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ATP13A2 is a lysosomal protein involved in polyamine transport with 
loss of function mutations associated with multiple neurodegenerative 
conditions. These include early onset Parkinson’s disease, Kufor-Rakeb 
Syndrome, neuronal ceroid lipofuscinosis, hereditary spastic paraplegia, and 
amyotrophic lateral sclerosis. While ATP13A2 mutations may result in clinical 
heterogeneity, the basal ganglia appear to be  impacted in the majority 
of cases. The basal ganglia is particularly vulnerable to environmental 
exposures such as heavy metals, pesticides, and industrial agents which are 
also established risk factors for many neurodegenerative conditions. Not 
surprisingly then, impaired function of ATP13A2 has been linked to heavy 
metal toxicity including manganese, iron, and zinc. This review discusses the 
role of ATP13A2 in basal ganglia function and dysfunction, potential common 
pathological mechanisms in ATP13A2-related disorders, and how gene x 
environment interactions may contribute to basal ganglia dysfunction.
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Introduction

ATP13A2 is an ATPase primarily located in early and late endosomes and lysosomes. 
Biallelic mutations in the gene ATP13A2 cause Kufor-Rakeb Syndrome (KRS; 
OMIM#606693), also known as Parkinson’s disease-9 (PARK9), a juvenile form of 
Parkinson’s disease (PD) (1). KRS patients typically develop Parkinsonian motor 
symptoms and show some degree of levodopa-responsiveness (1). Following KRS, 
ATP13A2 was determined to be mutated in forms of neuronal ceroid lipofuscinosis 
(NCL), hereditary spastic paraplegia (HSP), and most recently amyotrophic lateral 
sclerosis (ALS) (2–7). Genetic analysis also shows that ATP13A2 variants in LRRK2 
(PARK8) G2019S carriers, the most common cause of hereditary PD, are common and 
may modify disease onset and severity (8). In idiopathic PD and Dementia with Lewy 
bodies, post mortem analysis shows ATP13A2 protein levels are significantly decreased 
suggesting altered ATP13A2 function may be more pervasive in phenotypic PD than 
previously thought (9). Loss of function of ATP13A2 has also been linked to an increased 
sensitivity to heavy metal toxicity including manganese, iron, and zinc (10–23). Given the 
diverse outcomes that can result from dysfunctional ATP13A2, it is important to 
determine commonalties between these disorders in terms of symptom expression, 
peripheral and central pathology, and mechanisms of neurodegeneration in order to 
identify novel therapeutic strategies and targets. Currently, there is limited human 
pathology data on ATP13A2-related disorders but analysis of the different clinical profiles 
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point to the basal ganglia as the central network disrupted in the 
majority of cases (24–32). The basal ganglia and its network (Figure 1) 
are particularly vulnerable to neurodegeneration and are associated 
with genetic and environmental factors that drive disorders such as 
PD, dystonia, and Huntington’s disease, among others (33). In 
addition, the basal ganglia are important in heavy metal transport 
with multiple structures negatively impacted by excessive intake, 
including manganese and iron. Thus, understanding how ATP13A2 
contributes to basal ganglia function will be  essential for the 
identification and development of therapeutics for ATP13A2-
related disorders.

Clinical syndromes and ATP13A2

Kufor-Rakeb Syndrome

Mutations in ATP13A2 are linked to the juvenile parkinsonism 
KRS. KRS is an autosomal recessive form of PD with similar but 
distinct neurological symptoms and neurodegeneration (1, 34). It was 
first identified in five members of a consanguineous family from 
Kufor-Rakeb, Jordan, with the youngest age of onset at 11 years old 
(30). Symptoms of KRS originally included rigidity, bradykinesia, 

supranuclear gaze palsy, and dementia (30). In general, KRS symptom 
onset occurs in young patients and the condition progresses rapidly 
(35). MRI brain imaging shows generalized brain atrophy beginning 
in the globus pallidus and pyramidal tract (30). Many KRS patients 
respond to levodopa, suggesting nigrostriatal dysfunction similar to 
what is observed in sporadic PD (30, 35). Patient follow-up performed 
10 years later showed similar symptoms, but now with the addition of 
myoclonus and increased pyramidal signs. At the time of these studies, 
the link between KRS and ATP13A2 had not been made (32). Later, 
KRS was also identified in a Chilean population and symptoms were 
described in a longitudinal study (1, 24). Five family members were 
diagnosed with KRS between the ages of 10 and 13 with early 
symptoms of rigidity, frequent falls, slowed movement and speech, 
abnormal gait, cognitive impairment, insomnia, and upward gaze 
palsy. The progression of these symptoms was slower than that seen 
in the Jordanian family (1). Years after diagnoses, bradykinesia, resting 
tremor, spasticity, and myoclonus, developed. Brain imaging revealed 
generalized atrophy and hypointensity within the basal ganglia (24).

