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Assessing the diagnostic accuracy 
of CT perfusion: a systematic 
review
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Background and purpose: Computed tomography perfusion (CTP) has 
successfully extended the time window for reperfusion therapies in ischemic 
stroke. However, the published perfusion parameters and thresholds vary 
between studies. Using Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses of Diagnostic Test Accuracy Studies (PRISMA-DTA) guidelines, 
we conducted a systematic review to investigate the accuracy of parameters and 
thresholds for identifying core and penumbra in adult stroke patients.

Methods: We searched Medline, Embase, the Cochrane Library, and reference 
lists of manuscripts up to April 2022 using the following terms “computed 
tomography perfusion,” “stroke,” “infarct,” and “penumbra.” Studies were included 
if they reported perfusion thresholds and undertook co-registration of CTP 
to reference standards. The quality of studies was assessed using the Quality 
Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool and Standards 
for Reporting of Diagnostic Accuracy (STARD) guidelines.

Results: A total of 24 studies were included. A meta-analysis could not 
be performed due to insufficient data and significant heterogeneity in the study 
design. When reported, the mean age was 70.2  years (SD+/−3.69), and the median 
NIHSS on admission was 15 (IQR 13–17). The perfusion parameter identified for 
the core was relative cerebral blood flow (rCBF), with a median threshold of <30% 
(IQR 30, 40%). However, later studies reported lower thresholds in the early time 
window with rapid reperfusion (median 25%, IQR 20, 30%). A total of 15 studies 
defined a single threshold for all brain regions irrespective of collaterals and the 
gray and white matter.

Conclusion: A single threshold and parameter may not always accurately 
differentiate penumbra from core and oligemia. Further refinement of parameters 
is needed in the current era of reperfusion therapy.
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Introduction

Perfusion imaging has revolutionized hyperacute stroke care, enabling a move beyond the 
traditional 4.5-h threshold and toward a tissue-based approach to treatment and precision 
medicine in stroke care (1). Perfusion imaging aims to aid decision-making by identifying the 
tissue at risk of infarction that is still viable, ‘ischemic penumbra,’ (2) and differentiate it from the 
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tissue that has already infarcted, ‘core.’ Therefore, permitting treatment 
of those who would benefit from reperfusion therapies and avoiding 
unnecessary harm. At present, the optimal perfusion parameter to 
identify ‘core’ is thought to be relative cerebral blood flow (rCBF) < 30%, 
and a mismatch between this and a time to maximum (Tmax) > 6 s is 
operationally defined as ischemic penumbra (3). Although these 
perfusion parameters and thresholds have been used to successfully 
treat patients in randomized controlled trials in the extended time 
window (1, 4–6), recent reports have questioned the diagnostic accuracy 
of rCBF <30% in identifying the volume of infarct (7).

Previous systematic reviews investigating parameters and 
thresholds have included studies using magnetic resonance perfusion-
weighted imaging (MR-PWI) (8, 9) or positron emission tomography 
(PET) (9) as well as CT perfusion (CTP). A recent meta-analysis (10) 
examining volumetric and spatial accuracy of CTP for identifying core 
did not account for the multiple thresholds reported for each 
parameter (11) and included several studies that failed to perform 
co-registration of CTP to the reference standard. Co-registration is 
essential to ensure the accuracy of volumetric analysis as images are 
aligned in the same coordinate space (12). The purpose of this 
systematic review is to critically evaluate the diagnostic accuracy of 
CTP parameters and thresholds to differentiate penumbra from core 
and oligemia in adult stroke patients.

Methods

Search strategy

This systematic review of the literature was performed according 
to the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses of Diagnostic Test Accuracy Studies (PRISMA-DTA) 
guidelines (13) and the Cochrane Database of Systematic Reviews 
(14). We conducted a standardized search in Medline, Embase, and 
the Cochrane Library using the terms “computed tomography 
perfusion,” “stroke,” “infarct core,” and “penumbra” for relevant studies 
published in peer-reviewed journals up to April 2022. We screened all 
titles and abstracts and removed duplication. For each eligible study, 
full-text papers were obtained. Reference lists from previous 
systematic reviews and meta-analyses were searched for additional 
studies. Relevant studies were assessed independently by two authors 
(T.T., S.A.), and discrepancies were resolved by a third reviewer (T.P.).

