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Cognitive impairments are a prevalent consequence of acquired brain injury,

dementia, and age-related cognitive decline, hampering individuals’ daily

functioning and independence, with significant societal and economic

implications. While neurorehabilitation represents a promising avenue for

addressing these deficits, traditional rehabilitation approaches face notable

limitations. First, they lack adaptability, o�ering one-size-fits-all solutions

that may not e�ectively meet each patient’s unique needs. Furthermore,

the resource-intensive nature of these interventions, often confined to

clinical settings, poses barriers to widespread, cost-e�ective, and sustained

implementation, resulting in suboptimal outcomes in terms of intervention

adaptability, intensity, and duration. In response to these challenges,

this paper introduces NeuroAIreh@b, an innovative cognitive profiling

and training methodology that uses an AI-driven framework to optimize

neurorehabilitation prescription. NeuroAIreh@b e�ectively bridges the gap

between neuropsychological assessment and computational modeling, thereby

a�ording highly personalized and adaptive neurorehabilitation sessions. This

approach also leverages virtual reality-based simulations of daily living activities

to enhance ecological validity and e�cacy. The feasibility of NeuroAIreh@b

has already been demonstrated through a clinical study with stroke patients

employing a tablet-based intervention. The NeuroAIreh@b methodology

holds the potential for e�cacy studies in large randomized controlled trials in

the future.
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1 Introduction

According to the World Health Organization, dementia and
stroke are among the leading causes of disability and dependency.
By 2050, the percentage of older people should increase by 35%,
which raises the number of people at risk of developing dementia
from any etiology (1). Up to 53.7% of all cases of dementia are
assumed to be due to Alzheimer’s disease (AD), while 15.8% are
considered to be due to Vascular Dementia (VD) (2). With, so
far, no effective pharmacological treatment found, the increase
of older adults with cognitive impairments makes it urgent to
deliver adapted/personalized neuropsychological interventions in
individuals with Mild Cognitive impairment (MCI), a clinical
condition that increases the risk of developing dementia in 38% (3);
and stroke, which likelihood to develop VD is estimated to range
from 36 to 67% (4).

The Neuropsychological Assessment (NPA) is a comprehensive
evaluation of an individual’s cognitive, emotional and behavioral
functions, typically conducted by a neuropsychologist. It involves a
variety of instruments to assess different aspects of brain function,
such as memory, attention, language, and executive functioning.
NPA is often performed in clinical settings to diagnose and treat
conditions such as acquired brain injuries, neurodegenerative
diseases and psychological disorders. NPA is essential to determine
a patient’s cognitive profile. An Assessed Cognitive Profile (ACP)
refers to the formal measurement of an individual’s cognitive
abilities and functioning. This profile includes information about
various aspects of cognition (memory, attention, language, and
executive functioning) and outlines an individual’s strengths and
weaknesses in these domains. The ACP is valuable for various
purposes, including diagnosing cognitive impairments, monitoring
changes over time and/or guiding intervention strategies, making
it a crucial component in healthcare and education settings.
However, its paper-and-pencil methodologies have fallen reliant
on labor-intensive procedures of data collection that provide
relatively data-poor estimates of human behavior despite the rapid
technological advances in other healthcare fields (5). Integrating
technology, namely artificial intelligence (AI) methodologies, into
NPA practices has tremendous potential to advance the field faster
in numerous areas, such as neurorehabilitation (6).

Technology-based assessment and rehabilitation methods
with high ecological validity, particularly those based on the
use of Virtual Reality (VR), have been shown to lead to
increased outcomes in neurorehabilitation (7). One reason for
this could be the fact that VR-based methods allow incorporating
cognitive tasks within the simulation of Activities of Daily Living
(ADLs) and the creation of well-controlled environments oriented
toward the needs of patients (8–10). Reh@City, a VR-based
neurorehabilitation tool, is an example where memory, attention,
language, and executive functions tasks are integrated into the
performance of several ADLs (11). A randomized controlled
trial with stroke participants who underwent rehabilitation with
the Reh@City revealed a significant impact on cognitive and
functional domains compared to equivalent standard paper-and-
pencil tasks (12).

Recently, a questionnaire was delivered to healthcare
institutions in Portugal to understand the actual perspective

of health professionals on using technologies for cognitive
rehabilitation (CR) (13). Data from 116 participants showed that
health professionals mostly use games, puzzles, and paper-and-
pencil tasks. Concerning the profile of patients undergoing CR,
dementia and stroke were reported as the main conditions being
addressed, and most patients were above 60. Results indicated that
technologies are not yet widely used by health professionals in CR
sessions, with most participants (65.5%) reporting no experience
with CR technologies. The most mentioned barriers were the
nonexistence of technologies at the institution and the lack of
qualified human resources to support them.

The limited adoption of computer-based NPA and
neurorehabilitation (14) might be explained by the fact that,
rather than incorporating many of the advances in neuroscience or
computer science, most test developers redesign paper-and-pencil
methods for administration on the computer (5). Although
digitizing current tests certainly has advantages over its analog
tests, these could be leveraged far more effectively if development
efforts also focused on capturing more behavioral data and
increasing the ecological validity of tests (15).