The genomes of the Jordanian and Chilean families were later 
screened to identify the genetic locus of the mutations (1). In the 
Jordanian family, patients had a homozygous duplication of 22 base 
pairs in exon 16 resulting in a frameshift and a premature stop codon 
(c.1632_1653dup22/p.Leu552fsTer788). In the Chilean family two 

FIGURE 1

ATP13A2 and the basal ganglia. The basal ganglia and related nuclei (striatum, globus pallidus, subthalamic nucleus, thalamus, and substantia nigra) are 
vulnerable to genetic and environmental factors. Wildtype ATP13A2 is a protein with 10 transmembrane domains localized to the lysosomal membrane 
and is involved in polyamine transport and homeostasis, alpha-synuclein export, and intracellular heavy metal regulation. Small green and blue dots 
represent the polyamines spermidine and spermine. Created with BioRender.com.

https://doi.org/10.3389/fneur.2023.1252400
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://BioRender.com


Croucher and Fleming 10.3389/fneur.2023.1252400

Frontiers in Neurology 03 frontiersin.org

compound heterozygous mutations were identified, a deletion of 
cytosine at the nucleotide position 3,057  in exon 26 causing a 
frameshift mutation (c.3057delC/p.1019GfsX1021) and a transition 
from guanine to adenine at the +5 position of the donor splice site in 
exon 13 (c.1306 + 5G > A/p.G399_L435del) (1). These mutations 
resulted in a loss of function of ATP13A2 which was then classified as 
a familial form of PD, PARK9. Since these studies, additional ATP13A2 
mutations in various populations have been identified including a 
homozygous c.1510G > C/p.Gly504Arg mutation and the heterozygous 
mutations c.35C > T/p.Thr12Met or c.1597G > A/p.Gly533Arg 
(Table 1) (27, 39, 41). Similar to the earlier cases, patients developed 
basal ganglia related symptoms such as bradykinesia, rigidity, and 
levodopa responsiveness (27, 39, 41). Diffuse atrophy of the brain, 
supranuclear gaze palsy, and postural instability were observed in 

homozygous mutations (27). While in heterozygous mutations (ex. 
c.2236G > A/p.Ala746Thr), symptoms varied, but included basal 
ganglia-related bradykinesia, rigidity, and tremor (36–38, 40). In 
general, the homozygous mutations appear more severe compared to 
the heterozygous mutations, but symptoms can still appear in the 
heterozygous state with later age of onset. Further research regarding 
the heterozygous c.35C > T/p.Thr12Met, c.1597G > A/p.Gly533Arg, 
and c.2236G > A/p.Ala746Thr mutations is needed to better 
understand their pathogenicity, as KRS is an autosomal recessive 
disorder (Table 1) (1, 24, 27, 30, 35–37, 40).

Recently, the first and only postmortem KRS study was completed 
on a patient with a homozygous ATP13A2 missense mutation (34). In 
this case, symptoms appeared at approximately 12 years of age and 
included rigidity and akinesia, upward gaze palsy, and spasticity. Later 

TABLE 1 Clinical syndromes associated with mutations in ATP13A2.

Syndrome Mutations  
(RefSeq: NM_001141973.3)

Age 
(years)

Clinical 
symptoms

Imaging 
pathology

Postmortem 
pathology

References

Kufor-Rakeb c.35C > T/p.Thr12Met, c.546C > A/p.

Phe182Leu, c.701G > A/p.Arg294Gln, 

c.746C > T/p.Ala249Val, c.844A > T/p.

Ser282Cys, c.1306 + 5G > A/p.G399_

L435del, c.1346G > A/p.Arg449Gln, 

c.1510G > C/p.Gly504Arg, c.1597G > A/p.

Gly533Arg, c.2236G > A/p.Ala746Thr, 

c.2473C > AA/p.Leu825fs, c.2629G > A/p.

Gly877Arg, c.2762C > T/p.Gln858*, 

c.2836A > T/p.Ile946Phe, c.2939G > A/p.

Arg980His, c.3176 T > G/p.Leu1059Arg, 

c.3274A > G/p.Gly1014Ser, 

c.1346G > A/p.Arg449Gln, 

c.1108_1120del13/p.Arg370fsX390, 

c.2742_2743delTT/p.F851CfsX856, 

c.3057delC/p.1019GfsX102, 

c.3253delC/p.L1085wfsX1088, 

c.1103_1104insGA/p.Thr367fsX29

10–29 (hom)

5, 20–70 

(het)

Rigidity, bradykinesia, 

resting tremor, abnormal 

gait, levodopa 

responsive, myoclonus, 

supranuclear gaze palsy

Brain atrophy, 

starting with the 

globus pallidus 

and pyramidal 

tract.

-Lipofuscin 

accumulation in BG, 

CTX, HPC, AMG, 

CBL, BS

-Iron deposits in BG, 

loss of DA neurons in 

SNc

(24, 27–29, 31, 32, 

34, 36–44)

Neuronal Ceroid 

Lipofuscinosis

c.2429C > G/p.Met810Arg 13–16 Rigidity, akinesia, 

resting tremor, 

dysarthria, dysphagia, 

impaired coordination, 

levodopa responsive, 

and cognitive 

impairment

– -Neuronal and glial 

lipofuscinosis in CTX, 

basal nuclei, CBL, and 

retina

(2)

Hereditary 

Spastic Paraplegia

c.364C > T/p.Gln122Ter, 

c.1330C > T;3404C > T/p.Arg444Ter; 

Gln1135Ter, c.1535C > T/p.Thr512Ile, 

c.2126G > C/p.Arg709Thr, c.2158G > T/p.