Selection criteria

Original articles were included of studies investigating CTP 
within 24 h of symptom onset, using different perfusion parameters to 
define infarcted ‘core’ from the salvageable tissue or ‘penumbra’ and 
tissue which is hypoperfused but not at risk of infarction, ‘benign 

oligemia.’ We only included studies that reported results of (1) adult 
acute ischemic stroke patients; (2) published in English; (3) with 
sample sizes above five; (4) investigated multiple thresholds; (5) used 
CTP as the index test; (6) used follow-up MR diffusion-weighted 
imaging (DWI), MRI-flair, and/or non-contrast CT (NCT) as the 
reference standard; and (7) co-registered index and reference images. 
The exclusion criteria included (1) studies using animal models or 
children and (2) studies using other modalities to assess perfusion 
such as MR-PWI, single photon emission computed tomography 
(SPECT), or PET.

Data extraction and analysis

Using a structured template, the following data were extracted: 
first author’s name, publication year, study setting and design, number 
of subjects, baseline demographic data of study population, time 
between symptom onset and CTP imaging, presence of large vessel 
occlusion, reference imaging standard, time to reference imaging, use 
of reperfusion therapies between index and reference test, and time to 
reperfusion. Information relating to imaging protocol including CTP 
acquisition, post-processing software, perfusion parameters and 
thresholds investigated, methods for imaging, and statistical analysis 
was also collected. Data were extracted independently by two 
reviewers (T.T. and S.A.), with disagreements resolved by a third 
reviewer (T.P.). We  contacted the corresponding author to obtain 
further information if data were not easily extractable. Parameters and 
thresholds with the highest AUC were identified for penumbra and 
core in each study. If not provided, the Youden index was calculated 
as the sum of sensitivity and specificity minus one (values range from 
0 to 1). In this way, the Youden index summarizes the performance of 
a test at the optimal cutoff threshold by taking into account the 
sensitivity and specificity. A Youden index value of less than 0.5 does 
not meet the optimal performance standard for a diagnostic test (15, 
16). For studies that used both acute and delayed MRI to define infarct 
core, we have only reported results for acute DWI imaging.

Quality assessment

The Quality Assessment of Diagnostic Accuracy Studies-2 
(QUADAS-2) tool (17) was used to assess the methodological quality 
of included studies. Two different authors assessed the methodological 
quality of the studies (A.L. and C.D.).

Results

Our MEDLINE, EMBASE, and Cochrane searches yielded 1,509 
results. Manual searching yielded an additional 23 studies. 
We screened 1,426 records using the title and abstract. In total, 186 
articles were screened by full text for eligibility. A total of 70 articles 
were reviewed, and 24 fulfilled the inclusion criteria (see Figure 1). 
Despite contacting authors, we were unable to determine the exact 
details of overlapping patients between studies published by the same 
research groups (18–23). Studies that may have reported results of the 
same patients were counted once unless they examined different 
parameters and thresholds for the gray and white matter (24, 25), 

Abbreviations: CBF, Cerebral blood flow; CBV, Cerebral blood volume; CTP, 

Computed tomography perfusion; DT, Delay time; MRI, Magnetic resonance 

imaging; MRI-PWI, Magnetic resonance perfusion-weighted imaging; MTT, Mean 

transit time; mTICI, Modified thrombolysis in cerebral infarction; NCT, Non-contrast 

computed tomography; PET, Positron emission tomography; Tmax, Time to 

maximum; TIMI, Thrombolysis in myocardial infarction.

https://doi.org/10.3389/fneur.2023.1255526
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Thirugnanachandran et al. 10.3389/fneur.2023.1255526

Frontiers in Neurology 03 frontiersin.org

post-processing software (16, 20, 26–28), brain coverage (19, 23), and 
the impact of reperfusion therapies (18, 20). A list of excluded studies 
and reasons for exclusion are available in Supplementary material. 
Nineteen studies, including three studies that used RAPID® software 
(29–31), were excluded because the co-registration of index and 
reference images was not conducted (32–38). Two additional studies 
using RAPID® software were excluded because they used a 
combination of MR-PWI and CTP as the index test (39, 40). A meta-
analysis was not performed due to insufficient data and significant 
heterogeneity in methodological characteristics between studies. 
Results will be discussed under the headings of study design, perfusion 
parameters, and thresholds.

Study characteristics

The 24 included studies are shown in Table  1. All were 
observational cohort studies published between 2006 and 2020. Nine 
were prospective (21, 22, 24, 25, 41–45). When reported, the mean age 
was 70.2 years (+/−3.69), and the median NIHSS score on admission 
was 15, interquartile range (IQR) 13–17. Twenty-three studies 
investigated core (15, 16, 18–27, 41–51), and 13 studies investigated 
penumbra (15, 16, 19, 20, 22–25, 28, 41, 43, 49, 50). Most studies 

included less than 50 patients per study (see Tables 1, 2 in 
Supplementary material). Of these, it is possible that some studies 
have included patients from the same period (18–23). When reported, 
median onset to CTP was 182 (IQR 162–196) min for studies 
investigating core and 164 (IQR 148–184) min for penumbra (see 
Tables 1, 2 in Supplementary material). Only 10 studies (51) included 
patients between 6 and 12 h from stroke onset, and no study reported 
onset to perfusion imaging beyond 12 h.