Over the last decades, AI capabilities have grown exponentially,
and, in recent years, it has become ubiquitous. It is everywhere,
from cars to smartwatches, from smart TVs to the operation room
in advanced hospitals. Martens et al. (16) identified in their work
that, as performance increases, the readability decreases. They
ordered AI systems from less performance to most performance:
Rule-based Systems, intrinsically linear models, and Artificial
Neural Networks/Support Vector Machines. The application of
Machine Learning (ML)-basedmethods in healthcare is also rapidly
evolving with practical implications in the prevention, diagnosis,
treatment, and prognosis of specific clinical conditions (17, 18).
To the best of our knowledge, only three neurorehabilitation
platforms are using an AI-driven approach to adapt and personalize
training sessions: the Guttman Neuropersonal Trainer (GNPT)
(19), the Neuro-World (20), and the Brain Training System (BTS)
(21, 22).

The GNPT consists of a tele-CR platform for patients
diagnosed with Acquired Brain Injuries (ABI), aiming to provide
neuropsychologists services beyond the clinical setting and
increasing the personalization, duration, and intensity of the
neurorehabilitation process (19). This platform encompasses
telemedicine services and AI for knowledge extraction (e.g.,
data mining, collaborative environments, and automatic system
adaptation to patients’ performance). The CR personalization
process begins with the performance of a baseline NPA; then,
the assessment results are stored in the GNPT system and used
to define the patients’ cognitive profile. The system proposes
a Cognitive Training (CT) therapeutic plan based on this
profile. The adjustment of the therapeutic plan (i.e., type of CT
tasks and difficulty levels) is performed automatically by the
system, according to the patient’s performance (23). Regarding
rehabilitation content, this platform comprises 95 computerized
exercises, targeting several cognitive functions (19).

Concerning the Neuro-World, it is comprised of a set of
six mobile games designed to challenge visuospatial short-term
memory and selective attention (20). The approach allows self-
administration of assessment and remote monitoring of the
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patient’s cognitive status (CS). This process happens by analyzing
the patient’s game performance and estimating the Mini-Mental
State Examination (MMSE) results through ML algorithms. A
longitudinal study with 12 stroke survivors with mild cognitive
deficits demonstrated that the Neuro-World could estimate the
MMSE scores with a low normalized root mean square error
(5.75%). An interesting contribution of this work is that assessment
and rehabilitation can be combined in the same tool.

Lastly, the BTS uses an algorithm that automatically selects and
schedules cognitive training exercises (21, 22). The difficulty level
of the exercises is generated around the ACP of the participant,
which is updated as the participant progresses. The system uses
a scoring system to compare performances in different exercises
that are merged according to the same cognitive domain level. A
supervision process based on “red flags” is activated whenever the
system detects user engagement, compliance, or adherence issues.

The existing AI-driven cognitive rehabilitation platforms have
several limitations in common, namely: (1) Limited transfer effect
as the cognitive skills acquired through these platforms may not
always generalize to real-world tasks, as they often lack ecological
validity; (2) Reduced engagement and motivation, as some users
may find neurorehabilitation tasks repetitive or uninteresting;
(3) Lack of clinical supervision, which could potentially lead
to suboptimal progress or user frustration; (4) Focus on a
limited range of cognitive domains and; (5) The inappropriate
personalization due to a one-size-fits-all approach may not be
tailored to an individual’s specific ACP.

Here, we present NeuroAIreh@b, a new cognitive profiling and
training methodology that uses AI to maximize neurorehabilitation
prescription personalization and adaptation. NeuroAIreh@b is
being developed within a multidisciplinary environment,
combining different expertise fields such as neuropsychology,
computer science, game design and AI for health. Here, we will
describe the methodology followed to address the challenges posed
by the scientific literature in the field and neurorehabilitation
clinicians. Specifically, we will explain how we: (1) create an
optimal cognitive profile by aggregating the NPA instruments
results (according to empirical input from neuropsychology
experts) and then (re)calibrate them with the support of ML
algorithms; (2) design and developed CTTs that can be prescribed
according to the patient’s ACP, training objectives and performance
in previous CTTs; and (3) adapt the CTTs from session to session
according to the patient’s performance through the theoretical
framework of dynamics of profiles developed in (24), based on
Belief Revision (BR) theory (25, 26).

2 Methods

2.1 The framework and its challenges

Neurorehabilitation is the most effective approach to address
cognitive deficits (27). However, current tools are (a) challenging
to adapt to every patient since they demand the application of an
extensive battery of NPA instruments, which results are interpreted
manually and often prone to errors in the selection of CTTs, (b)
have a high implementation cost, since they involve several sessions
performed in clinical environments by neuropsychologists and (c)

session to session adaptation to the patient performance is not
always performed, which may limit the rehabilitation potential and
motivation of the patient.