Gly720Trp, c.2629G > A/p.Gly877Arg, 

c.2675G > A/p.Gly892Asp, 

c.3017_3019del/p.Leu1006-Leu1007del

11–36 Spasticity and weakness, 

bradykinesia, cognitive 

impairment, slow 

vertical eye movements, 

seizures

Overall atrophy -Corpus callosum 

thinning

-Overall atrophy

(3–5)

Amyotrophic 

Lateral Sclerosis

c.1233C > G/p.Ile411Met, c.1837G > A/p.

Glu613Ter

32 Limb weakness and 

rigidity, spastic-ataxic 

gait, dysphonia, 

cognitive impairment

-Atrophy in CBL

-Motor axon 

neuropathy

-Reduced DAT in 

Str

– (7)

AMG, amygdala; BG, basal ganglia; BS, brain stem; CBL, cerebellum; CTX, cortex; HPC, hippocampus; SNc, substantia nigra pars compacta.
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in life, the patient suffered from severe levodopa-induced dyskinesias, 
hallucinations, and irritability. Postmortem analysis revealed loss of 
pigmented neurons in the substantia nigra, lipofuscin accumulation 
in many brain regions including basal ganglia, iron accumulation in 
basal ganglia, and temporal lobe atrophy. This offers the first 
confirmation of basal ganglia pathology and substantia nigra 
degeneration in KRS (Table 1) (34).

Neuronal ceroid lipofuscinosis

Mutations in ATP13A2 are also linked to NCL, a lysosomal 
storage disorder. NCLs are a group of degenerative diseases 
characterized by accumulation of autofluorescent lysosomal storage 
material within lysosomes (2, 6, 45, 46). NCL symptoms can include 
basal ganglia dysfunction, seizures, visual impairments, cerebellar 
ataxia, and dementia (2, 6, 45, 46). A homozygous mutation in 
ATP13A2 (c.2429C > G/p.Met810Arg) was identified in a Belgian 
family with NCL (2). Symptoms included akinesia and rigidity in 
addition to gait impairments, myoclonus, and alterations in mood. 
Similar to KRS, levodopa responsiveness was noted along with the 
development of levodopa-induced dyskinesias (2). Postmortem 
analysis revealed widespread lipofuscinosis throughout the brain in 
neurons and glia (Table 1) (2).

Hereditary spastic paraplegia

HSP is a neurodegenerative condition characterized by progressive 
limb spasticity (3–5). Similar to both KRS and NCL, the clinical 
presentation can be quite heterogenous where, in addition to limb 
spasticity, seizures and cognitive impairment can also develop (3–5). 
The first family identified with ATP13A2-associated HSP showed a 
variety of symptoms in addition to adult-onset of limb spasticity, with 
some developing bradykinesia and rigidity, cognitive deficits, and 
supranuclear gaze palsy (4). Brain imaging revealed cerebellar and 
cortical atrophy and in one case decreased dopamine transporter 
density in the putamen (4). Since then, several families have been 
identified with ATP13A2-related HSP (3–5). Again, symptoms vary 
but can include bradykinesia, resting tremor, neuropsychiatric 
dysfunction, cognitive impairments, dysarthria, dysphagia, and 
oculomotor impairments in addition to limb spasticity and cerebellar 
symptoms (Table 1) (3–5).

Amyotrophic lateral sclerosis

Most recently, mutations in ATP13A2 have been linked to ALS (7, 
47). ALS is characterized by progressive degeneration of motor 
neurons leading to motor weakness, impaired breathing, and 
ultimately death (48). Two mutations in ATP13A2, c.1837G > A/p.
Glu613Ter and c.1233C > G/p.Ile411Met, were identified in two family 
members, resulting in ATP13A2 loss of function (7). These cases 
presented with limb spasticity, dysphonia, ataxic gait, and cognitive 
impairment. Initially, they were diagnosed with HSP but as the 
condition progressed, ALS-related symptoms developed. While brain 
imaging showed cerebellar atrophy, dopamine transporter analysis 
revealed a bilateral reduction in uptake in the putamen (Table 1) (7). 

Thus, despite the heterogenous nature of clinical symptoms and 
pathology in ATP13A2-associated diseases, the basal ganglia are 
affected in the majority of the cases.