Study quality

The results of the QUADAS-2 tool (17) are shown in Table 2. Only 
six studies were classified by both reviewers as having an overall 
judgment of low risk of bias and low concern regarding applicability 
(19, 20, 43–46). Only seven studies reported blinding of assessors to 
analysis of perfusion imaging and the reference test (15, 23, 25, 26, 43, 
44, 46). Two studies reported adherence to STARD (52) (Standards for 
Reporting of Diagnostic Accuracy) guidelines1 (43, 48). One study 

1 http://www.stard-statement.org/

FIGURE 1

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram.
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TABLE 1 Characteristics of included diagnostic accuracy studies.

Authors Year Setting Start 

period

End 

period

Design Country Blinding Scanner Median 

onset 

time to 

ctp 

(min)

Scan 

duration 

(s)

Contrast 

injection 

(mL)

Radiation 

dose (kvp)

Frame 

rate (s)

Brain 

coverage 

(mm)

Post-processing 

software

Deconvolution 

algorithm

Schaefer 2006 Single 2001 2003 Retro United States NR LightSpeed 144 60 45 80 1 20 Advantage workstation Not specified

Murphy 2006 Multicenter NR NR Pro Canada NR NR 178 45 50 80 1 20 CT Perfusion 3 Deconvolution

Wintermark 2006 Multicenter NR NR Pro International NR NR 240 40–50 40 80–90 1 NR Philips Medical System Closed-form non-

iterative deconvolution

Murphy 2008 Multicenter 2002 2005 Pro Canada Yes LightSpeed 178 45 50 80 1 20 CT Perfusion 3 Deconvolution

Bivarda 2011 Single 2005 2007 Pro Australia NR Phillips 195 45 NR NR NR 48 MIStar Ddsvd

Bivardb 2011 Single 2005 2010 Pro Australia NR Phillips 162 60 40 NR 1.33 48–80 MIStar Ddsvd

Campbell 2011 Single 2003 2007 Pro Australia Yes Phillips 190 45 40 NR 1.3 48 Authors own Delay-sensitive ssvd

Kamalian 2011 Single 2006 2008 Retro United States NR LightSpeed 246 66 40 80 1 80 CTP “DC” and CTP 

“Std”

Delay-sensitive svd

Payabvash 2011 Single 2008 2009 Retro United States NR LightSpeed 222+ 90 35 80 3 80 CT Perfusion 3 Deconvolution

Campbell 2012 Single 2003 2007 Pro Australia Yes Phillips 213+ 45 40 NR 1.3 48 Authors own Delay-sensitive ssvd

Kamalian 2012 Single 2006 2008 Retro United States NR LightSpeed 252 66 40 80 1 80 CTP “DC” and CTP 

“Std”

Standard and delay 

corrected svd

Bivard 2013 Single 2005 2011 Retro Australia NR Phillips 162 60 40 NR 1.33 48–80 MIStar Ddsvd

Bivard 2014 Single 2010 2012 Retro Australia NR Aquilion One 148 65 40 80 NR 160 MIStar Ddsvd

Eilaghi 2014 Single NR NR Pro Canada No VCT NR NR 50 80 1 40 CT Perfusion 4 Delay corrected svd

McVerry 2014 Single 2008 2010 Retro Scotland Yes Phillips Brilliance 180 NR 50 80 2 40 MIStar Ddsvd

d’Esterre 2015 Multicenter NR NR Pro International NR LightSpeed 193.5 60–90 45 NR 2.8 40–80 CT Perfusion 4D Delay-insensitive 

deconvolution

Cereda 2016 Multicenter 2004 2012 Retro International Yes NR 185 NR NR 80 NR 48–160 NR Not specified

Lin 2016 Single NR NR Retro Australia Yes Aquilion One NR 65 40 80 Variable 160 MIStar Standard and delay 

corrected svd

Yu 2016 Single 2011 2015 Retro China Yes Siemens Somatom NR 74.5 60 80 Variable 100 MIStar Ddsvd

Bivard 2017 Multicenter 2012 2016 Retro International NR Somatom/Aquilion 

One

NR 45–60 40 NR NR 41–160 MIStar Ddsvd

Copen 2017 Single NR NR Retro United States Yes LightSpeed NR 66 40–45 NR 3 80 CT Perfusion 4D Delay corrected svd

Chen 2019 Single 2005 2010 Retro Australia NR Phillips/Aquilion 

One

189 60 NR NR NR 48–160 MIStar Delay-sensitive ssvd and 

ddsvd

Qiu 2019 Multicenter 2010 2014 Retro International NR NR 168 NR NR NR NR >80 CT Perfusion 4D Delay-insensitive 

deconvolution

Laredo 2020 Single 2010 2017 Retro Spain NR Siemens Somatom 175 39 50 80 1.5 98 MIStar Ddsvd

NR, not recorded; Bivarda, Cerebrovascular Diseases, 2011; Bivardb, Brain, 2011; sSVD, standard singular value decomposition; ddSVD, delay and dispersion corrected singular value decomposition; +mean.
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TABLE 2 Assessment of risk of bias of studies using the QUADAS-2 tool.

