave therapy (11%; 14/125) and nerve hydrodissection therapy

(11%; 14/124).

After procedural interventions, drug interventions were the

most studied (20%; 57/286), followed by device interventions (13%;

36/286), physical therapy interventions (10%; 28/286), and trials

investigating the natural history of disease (5%; 13/286). Of the

therapeutic trials, 67 were designated with a specific phase. Trials

in early phases 1 and 2 (49%; 33/67) and late phases 3 and 4 (51%;

34/67) were equally split.

Cumulative trials across all types of interventions have

increased in the last decade from 40 to 286, rising noticeably

from 34% in 2015 to 51% in 2022. Prior to then, procedural trials

and drug trials had competed for the highest prevalence, with

procedural trials finally taking the lead in 2013. At lower rates, trials

investigating natural history of disease, diagnostic testing, standard

of care, and functional outcomes have been comparable to each
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FIGURE 1

Charcot-Marie-Tooth trials by geographic location. Distribution and numbers of trials by geographic locations within clinicaltrials.gov 2022. Seen is

the extent of trial across the world most commonly in the United States.

FIGURE 2

Retrospective Charcot-Marie-Tooth trials by intervention type. Shown is the distribution of di�erent interventional trials within clinicaltrials.gov over

time from 1999 to 2022 with an increase in procedural and drug studies seen most rapidly.
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FIGURE 3

Current Charcot-Marie-Tooth trials by type. Current trials in

clinicaltrials.gov 2022 show distribution of interventional and

non-interventional trials.

other over the past two decades. They have increased from 2.5 to

4% in the last decade, with natural history investigations taking a

slight lead over the others in 2020.

From all trials, 36% (103/286) resulted in a publication;

35% (100/286) are still active or recruiting and, therefore, have

not made it to the publication stage. Of the remaining, 28%

(79/286) represent completed trials that have not been published.

Only three trials have had results posted to ClinicalTrials.gov

but with no corresponding publication. More recently, trials

have started to investigate small molecule therapies (3%; 8/256),

focusing specifically on the safety of utilizing these therapies.

Additionally, trials investigating the use of AAV/non-viral gene

therapy (1%; 3/286) in treating neuropathy have begun to emerge.

Two additional trials from June of 2022 forward posted to

ClinicalTrials.gov in 2023 not included in our 286 are a non-

randomized trial titled “Research of SORD-CMT Natural History

and Epalrestat Treatment” (NCT05777226). This study investigates

the safety and efficacy of epalrestat, an aldose reductase inhibitor, in

SORD-CMT2 patients and second to “The Safety and Tolerability

of CLZ-2002 in Patients with Charcot-Marie Tooth Disease”

(NCT05947578). CLZ-2002 is a tonsillar mesenchymal stem cell

that is a neuronal regeneration-promoting cell (NRPC) delivered

by intramuscular injection.

Promising gene therapies in preclinical
animal studies

From the PubMed search of animal gene therapy studies in

CMT, 27 articles were most recently identified in July 2023 (10),

with the most relevant studies with references listed (Table 1).

Targeted gene therapy approaches include utilization of viral

delivery by LV (n = 4), AAV (n = 9), CRISPR-Cas9 (n = 2),

squalene nanoparticles (n = 1), and antisense oligonucleotides (n

= 1). Each has shown early success including in phase 1 animal

trials for both efficacy and safety.

Articles not directed toward gene therapy but with

animal benefits identified include utilization of sephin1/IFB-

088/icerguastat in CMT1A and CMT1B, a non-specific unfolded

protein response modulator (29); curcumin-cyclodextrin/cellulose

nanocrystals antioxidant therapy in CMT1A (30); histone

deacetylase 6 (HDAC6) inhibitor, SW-100, in neurodegeneration

protection in CMT2A (31, 32); and exogenous pyruvate, a

glycolytic product used in tremblerJ PMP22 model, for distal axon

energy supplement (33).