ATP13A2 expression and function

Expression

P-type ATPases are a large family of proteins involved in the 
transport of cations and other substrates across cell membranes 
through the utilization of energy from ATP hydrolysis (49). Of these, 
P5-type ATPases are only expressed in eukaryotes and are the least 
characterized of the P-type ATPases. Of the P5-types, ATP13A2 is 
most abundant in the brain (49). Although there are limited studies 
on ATP13A2 expression in the human brain, high expression in 
neurons in the ventral midbrain including the substantia nigra and in 
the basal ganglia (globus pallidus and putamen), cortex, and 
hippocampus has been shown (1). However, more work is needed to 
identify expression levels in different brain regions across species. In 
vitro studies show that ATP13A2 localizes to intracellular vesicular 
compartments including lysosomes and early and late endosomes 
implicating it in protein handling and degradation (1, 12, 21, 50, 51).

Lipid switch

ATP13A2 is a 1,180 amino acid ATPase with 10 transmembrane 
domains (1, 35). Molecular analysis shows ATP13A2 is a P5B-type 
ATPase with the N- and C- termini residing in the cytosol (Figure 1). 
The ATP13A2 N-terminus hydrophobic Ma region does not span the 
membrane and remains cytosolic (52, 53). The N- terminus and the 
Ma domain are important for targeting of ATP13A2 to lysosomes 
as they are hydrophobic. This hydrophobicity encourages 
interactions with lipids, specifically phosphatidic acid (PA) and 
phosphatidylinositol(3,5)bisphosphate [Pi(3,5)P2], which are present 
at high concentrations in endosomal and lysosomal membranes (52). 
These two lipids bind to three distinct regions in the N-terminus, 
which partially includes the Ma domain, to regulate ATP13A2 activity 
by stimulating autophosphorylation. Although PA and PI(3,5)P2 are 
necessary for ATP13A2 activation, they are not the transported 
substrates (52). Biochemical studies show that ATP13A2 activity 
depends on these signaling lipids and it is important to note that both 
are involved in vesicular trafficking, membrane fission and fusion, and 
autophagy, mechanisms known to be  involved in multiple 
neurodegenerative disorders (54–58). The conformational states of 
ATP13A2 have also been recently identified and will facilitate the 
development of targeted mechanistic therapeutics (59–62).

Polyamine transport

The polyamines spermidine and spermine are highly regulated in 
cells and bind to nucleic acids to aid in optimal cell function including 
gene transcription and translation, cell cycle progression, oxidative 
stress response, and metabolism (61, 63, 64). Within the human brain, 
polyamine concentration decreases with age in multiple regions 
including basal ganglia structures (putamen, globus pallidus, and 
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subthalamic nucleus) and cerebellum (65). Alterations in the 
polyamine pathway are also linked to PD (66). Studies by Pinto et al. 
(67) and De La Hera et al. (68) were the first to suggest ATP13A2 may 
be involved in polyamine transport. It is now confirmed that ATP13A2 
transports the polyamines spermidine and spermine and functions as 
a H+/K+-ATPase to regulate polyamine levels (Figure 1) (64, 69–71). 
Specifically, ATP13A2 transports polyamines from the lysosome to the 
cytosol to maintain polyamine homeostasis (69, 71). Loss of ATP13A2 
function subsequently leads to toxic polyamine accumulation within 
the lysosome (64). Polyamine accumulation may then impact other 
key cellular functions including protein degradation and 
mitochondrial function.

Although there are a limited number of studies on the expression 
profile of ATP13A2 across species, it is found to be abundant within 
basal ganglia structures and in regions that provide important 
innervation to the basal ganglia including substantia nigra and cortex.

ATP13A2 and heavy metal 
susceptibility

Several heavy metals preferentially accumulate within basal 
ganglia structures and are linked to multiple neurodegenerative 
conditions (72). Heavy metal transporters such as divalent metal 
transporter 1 (DMT1) are abundant in basal ganglia structures and 
facilitate metal homeostasis (73). Excessive exposure to heavy metals 
and/or genetic mutations to metal transporters can impair heavy 
metal handling and transport leading to motor and cognitive 
impairments in humans (74–77). ATP13A2 function appears to 
be important in maintaining heavy metal balance (Figure 1) as loss of 
function mutations are linked to increased susceptibility to 
manganese, iron, and zinc toxicity.

Manganese

Manganese (Mn) is an essential metal involved in multiple cellular 
functions including but not limited to energy metabolism, antioxidant 
response, the immune response, and development (78–80). Mn is 
ubiquitous in the environment and thus, Mn deficiency is rare. In 
contrast, excessive exposure to Mn, especially in certain occupations 
such as mining and welding, is a significant health risk and can cause 
manganism, an age-related neurodegenerative condition. Manganism 
is characterized by PD-like motor symptoms and cognitive 
impairment but is distinct from classical PD as the motor deficits are 
typically not responsive to levodopa and additional impairments such 
as dystonia and “cock-walk” gait develop. It has been shown that Mn 
preferentially accumulates in the basal ganglia affecting primarily the 
globus pallidus (74).