Study Risk of bias Applicability concerns

Patient 
selection

Index test Reference 
standard

Flow and 
timing

Patient 
selection

Index test Reference 
standard

Schaefer, 2006

Murphy, 2006

Wintermark, 

2006

Murphy, 2008

Bivarda, 2011

Bivardb, 2011

Campbell, 2011

Kamalian, 2011

Payabvash, 

2011

Campbell, 2012

Kamalian, 2012

Bivard, 2013

Bivard, 2014

Eilaghi, 2014

McVerry, 2014

D’Esterre, 2015

Cereda, 2016

Yu, 2016

Lin, 2016

Bivard, 2017

Copen, 2017

Chen, 2019

Qiu, 2019

Laredo, 2020

Low risk High risk  Unclear risk.
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included a flow diagram outlining patient selection process (23). 
Others included details of excluded patients in the Results section (15, 
16, 18–22, 24–26, 42, 45, 46, 49) or in online data supplement (47).

Study design

Brain coverage, scan acquisition time, and 
post-processing algorithms

Reported brain coverage, scan acquisition time, and post-
processing methods varied between studies (see Table 1). In general, 
three main deconvolution methods were used. Nine studies used delay 
and dispersion correction deconvolution models producing delay time 
(DT) maps with the post-processing software, MIStar (15, 16, 18–22, 
48, 49). Six studies used standard or ‘delay sensitive’ (16, 23, 27, 28, 43, 
44) deconvolution which does not correct for arrival delay of contrast 
and six studies used ‘delay-insensitive’ also known as ‘delay corrected’ 
which does correct for arrival delay of contrast (23, 28, 42, 45–47). 
Studies investigating the impact of post-processing methods showed 
thresholds to define core and penumbra varied depending on the 
deconvolution method used (16, 20, 27, 28).

Time to reference standard
Imaging reference was a combination of MRI and NCT (6 studies) 

(15, 28, 42, 47, 49, 50), MRI alone (16 studies) (16, 18–23, 26, 27, 41, 
44–46, 48, 51), or NCT alone (2 studies) (24, 25). Two studies 
investigating thresholds for penumbra also used contemporaneous 
MR-PWI (43) or CTP or MRP at 24 h (15). Time interval to reference 
varied between study protocols. For studies investigating core, most 
did not record median or mean time to reference imaging. When 
reported, median interval to acute MRI was 27.5 (IQR 22–31.5) min 
(see Table 1; Supplementary material) (16, 21, 22, 26, 27, 41, 44, 46). 
Other studies used DWI 24 h after CTP in patients with major 
reperfusion (18–23), delayed MRI, at a median interval of 38 h in 
patients with complete recanalization (48) or at 5–7 days (45) to 
determine infarct core. For studies investigating penumbra, several 
studies did not report median or mean time to reference scan (see 
Table 2 in Supplementary material).

Vessel occlusion and reperfusion therapies
Seventeen studies included patients with evidence of large vessel 

occlusion on imaging using CTA, MRA, or DSA (16, 18, 23–25, 27, 28, 
41–45, 47–51). When reported, recanalization was determined using 
three scales: the Mori (50), thrombolysis in myocardial infarction (TIMI) 
(23, 49), and modified thrombolysis in cerebral infarction (mTICI) scales 
(18, 42, 48). Reperfusion therapies included intravenous thrombolysis (15, 
16, 18–26, 41, 43–46, 50), local intra-arterial fibrinolysis (24, 25, 50), and 
clot retrieval in combination with thrombolysis (16, 18, 26, 50). Since 
2015, three studies examined perfusion parameters following treatment 
with endovascular clot retrieval alone (42, 47, 48).

Imaging analysis
Imaging analysis performed by studies included either a region of 

interest analysis (24, 25, 42–44, 47, 48, 50), or as defined by the authors 
a pixel (18–23, 41, 46, 49) or voxel-based analysis (15, 16, 26–28, 45, 
51). The term ‘voxel’ is used to encompass both pixels and voxels. 
Eleven studies used semi-automatic or automatic delineation of infarct 
on MRI using signal intensity thresholds (16, 18–23, 27, 28, 46, 48). 