Discussion

The results of this retrospective study of clinical trials

demonstrate an increase in interventional research in the field

of CMT over the past two decades, with identifiable evidence

of progress toward more active interventions, and progress in

disease-specific mechanism including gene therapy with additional

early promise among animal studies. Participation from both

academic and pharmaceutical companies is noted with trials

occurring worldwide. Most recent trials are centered on identifying

therapeutic approaches for CMT. The number of procedural

therapies outweighs other therapeutic trials currently. Types of

procedural trials included testing drugs and comparing imaging

modalities, with many focused on investigating the outcomes

of surgical procedures. Specifically, surgical procedures involving

decompression of the carpal and ulnar tunnels were frequently

studied procedures, with meaningful improvements in patient care

having been published (34, 35). CMT1A patients have been shown

to have meaningful improvement when affected by carpal tunnel

syndrome and treated by surgical flexor retinaculum unroofing.

Decompression surgery in these cases has been used to restore

sensory and motor function in CMT patients and has decreased the

recurrent symptoms in critical hand function, reducing disability.

Patients with high carpal tunnel questionnaire scores and activity-

induced symptoms are noted to benefit the most.

Extracorporeal shock wave therapy (ESWT) has also been

investigated as a potential new therapy for other musculoskeletal

disorders within different forms of peripheral neuropathies

(36, 37). ESWT utilizes the transcutaneous application of

acoustic waves theorized to suppress inflammatory reactions and

promote neurogenesis and angiogenesis surrounding damaged and

degenerative tissues including within tendons (38). It has been

demonstrated to treat carpal tunnel syndrome by blinded sham

control prospective study in non-CMT patients and has been

described to encourage proliferation of Schwann cells and axonal

regeneration during nerve repair (22). Although ClinicalTrials.gov

lists ESWT with CMT, there are no publications and outcomes

reported to date and will be needed before the acceptance of this

approach with separate investigation likely needed in different

CMT forms, given the range of pathogenic mechanisms.

The increase in the number of procedural trials represents

a shift toward therapies that improve patient conditions beyond

supportive care. In CMT patients, meaningful benefits of ankle

foot surgery by tibialis posterior transfer and extensor hallucis
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TABLE 1 Preclinical animal and laboratory studies.

Route of delivery CMT Delivery Target Stage Mechanism result

Intrathecal

Intravenous

CMT2A AAV8 SARM1 In vivo Reduced axonal degeneration (11)

CMT2D AAV9 GARS In vivo Delayed axonal degeneration (12)

CMT2E CRISPR/Cas9 NEFL In vivo Phenotypic rescue (13)

CMT2S AAV9 IGHMBP2 Phase 1 clinical trial Phenotypic rescue (14)

Intrathecal

Intra-nerve

Intravenous

CMT1X AAV9 MPZ, GJB1 In vivo Phenotypic rescue (15)

LV MPZ, GJB1 In vivo Phenotypic improvement (16)

CMT4C LV SH3TC2 In vivo Incomplete rescue (17)

CMT4J AAV9 CBA, FIG4 In vivo Incomplete rescue (18)

CMT1B LV MANF In vivo Protective effect (19)

CMT1A AAV9 PMP22, shRNA In vivo Improved myelination (20)

PMP22, miR In vivo Phenotypic rescue (21)

LV PMP22, shRNA In vivo Rescue of myelination (22)

Squalene NP PMP22, siRNA In vivo Functional recovery (23)

CRISPR/Cas9 PMP22 In vivo Myelination rescue (24)

ASO PMP22 In vivo Phenotypic improvement (25)

Intra-muscular CMT1A AAV1 NT-3 Phase 1 clinical trial Histologic functional improvement (26)

CMT1X AAV1 NT-3 In vivo Phenotypic improvement (27)

CMT2D AAV1 NT-3 In vivo Phenotypic improvement (28)

AAV, adeno-associated virus; LV, lentivirus; NP, nanoparticles; SARM1, sterile alpha and TIR motif containing 1; miR, microRNA; IGHMBP2, immunoglobulin mu DNA binding protein 2;