Mn is transported by a variety of metal transporters, including but 
not limited to DMT1, dopamine transporter (DAT), L-type calcium 
channels, transferrin, and transferrin receptor (81–83). Mn enters the 
brain primarily through DMT1 and transferrin/transferrin receptors 
[transferrin-dependent pathway; (81, 84)]. DMT1 expression in 
nonhuman primate brain shows high levels in the caudate nucleus, 
putamen, internal and external globus pallidus, and moderate 
expression in the substantia nigra pars compacta, thalamus and 
subthalamic nucleus (85). DAT is shown to transport Mn during 

excess exposure and is highly expressed in the striatum (86). The 
compounded effect of DMT1 and DAT transport of Mn during excess 
exposure contributes to the preferential accumulation within basal 
ganglia structures.

Intracellular Mn toxicity is associated with multiple mechanisms 
also involved in neurodegenerative diseases such as mitochondrial 
dysfunction, ER stress, impaired protein degradation, oxidative stress, 
and apoptosis (75, 87, 88). Since manganism does not develop in 
everyone exposed to high Mn levels, it suggests that genetic 
susceptibility may be an important contributing factor. Indeed, loss of 
function mutations in the Mn efflux transporter Slc30a10 cause an 
inherited form of Mn-induced Parkinsonism without excessive 
exposure (77). ATP13A2 may be another genetic susceptibility factor 
in Mn toxicity. Polymorphisms in ATP13A2 were shown to influence 
Mn toxicity in an elderly population (76). Mn toxicity and ATP132 
have been extensively examined in different cell systems, yeast, and in 
vivo (Table 2). In cultured human neuroblastoma cells (NLF cell line), 
overexpression of ATP13A2 results in cellular protection against high 
concentrations of Mn compared to mutated forms of ATP13A2 
(c.546C > A/p.Phe182Leu, c.1510G > C/p.Gly504Arg and 
c.1537G > A/p.Asp513Asn) (12). While in cultured rat primary 
cortical neurons, wildtype and c.1537G > A/p.Asp513Asn ATP13A2 
expression protect against Mn toxicity, c.1510G > C/p.Gly504Arg and 
c.546C > A/p.Phe182Leu mutants do not (13). In yeast, excess Mn is 
sequestered to the vacuole and mutated Ypk9 (yeast homolog of 
ATP13A2) showed a higher sensitivity to Mn toxicity than cells that 
expressed wildtype Ypk9 (15, 89). Similarly, ATP13A2 overexpression 
in C. elegans dopaminergic neurons protects against Mn toxicity, 
further indicating an important link between ATP13A2 and Mn 
homeostasis in the basal ganglia and substantia nigra (23). In Atp13a2 
knockout mice, low dose Mn exposure resulted in alterations in 
sensorimotor function, increased accumulation of Mn in the brain, 
and increased insoluble alpha-synuclein in the ventral midbrain (14). 
Taken together, these studies suggest an important role for 
ATP13A2 in Mn homeostasis (Table 2).

Iron

Iron (Fe) is an essential metal important in vital cellular functions 
such as oxygen transport, electron transport, and neurotransmitter 
synthesis (90). Iron accumulation in the brain increases with age and 
is found primarily in basal ganglia regions such as the globus pallidus, 
putamen, and substantia nigra (91, 92). Iron is transported into the 
brain using a similar mechanism to Mn transferrin-dependent 
transport. Transferrin receptors are moderately expressed in the 
putamen, caudate nucleus, globus pallidus, and substantia nigra in 
humans (85, 93). In rodents transferrin receptors are also expressed 
in striatum, thalamus, and cerebellum (94). Once inside the cell, Fe is 
then released into the cytoplasm with the help of DMT1 (81, 82, 94). 
In the basal ganglia, Fe is important in DNA synthesis, mitochondrial 
respiration, oxygen transportation, and neurotransmitter synthesis, 
especially dopamine.

Dysregulation of iron is associated with several neurological 
conditions including PD and Neurodegeneration with Brain Iron 
Accumulation (NBIA). NBIA involves disorders in which iron 
accumulates within the basal ganglia and presents with motor and 
cognitive symptoms including but not limited to abnormal gait, 
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dystonia, parkinsonism, spasticity, seizures, and impaired cognitive 
function (95, 96). NBIA is typically diagnosed based on clinical 
symptoms and MRI imaging (T2*-weighted). In addition to PD, 
mutations in ATP13A2 are linked to NBIA, suggesting ATP13A2-
linked disorders may be considered a form of NBIA (97). For example, 
in a patient with a homozygous ATP13A2 mutation 
(c.1103_1104insGA/p.Thr367ArgfsX29) and clinical symptoms 
resembling NBIA, T2*-weighted MRI analysis showed hypointensities 
indicative of iron accumulation in the basal ganglia (31). Iron 
accumulation in the basal ganglia was also reported in the Chilean 
family with KRS (24). Furthermore, the first postmortem analysis of 
KRS showed iron accumulation in the basal ganglia however, the 
deposits were sparse and no axonal spheroids typical of some NBIA 
were observed (34). Although limited, in vitro work indicates 
ATP13A2 can protect against iron toxicity supporting a potential role 
for ATP13A2  in iron homeostasis within the basal ganglia 
(Table 3) (19).