Others manually outlined the maximal visual extent of the infarct on 
follow-up imaging (MRI or NCT) (15, 24–26, 41–44, 47, 49–51). 
Voxels within both the hypoperfusion region on CTP and infarct on 
DWI or NCT were regarded as “true-positive,” and those within the 
region of hypoperfusion on the index test but not in the reference test 
was “false-positive.” Most studies analyzed only the ischemic 
hemisphere (15, 16, 18–23, 43, 44). One study delineated non-infarcted 
voxels in the whole brain parenchyma (41). Two studies only 
examined the section with the largest tissue which evolved to 
infarction (27, 28).

Two different approaches were employed to determine the ability 
of perfusion parameters to accurately identify the final infarct on the 
follow-up scan. The first, a volume analysis approach defined the 
optimal parameter as the one with the least volume difference 
between index and reference standard. The second used receiver 
operator characteristic (ROC) curve analysis to identify parameters 
with the highest sensitivity and specificity to predict the final 
infarction on the reference image. Most diagnostic accuracy studies 
used ROC curve analysis alone (27, 28, 41, 42, 45, 47, 50, 51) or in 
conjunction with a volume analysis approach (15, 16, 18–22, 24–26, 
44, 46, 49). Only one study used a volume analysis approach alone 
(48). Sensitivity, specificity, area under the curve (AUC), and the 
Youden index for the optimal parameters for core and penumbra 
from each study are included in Tables 3, 4, respectively. The 
parameter with the highest Youden index of 0.94 was a product of 
CBF and CBV which at a threshold of 31.3 differentiated core from 
penumbra in an early study (24). The Youden index for rCBF <31% 
to represent ischemic core was less than 0.5 in three out of five studies 
(median 0.60, IQR 0.48, 0.63) (15, 16, 44).

Perfusion parameters and thresholds

Parameters for core
The most reported parameter was rCBF, described in a total of 16 

studies. The median rCBF threshold was <30% (IQR 30–40%). 
Figure 2 shows that rCBF thresholds varied between studies even from 
the same research groups. A regression analysis evaluating the 
relationship between published rCBF thresholds over a 10-year period 
showed no statistically significant association (regression coefficient: 
0.1; p = 0.21) between rCBF threshold values and the publication year 
(see Figure 2). Five studies constrained rCBF within the perfusion 
lesion (using TTP > 4 s or DT > 2 s or DT > 3 s) to reduce false positives 
from regions of leukoaraiosis (15, 20, 22, 23, 43). In the early time 
window, one study showed thresholds were dependent on the 
reperfusion method used. They reported a lower threshold of rCBF 
<20% in patients treated with clot retrieval due to faster reperfusion 
[see Figure 2; Bivard (18)].

The definition of ‘infarct core’ continued to vary between studies 
(8, 9), with some defining core using the acute DWI lesion (16, 21, 22, 
26, 27, 41, 43, 44, 46, 51), and others using delayed imaging in patients 
with complete recanalization [TIMI 3 (23, 49), TICI 2b (42, 47), or 
TICI 3 (42, 47, 48)] and clinical improvement. Five studies defined 
core in patients with evidence of ‘major’ reperfusion following 
treatment with thrombolysis or clot retrieval. This was defined as 
more than 80% reduction in the perfusion lesion volume between 
acute CTP and 24-h MR imaging, using MTT >145% of the normal 
tissue (16, 19, 20, 22) or Tmax >6 s (15). Others did not specify the 
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TABLE 3 Parameters and thresholds for identifying core.

Authors Year Median 
onset time 

to CTP 
(min)