MPZ, myelin protein zero; GJB1, gap junction beta 1; SH3TC2, SH3 domain and tetratricopeptide repeats 2; CBA, chicken β-actin; MANF, Mesencephalic astrocyte-derived neurotrophic factor;

shRNA, small hairpin RNA; siRNA, short interfering RNA; NT-3, neurotrophin-3; HPHGF, human paracrine hepatocyte growth factor.

longus transfer with calcaneal osteotomy for patients with marked

cavovarus deformity (high arches and inward turning of the ankle)

are found, in whom conservative orthosis and physical therapy

interventions have failed (5, 39, 40). While this demonstrates

progress in the procedural field, it also suggests a greater

need for biological therapeutic engagement from academic and

pharmaceutical participants, which is likely forthcoming based on

our review of promising approaches currently being attempted in

animals. Our review suggests <5% of human trials deal with AAV

or small molecular therapies. However, the emergence of molecular

approaches to human CMT therapies will be in accordance

with safety and efficacy of emerging laboratory animal studies

summarized with encouraging results including phase 1 animal

trials underway (Table 1) (10). The described ongoing animal and

laboratory-based studies emphasize the switch in focus to drug and

gene therapies for CMT.

Specific trials in this review include a focus on the use of viral

vectors in gene therapy and non-gene therapy by combinatorial

drug therapy utilizing agent PXT3003. The PXT3003 includes three

unlikely individual components, namely baclofen, naltrexone, and

sorbitol. Baclofen is a GABA-B receptor agonist that is currently

used to treat muscle spasticity; naltrexone is an opioid receptor

antagonist that is used in the management of alcohol addiction; d-

sorbitol is a muscarinic receptor antagonist used in the treatment

of intestinal disorders. The combination of these drugs together

has been shown to downregulate the expression of PMP22 mRNA

and improve myelination (41). This novel therapy showed recent

success in a phase 3 trial (NCT02579759), which confirmed its

safety and tolerability, though it may not be widely accepted by

the physicians and scientists in the CMT community. Ultimately,

patients and physicians will consider cost vs. efficacy, and theremay

be a theoretical concern of potential long-term interference with

central nervous system PMP22 expression (42). Regardless, the trial

showed that patients in the group treated with high-dose PXT3003

showed improvements beyond stabilization without significant

short-term side effects (43). It currently has been provided fast-

track designation by the US Food and Drug Administration

for CMT1A.

The limitations of our study are important to acknowledge

as this study focused only on trials that were posted on

ClinicalTrials.gov, not necessarily completed, so there may be a

lack of reported research results. Nevertheless, we think the results

do indicate the direction where the field is headed and therefore

are meaningful. Additionally, geographic data may be biased as

trials conducted in the United States may be more likely to be

reported on ClinicalTrials.gov, leading to an underrepresentation

of trials conducted in other countries. Furthermore, what is

portrayed as an increase in the number of trials across all types

of interventions could simply be researchers reporting their trials

on ClinicalTrials.gov more consistently as the utilization of online

databases has increased over the years.

Preclinical trials which are integral for gene therapy from

animal models appear to be robust in this area. Viral and non-viral

gene therapies in both rodent and non-human-primate models
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show exciting promise for clinical applications in CMT (10). Recent

studies show that the majority of CMT gene therapy trials are in the

in vivo phase and utilize adeno-associated virus and lentivirus as

vectors. These studies have contributed significantly to the field of

CMT and provide evidence of new pathways for therapy; they are

important and predicted to be the major approach in approaching

a cure in the diverse CMT disorders.

Conclusion

This study provides evidence in CMT of increased

investigational trials of both procedural and pharmacologic

studies with increased involvement of both pharmaceutical and

academic centers worldwide. The infrastructure created by these

human clinical trials combined with the preclinical animal models

of gene therapies will facilitate translational advancement in this

relatively common group of disorders.
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