Zinc

Zinc is another essential metal involved in numerous cellular 
processes including synthesis of DNA and proteins (17, 22). While 
zinc deficiency is well studied, less is understood about the 
mechanisms of excess and accumulated zinc (98). Zn is most notably 
transported by zinc-regulated zinc transporter 1, ZIP8/ZIP14, and 
DMT1 (81, 82). Zinc accumulation has been shown in the basal 
ganglia and substantia nigra in sporadic PD patients and is linked to 
loss of function mutations in ATP13A2 (16, 17, 22, 95, 98–100). 
Analysis in PARK9 patient-associated cultures showed increased 
sensitivity to zinc, lysosomal dysfunction, mitochondrial alterations, 

and increased alpha-synuclein (Table 3). In addition, overexpression 
of ATP13A2 reduced these pathological features in vitro (16, 22, 98, 
100). While in vitro human-derived ATP13A2 models have been 
investigated, there are no imaging or postmortem studies to date to 
demonstrate alterations in zinc homeostasis in patients.

Taken together, clinical, in vivo, and in vitro studies suggest long-
term impairment in ATP13A2 function may impair the basal ganglia’s 
ability to maintain metal homeostasis.

ATP13A2 and mechanisms of 
neurodegeneration

Mutations in ATP13A2 are associated with diverse disorders of 
overlapping symptoms and with heavy metals that share common 
transport mechanisms. Thus, it should expected that ATP13A2 
mutations affect key pathological systems, such as mitochondrial 
function and lysosome-mediated protein degradation, involved in 
most neurodegenerative disorders.

Mitochondrial function

At some stage in every neurodegenerative disease there is 
mitochondrial dysfunction. Determining where in the brain 
mitochondrial dysfunction occurs, when it happens, and how it 
begins are critical questions for every neurodegenerative condition. 
Mutated ATP13A2 is linked to multiple mitochondrial defects 
(Tables 3, 4). Studies in PARK9 fibroblasts and ATP13A2 
knockdown in cortical neurons collectively reveal impaired 
autophagic flux and the following mitochondrial defects: reduced 

TABLE 2 Manganese toxicity in ATP13A2 models.

Model system Cellular toxicity Mitochondrial 
impairments

Lysosomal impairments alphaSyn 
pathology

References

In vitro cell culture 

(HeLa, rat primary, 

NLF, HEK293, N21)

-DNA fragmentation

-Decreased cell viability

-Apoptotic events

-Protection from cellular toxicity 

with ATP13A2 WT or 

overexpression

Mutant

-Increased glutathione

-Increased caspase-3 and 

cytochrome c

WT/overexpression

-Decreased glutathione

-Decreased caspase-3 and 

cytochrome c

– (12, 13, 21, 23)

Yeast -Growth defects and cell death 

of mutant cells

-Protection from cellular toxicity 

with YPK9 WT or 

overexpression

– – (15, 20)

C. elegans -Dopaminergic neuron 

degeneration, rescued with 

ATP13A2 overexpression

– – (23)

Atp13a2 mice treated 

with Mn

-Increased Mn accumulation in 

brain in Mn-treated Atp13a2

– -Lipofuscin accumulation in SNc of Mn-treated Atp13a2 

mice

-Increased insoluble alphaSyn in the ventral midbrain of 

Mn-treated Atp13a2 mice

(14)

alphaSyn, alpha-synuclein; Mn, manganese; SNc, substantia nigra pars compacta.
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mitochondrial membrane potential, reduced ATP synthesis, 
increased respiration rate, increased fragmentation, and reactive 
oxygen species (ROS) (107, 108). While overexpression of ATP13A2 
confers resistance against the mitochondrial complex 1 inhibitors 
rotenone and MPP+ (12). In addition, the ATP13A2 associated 
lipids PI(3,5)P2 and PA when pharmacologically inhibited, result 
in mitochondrial stress and toxicity in mutant cells exposed to 
rotenone (109). These data suggest loss of function mutations in 
ATP13A2 are associated with mitochondrial defects that could lead 
to increased susceptibility to environmental insults such as heavy 
metal and pesticide exposures and ultimately to 
neurodegenerative disease.

Excess exposure to the heavy metals implicated in ATP13A2 
function all negatively impact mitochondrial function (Tables 2, 3). 
Alaimo et al. (110) showed that Mn can cause dysregulation of fusion 
and fission, processes important in mitochondrial dynamics. An 
imbalance of these systems can result in ROS accumulation and cell 
death. Excess iron is also associated with mitochondrial dysfunction 
and increased ROS and is strongly linked to neurodegeneration (111). 
Zinc is shown to inhibit mitochondrial function causing increased 
ROS, energy impairments, and cytotoxicity (16, 17).

ATP13A2 transports polyamines out of the lysosome into the 
cytoplasm to maintain polyamine levels in cells (19, 112). 

Accumulation of polyamines is toxic as lysosomes can rupture when 
polyamine concentration is too high resulting in detrimental effects 
on the cell (64). ATP13A2 mutations impair export of polyamines, 
resulting in lysosomal polyamine accumulation, reduced cytosolic 
polyamine levels and mitochondrial ROS cytotoxicity. Thus, ATP13A2 
seems to be  important in mediating polyamine levels which then 
further supports optimal mitochondrial function (64, 112).