Image 
analysis

Statistical 
analysis

Parameter Threshold Units Sensitivity Specificity AUC Youden 
index

Schaefer 2006 144 ROI ROC CBF ratio <0.32 NR NR NR NR NR

Murphy 2006 133** ROI ROC/Volume CBF.CBV <31.3 NR 0.97 0.97 NR 0.94

Wintermark 2006 NR Voxel ROC aCBV 2 mL X 100 g−1 NR NR 0.93 NR

Murphy 2008 133** ROI ROC/Volume CBF.CBV <8.14 NR 0.95 0.94 NR 0.89

Bivarda 2011 195 Voxel ROC/Volume rCBF 45 % NR NR 0.79 NR

Bivardb 2011 NR Voxel ROC/Volume rCBF (DT) 40 (>2) % 0.93 0.78 0.86 0.71

Campbell 2011 190 ROI ROC/Volume rCBF 31 %
0.72 0.73€ 0.79 0.45

0.72 0.88§ 0.79 0.6

Kamalian 2011 246 Voxel ROC rCBF 16 % 0.8 0.83 0.88 0.63

Payabvash 2011 222+ Voxel ROC rCBF
0.42$ % 0.54 0.80 0.72 0.34

0.16 % 0.54 0.79 0.73 0.33

Campbell 2012 213+ ROI Volume rCBF (TTP) 31 (>4) % NR NR NR NR

Bivard 2013 NR Voxel ROC/Volume rCBF (DT) 40 (>2) % 0.73 0.93 0.86 0.66

Bivard 2014 NR Voxel ROC/Volume rCBF 50 % 0.66 0.81 0.75 0.47

Eilaghi 2014 NR Voxel ROC rCBF 0.78 NR 0.89 0.93 NR 0.82

McVerry 2014 196 Voxel ROC/Volume rCBF 45 % NR NR NR NR

d’Esterre 2015
NR

ROI ROC
Tmax# 16.2 s 0.85 0.83 0.91 0.68

NR aCBF^ 9.5 mL/100 g/min 0.84 0.86 0.88 0.7

Cereda 2016 185 Voxel ROC/Volume rCBF 38 % 0.67 0.87 NR 0.54

Lin 2016 174 Voxel ROC/Volume rCBF (DT) 30 % 0.8 0.91 NR 0.71

Yu 2016 NR Voxel ROC/Volume rCBF (DT) 30 (>3) % 0.64 0.76 0.76 0.4

Bivard 2017
NR

Voxel ROC/Volume rCBF
30 % 0.84 0.77 0.83 0.61

NR 20 % 0.91 0.87 0.89 0.78

Copen 2017 NR Voxel ROC/Volume rCBF 29 % 0.79 0.85 0.89 0.64

Chen 2019 NR Voxel ROC/Volume rCBF 30 % 0.6 0.88 0.74 0.48

Qiu 2019 92 ROI ROC Tmax# 15.7 s 0.81 0.87 0.93 0.68

244 aCBF^ 9.2 mL/100 g/min 0.77 0.82 0.9 0.59

Laredo 2020 81 ROI Volume rCBF 25 % NR NR NR NR

269 30 % NR NR NR NR

NR, not recorded; Bivarda, Cerebrovascular Diseases, 2011; Bivardb, Brain, 2011; **average; *median; +mean; ROI, region of interest; ROC, receiver operating characteristic; AUC, area under curve; #onset to scan < 180 min; ^onset to scan > 180 min; €within perfusion 
lesion; §whole brain; $highly vulnerable regions.
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TABLE 4 Parameters and thresholds for identifying penumbra.

Authors Year Image 
analysis

Statistical 
analysis

Parameter Threshold Units Sensitivity Specificity AUC Youden 
index

Schaefer 2006 ROI ROC CBF ratio >0.44 NR NR NR NR NR

Murphy 2006 ROI ROC/Volume CBF.CBV >31.3 NR 0.97 0.97 NR 0.94

Wintermark 2006 Voxel ROC rMTT 145 % NR NR 0.96 NR

Murphy 2008 ROI ROC/Volume CBF.CBV >8.14 NR 0.95 0.94 NR 0.89

Bivardb 2011 Voxel ROC/Volume rDT 2 s 0.82 0.9 0.86 0.72

Campbell 2012 ROI ROC/Volume Tmax 6 s 0.91 0.7 0.87 0.61

Kamalian 2012 Voxel ROC rMTT 249 % 0.65 0.8 0.78 0.45

Bivard 2013 Voxel ROC/Volume DT 2 s 0.83 0.82 0.86 0.65

Bivard 2014 Voxel ROC/Volume rTTP 5 s 0.72 0.82 0.79 0.54

McVerry 2014 Voxel ROC/Volume DT 2 s NR NR NR NR

Yu 2016 Voxel ROC/Volume DT 3 s 0.75 0.74 0.81 0.49

Lin 2016 Voxel ROC/Volume Tmax 6 s 0.80 0.91 NR 0.71

Chen 2019 Voxel ROC/Volume Tmax 6 s 0.72 0.84 0.78 0.56

NR, not recorded; Bivardb, Brain, 2011; ROI, region of interest; ROC, receiver operating characteristic; AUC, area under curve. The maximum value of the Youden index is 1 and a Youden 
index of less than 0.5 does not meet the optimal performance standard for a diagnostic test.

FIGURE 2

Reported optimal rCBF (%) thresholds to identify core by publication year, sample sizes, author, and reperfusion therapy (triangle—ECR only).
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threshold for MTT (21). One study used TICI 3 recanalization and 
‘complete’ reperfusion defined as more than 90% reduction from 
baseline CTP using DT > 3 s (18). One early study defined core as the 
infarcted tissue on delayed NCT or T2-weighted MRI with reduced 
CBV and CBF on initial CTP (50). Another early study defined 
penumbra as the tissue with CBF <25 mL/100 g/min, which did not 
infarct on delayed NCT and then applied logistic regression to 
differentiate between penumbra and core in the gray (24) and white 
(25) matter in recanalized patients.