Lysosomal function

Similar to mitochondrial dysfunction, impaired protein 
degradation systems such as the autophagy lysosomal pathway 
underly multiple neurodegenerative diseases (113, 114). Autophagy 
lysosomal defects are prominent in PD, NCL, and Gaucher’s disease, 
among others. Early investigation into the effect of ATP13A2 
mutations on lysosomal function showed wildtype ATP13A2 localizes 
to the lysosome but that mutated ATP13A2 can localize to the 
endoplasmic reticulum (ER) causing ER stress and decreased 
lysosomal function (1, 12, 21, 50, 51, 115). Studies in ATP13A2 
patient-derived fibroblasts and in knockdown of ATP13A2 in 
dopaminergic cell lines show multiple lysosomal anomalies including 
reduced degradation of lysosomal substrates, alterations in 

TABLE 3 Iron and zinc toxicity in ATP13A2 models.

Heavy 
metal

Model 
system

Cellular toxicity Mitochondrial 
impairments

Lysosomal 
impairments

alphaSyn References

Iron (Fe)

In vitro cell 

culture (SH-

SY5Y, CHO)

-Decreased cell viability

-Increased Beta-

hexosaminidase

-Increased viability with WT 

ATP13A2

– -Elevated cytosolic iron

-Iron induced LMP

-Rescued with WT 

ATP13A2

– (18, 19)

C. elegans -Decreased lifespan in 

mutants, rescued with WT 

ATP13A2

-Decreased survival when exposed 

to rotenone

– – (10)

Zinc (Zn)

In vitro cell 

culture 

(HEK293, 

SH-SY5Y, 

hONs, rat 

primary, 

human 

fibroblasts, 

PCNs)

-Increased cell death

-Reduced neurite length

-LDH release

-Rescued with ATP13A2 

overexpression

-Increased cytochrome c, 

caspase-3, ERK1, ERK2, p38

-Complex I impairments

-Decreased mitochondrial 

membrane potential

-Increased ROS production

-Reduced ATP production

-Increased mitochondrial 

fragmentation

-Rescued with ATP13A2 

overexpression

-Decreased LAMP-2 

and LC3II/LC3I ratio

-Increased p62

-Decreased Zn-

containing vesicles

-Elevated lysosomal pH

-Rescued with ATP13A2 

overexpression

-Increased 

alphaSynand 

p-alphaSyn

-Reduced alphaSyn 

association with 

exosomes

-Rescued with 

ATP13A2 

overexpression

(16, 17, 22, 98)

Yeast -Sensitivity to Zn in mutant 

cells

-Resistant with ATP13A2 

overexpression

– – – (16)

C. elegans -Reduced survival with 

catp-6 deletion

– – – (10, 11)

aSyn, alpha-synuclein; p-aSyn, phosphorylated alpha-synuclein; LAMP1/LAMP-2, lysosome associated membrane protein-1 and -2; LC3II/LC3I, microtubule associated protein; LDH, lactate 
dehydrogenase; LMP, lysosome membrane permeabilization; SNc, substantia nigra pars compacta; TH, tyrosine hydroxylase.
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acidification, decreased clearance of autophagosomes, and impaired 
proteolytic processing of lysosomal enzymes (113). In mice, loss of 
Atp13a2 function results in enhanced lipofuscinosis, accumulation of 
the substrates p62, cathepsin D, and ubiquitin (Table  4) (6, 104). 
ATP13A2 is also important for exosome secretion, where loss of 
function is associated with decreased exosomes, and overexpression 
promotes exosomal generation, release, and functioning (115). 
Collectively, impaired ATP13A2 function is linked to lysosome 

dysfunction, impaired exosome secretion, and autophagic flux 
(Table 4) (1, 6, 12, 21, 50, 51, 104, 113, 115).

ATP13A2 and alpha-synuclein

In conjunction with mitochondrial and lysosomal defects, loss of 
ATP13A2 function is shown to increase alpha-synuclein accumulation 

TABLE 4 Consequences of impaired ATP13A2 function in vivo in rodents.

Rodent Manipulation Behavior Pathology References

Knockout mouse Atp13a2 knockout -Impairments in beam 

walking, gait, and 

spontaneous activity

-Lipofuscin accumulation in CBL, CTX, 

HPC

-alphaSyn accumulation in HPC

(6)

Atp13a2 conditional knockout 

(brain)

-Impairments in rotarod and 

wire hang test

-Lipofuscin accumulation in CTX, HPC, 

SNc

-Increased GFAP and subunit c in CTX

-Reduced cathepsin D in CTX

(101)

Heterozygote mouse Atp13a2 heterozygous and 

knockout

N/A Atp13a2 mice

-Lipofuscin accumulation in CTX, HPC, 

CBL, BS

-Increased ubiquitin inclusions

-Increased GFAP in CTX, HPC, CLB

-Increased Iba-1 in CTX, HPC, CBL, BS

Atp13a2 Het

-Lipofuscin accumulation in CTX

-Increased GFAP and Iba-1 in CTX, HPC, 

BS

(102)

Atp13a2

Heterozygous and alphaSyn 

preformed fibrils (PFFs)

-Impairments in olfaction -Increased microglia (103)

Atp13a2 mice with 

alphaSyn overexpression

Atp13a2 combined with 

overexpression of A53T alphaSyn

-Impairments in rotarod and 

open field test

-Increased lipofuscin and gliosis in the CTX, 

CBL, Str, HPC, THL in Atp13a2 mice

-Increase in LAMP1, LAMP2, and BMP in 

Atp13a2

-Altered cathepsin D in Atp13a2

(104)

Atp13a2 combined with 

overexpression of WT alphaSyn

-Enhanced sensorimotor 

alterations in tests of 

locomotor and spontaneous 

activity, beam walking, and 

adhesive removal

N/A (105)

Atp13a2 Mouse Atp13a2 mice with ischemic stroke N/A -Increased LC3-II in the CTX

-Increased expression of Bax and caspase-3

(106)

Atp13a2 mouse Atp13a2 mice treated with low dose 

Mn

-Enhanced beam walking, 

gait, and spontaneous activity 

in Mn-treated Atp13a2 mice

-Impairments in locomotor 

and spontaneous activity in 

Atp13a2 mice

-Lipofuscin accumulation in PFC, CBL, 

HPC in Atp13a2 mice

-Lipofuscin accumulation in SNc of Mn-

treated Atp13a2 mice

-Increased insoluble alphaSyn in ventral 

midbrain in Mn-treated Atp13a2 mice

(14)

AAV rat AAV human WT ATP13A2 and 

alphaSyn overexpression

-Increased apomorphine 

rotation in alphaSyn rats

-Loss of TH-positive neurons in SNc and Str

-Reduced DA and metabolites in Str

(13)

aSyn, alpha-synuclein; BMP, bis(monoacylglycerol)phosphate; BS, brain stem; CBL, cerebellum; CTX, cortex; DA, dopamine; GFAP, glial fibrillary acidic protein; HPC, hippocampus; Iba-1, 
ionized calcium-binding adaptor molecule 1; LAMP1/LAMP2, lysosome associated membrane protein-1 and -2; Mn, manganese; SNc, substantia nigra pars compacta; Str, striatum; TH, 
tyrosine hydroxylase; THL, thalamus.
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(52, 107, 108, 113, 116–118). Alpha-synuclein is a presynaptic protein 
involved in synaptic transmission, vesicular trafficking, and plasticity 
and it is the major component of Lewy bodies, the hallmark pathology 
in PD, Multiple System Atrophy, and Dementia with Lewy Bodies 
(119, 120). Studies show ATP13A2 is involved in the exosomal 
externalization of alpha-synuclein (Figure 1), indicating a potentially 
important role in PD and other synucleinopathies (16, 22). While the 
in vitro work establishing a relationship between loss of function of 
ATP13A2 and alpha-synuclein is compelling, in vivo studies paint a 
more inconsistent picture (Table  4) (6, 13–15, 104, 113, 116). 
Differential effects are observed in Atp13a2 null (13a2) mouse lines, 
as one study found abnormal alpha-synuclein accumulation in the 
brain while the other did not (6, 104). The mouse line with increased 
abnormal alpha-synuclein in the brain also exhibited increased triton-
insoluble alpha-synuclein in the ventral midbrain in response to 
systemic manganese administration and enhanced sensorimotor 
deficits when combined with alpha-synuclein overexpression (Table 4) 
(14, 105). However, no acceleration of pathology was observed when 
a mutated form of alpha-synuclein (A53T) was overexpressed (104). 
In addition, viral co-overexpression of Atp13a2 and alpha-synuclein 
did not protect against alpha-synuclein toxicity in the substantia nigra 
in rats (13). There are several methodological differences between the 
studies to note though including the timing (Atp13a2 may need to 
precede alpha-synuclein overexpression) and level of overexpression 
of Atp13a2. In viral vector studies and in crossbreeding studies the 
promoter and type of alpha-synuclein being expressed (mutated or 
wildtype) are known to yield differential phenotypes and pathology 
(14). Clinically, the one postmortem case of KRS did not show Lewy 
body pathology (34). However, this is not unprecedented as other 
genetic forms of PD such as LRRK2 have cases with Lewy body 
pathology and without (121–125). ATP13A2 variants are common in 
LRRK2 carriers and may modify disease onset and progression (8). 
More in vivo studies are needed to elucidate the relationship between 
ATP13A2 and alpha-synuclein.

ATP13A2’s role in polyamine transport, lysosomal function, and 
mitochondrial function suggests that when its function is impaired it 

leaves the basal ganglia particularly vulnerable to different types of 
insults be  it heavy metal toxicity or alpha-synuclein toxicity. 
Understanding how these interactions develop and lead to basal 
ganglia dysfunction and neurodegeneration would inform multiple 
basal ganglia conditions and identify much needed novel targets 
for therapy.
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