Parameters for penumbra
Three studies reported Tmax >6 s as the most accurate parameter 

for penumbra (AUC 0.78–0.87) (16, 23, 43). Using the MIStar 
software, three studies found DT > 2 s was the most accurate parameter 
and threshold for penumbra (20, 22, 49). One study (n = 22) reported 
a higher threshold (DT > 3 s) in a Chinese population (15). Two older 
studies suggested that relative MTT (28, 41) with thresholds varying 
from 145 to 249% was optimal for penumbra.

Three different methods were used to define penumbra. One 
pivotal study (43) used MR-PWI within an hour of CTP and 
matched thresholds for penumbra to MR-PWI threshold of Tmax 
>6 s. Five studies defined penumbra using CTP parameters and 
thresholds to identify ‘no or minimal reperfusion’ (<20% 
reperfusion) at 24 h (15, 16, 19, 20, 22). Studies defined minimal or 
no reperfusion using MTT >145% of the normal tissue (16, 19, 20, 
22) or Tmax>6 s (15). Three studies used infarct growth between the 
area of hypoperfusion on CTP and the infarcted region found on 
24-h MRI (23, 41) alone or combined with delayed NCT (49) in 
patients with persistent symptomatic occlusion on follow-up CTA 
or MRA (23, 41, 49). One study assumed persistent occlusion by 
including patients with vessel occlusion who in the absence of 
thrombolysis had no late clinical or radiological confirmation of 
reperfusion (28). Only two studies investigated thresholds for 
differentiating penumbra or ‘tissue at risk’ from ‘oligemia.’ (28, 50) 
Oligemia or ‘penumbra that recovers’ was defined as hypoperfusion 
on CTP (28) or reduced CBF and normal CBV (50), which did not 
infarct on delayed imaging.

Perfusion parameters and time
The relationship between thresholds and time to reperfusion was 

investigated in three studies (42, 47, 48). Two of these studies 
demonstrated a statistically significant relationship between Tmax and 
aCBF and time to reperfusion from CTP (42, 47). If reperfusion 
occurred within 90 min, the optimal Tmax thresholds for the core was 
higher, and aCBF threshold lower than if reperfusion occurred 
between 90 and 180 min (42, 47). Optimal threshold values reported 
for rCBF were also lower if reperfusion occurred within 90 min (42) 
or when recanalization occurred within 4.5 h of stroke onset (see 
Figure 2; Laredo 2020) (48).

Thresholds for gray and white matter
Eight studies investigated thresholds for the gray matter (GM) and 

the white matter (WM) (16, 24, 25, 28, 42, 45, 47, 50). Two early 
studies reported higher threshold values for the product of CBF and 
CBV in GM compared to WM (24, 25). For identifying penumbra, 
studies reported higher thresholds in WM than GM for aMTT 
(n = 23) (28) and Tmax (n = 31) (16) and lower thresholds in WM than 
GM for parameters, aCBF, and aCBV (n  = 14) (50). However, 

thresholds for DT were constant (n = 31) (16). For identifying core, no 
significant difference in Tmax thresholds was reported between GM 
and WM (42, 47). Two studies reported consistently lower thresholds 
in WM than GM for CBF (16, 47), but one study (n = 132) did not 
(42). Reported thresholds for CBV were also generally lower in WM 
than GM (42, 47). One study reported higher thresholds for rCBF in 
highly vulnerable brain regions including the caudate body, putamen, 
and insular ribbon (51).

Discussion

An important finding of this systematic review is that a single 
parameter and threshold may not always accurately differentiate 
penumbra from core and oligemia. Although each diagnostic 
accuracy study has reported an optimal parameter and threshold 
for core and penumbra as the gold standard, these varied 
significantly depending on the cohorts investigated. This is 
especially evident from the studies published by the same research 
groups which reported different parameters for penumbra (15, 19, 
22, 28, 43, 50) and varying rCBF thresholds for core (16, 18–23, 27, 
46, 50) (see Figure 2).

In the assessment of a diagnostic test, the results obtained are usually 
evaluated in an independent cohort of patients to ensure replicability and 
reliability. Only two studies validated reported thresholds in an 
independent dataset to confirm their findings (45, 49). Most studies that 
used small sample sizes did not perform cross-validation or follow the 
STARD (52) guidelines and continued to be limited by non-blinding to 
the reference standard. Consequently, the results varied even when 
published by the same group. The use of time-dependent thresholds for 
ischemic core, such as rCBF and Tmax, which are impacted by time to 
reperfusion, and highly effective reperfusion therapies such as 
thrombectomy may also impact variability (18, 47, 48) (8, 10). 
Additionally, 15 studies defined a single threshold for all brain regions 
irrespective of collaterals and the gray and white matter. Differing 
thresholds seem to exist between the gray and white matter for some 
parameters (16, 28, 42, 47, 50) and brain regions (51), but further 
exploration of these findings is needed. Developing maps that overcome 
the issue of time-dependent thresholds and applying different thresholds 
for the gray and white matter or brain regions may increase accuracy in 
determining core infarct volume.

As previously reported, significant heterogeneity in technical 
imaging parameters including acquisition times, varied pre- and post-
processing techniques (15, 28, 53), scan duration, modality and timing 
of reference standard, time from stroke onset to CTP scan, and 
multiple definitions for penumbra and core may also contribute to the 
variability in reported thresholds and parameters. Additionally, 
patient factors (10) including the presence of white matter disease, 
collaterals, location of stroke (anterior or posterior), cardiac output, 
vessel occlusion or stenosis, and hematocrit ratio may also 
be  important. Comparable to studies investigating MR perfusion, 
most CT perfusion studies were unable to distinguish the penumbral 
tissue from the benign oligemia and may have overestimated the 
region of hypoperfusion representative of the penumbra (28, 54).

We have documented sensitivity, specificity, and AUC as 
reported by the published journal articles or their supplementary 
pages (see Tables 3, 4). In several cases, the reported values for AUC 
seem to be dissociated with values for sensitivity and specificity (15, 
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18, 20, 27, 42, 44, 46, 47, 51). This situation can arise as the AUC is 
calculated for the range of thresholds for a test, and the sensitivity 
and specificity of a test are described for a particular threshold. The 
Youden index was also used to define the performance at the 
optimal cutoff point. Using the rCBF threshold of 31% to describe 
the infarct core, the median value of the Youden index was 0.6. In 
three of the five studies, the calculated Youden index was less than 
optimal (15).

Study limitations

There are several strengths of this systematic review. First, 
we followed the guidance outlined by the Cochrane Database of 
Systematic Reviews and PRISMA-DTA guidelines. Second, 
we  performed an extensive literature search using different 
electronic databases with two review authors conducting data 
extraction. Third, the assessment of quality was carried out by two 
independent review authors using the QUADAS-2 tool (17) for 
quality assessments. While the QUADAS-2 tool (17) had suggested 
that 14 studies were classified as high quality, these studies did not 
fully meet the STARD (52) guidelines (described above). Finally, 
we only included studies that used co-registration of index images 
to the reference standard to ensure the accuracy of tissue location 
and volume analysis.

The following limitations are worth noting. We only included studies 
published in the English language, and most included studies were 
retrospective cohort studies, with sample sizes of less than 50 patients 
which can run the risk of producing an overestimation of sensitivity and 
specificity. We acknowledge that a limitation of the Youden index is its 
inability to distinguish a test with a high sensitivity and low specificity 
from one with low sensitivity and high specificity. Studies that were 
published from the same study sites and groups may have included the 
same patients more than once. Despite approaching authors (18–23), 
we  were unable to obtain this information. Only seven studies were 
blinded which increases the risk of bias in interpretation of the index test 
and reference results. Due to our selection criteria, we have reported 
results pertaining to anterior circulation stroke from mostly two post-
processing software manufacturers, excluding studies comparing other 
commonly used post-processing software such as RAPID® (29–31), 
Vitrea (55), and Sphere (56). Finally, there was significant methodological 
heterogeneity between studies which unfortunately precluded 
further analysis.

Conclusion

Although CT perfusion has found its place in clinical practice, 
clinicians involved in the hyperacute care of stroke patients need to 
recognize its current limitations. An accurate determination of 
infarct volume is essential to ensure the appropriate selection of 
patients for reperfusion therapies and identify patients for transfer 
to regional stroke centers. This may not always be possible with a 
single threshold and parameter. Prospectively designed, multicenter 
diagnostic accuracy studies following STARD (52) guidelines using 

standardized imaging acquisition and analysis protocols are still 
needed to improve the accuracy of CT perfusion. Future research 
may involve thresholds that consider variations in the gray and white 
matter and identifying parameters that can precisely differentiate the 
penumbra from the oligemic tissue and core from the penumbra 
irrespective of time from stroke onset. The creation of voxel maps 
using the product of rCBF, rCBV, and hypoattenuation in Hounsfield 
units on NCT may enable a less time-dependent and more accurate 
determination of the core.
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