To address these main limitations, we developed a framework
for personalized and adaptive delivery of neurorehabilitation that
can be divided into four different components as indicated in
Figure 1. In this section, we will describe, at a high level, the
processes to be performed in each framework component (numbers
1–9 in the Figure 1) and the challenges involved in its construction.
The patient profiling: this component aims
to create a multi-dimensional patient profile
that integrates several NPAs to determine a
baseline CS.

1. Neuropsychologists use validated NPA instruments to assess
patients’ cognitive functioning. An NPA instrument is a
standard part of integrated medical care and is necessary to
prescribe and evaluate (in terms of efficacy) rehabilitation
procedures. A comprehensive NPA aims: (i) to measure
and assess cognitive abilities, ADLs performance, personality
traits, and emotional and behavioral functioning in light of
the premorbid functioning of the patient; (ii) to quantify
the nature and severity of cognitive and functional deficits,
analyzing the symptoms and signs present in the context of
the structural and functional integrity of brain functioning, to
differentiate normal and pathological cognitive decline (iii) to
define a baseline level of performance in cognitive, functional,
and emotional functioning domains, which can be examined
in a longitudinal registry, through repeated evaluations, thus
enabling monitoring of the clinical evolution of the patient, in
terms of response to interventions (e.g., CT, psychotherapy,
pharmacological therapy) or disease’s progression; (iv) to
identify personal resources and preserved functions that
are useful for planning and implementing compensatory
intervention procedures.
Challenges: To represent profiles, it is necessary to define a
formal language. This language will be used for representing
the profiles, for expressing their properties, for computing
metrics about them and for determining their dynamics.
After explaining the general structure, we must identify which
cognitive, functional, behavioral, and emotional domains
should be considered when creating patients’ profiles. Also, it
is necessary to specify relevant NPA for a comprehensive and
multidimensional evaluation of these domains and determine
which socio-demographic information (SDI) to consider for
profiling purposes.

2. By aggregating the different NPAs with the SDI of the patient,
the system creates an Assessed Cognitive Profile (ACP).
Challenges: To the best of our knowledge, there is a gap
in the literature on integrating data from multiple and
heterogeneous NPAs and consolidating it into a consistent
cognitive profile.

3. The ACP itself is not sufficient to determine the CS of the
patient. It must be compared with the normative data available
for each NPA tool.
Challenges: The normative data for each NPA may be
provided for different clinical conditions and are often
separated by socio-demographic groups. As well as in step 2,
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FIGURE 1

The proposed framework.

this needs to be aggregated and compared to the consolidated
profile with an objective and quantifiable distance metric.

The training selection: After determining the patients’ CS, which
gives information about the preserved and impaired domains,
neuropsychologists must define the most appropriate CTTs for
neurorehabilitation.

4. Based on the patient’s CS, neuropsychologists determine
specific training objectives for each patient, i.e., in which
cognitive domains the rehabilitation training must be focused
on to regain or compensate for lost cognitive abilities and
functional independence.
Challenges: The ultimate goal of neurorehabilitation is to help
patients to regain independence and autonomy in their ADLs.
It can be difficult to establish objectives on a system that will
mostly accept numerical values when the objectives are usually
set subjectively. The system should be able to perform this
translation.

5. After establishing the training objectives and the set of
available CTTs in the system, NeuroAIreh@bab will compute
which tasks are most appropriate for the training. This is
possible since each task has its own profile, i.e., one that
details which cognitive domains are required to perform it and
how the task’s difficulty can be parameterized for the different
cognitive domains.
Challenges: Each task must include information about which
cognitive domain it trains. Additionally, it should include
constraints regarding the minimal and maximal values for
a particular cognitive domain of the suitable patient profile.
The set of selected tasks must be optimally provided with the
training objective (considering that the number of selected
tasks is also limited given the amount of time and number of
sessions assigned to the CT program).

6. By combining the initial profile and CTTs, the system
establishes the initial parameters for the tasks. These initial
parameters determine the task’s difficulty according to the
different cognitive domains.

Challenges: Combination is not trivial, and it is based on the
tuple ≪task, the value of the cognitive domain in the profile,
and associated difficulty≫ that will be adjusted in the system
using ML techniques (see System Calibration).

The training session: This part describes how a patient would
perform a CT session from the NeuroAIreh@b.

7. The patient can perform his prescribed training sessions
at the clinic or at home. Each training session consists of
a set of predefined tasks to be executed on a tablet or a
personal computer. The NeuroAIreh@b itself will calculate the
performance of the patient at each iteration and will redefine
its difficulty by changing its parameters to maintain a patient
score in a task between 50 to 70% of success to avoid both
boredom and frustration, keeping the patients challenged and
engaged (28).
Challenges: To maintain the task score between 50 and 70%,
the system must establish a relation between the scores in the
different tasks, the task parameters, and the resulting difficulty
for each cognitive domain of the patient profile.

8. After a complete training session, the system aggregates the
performance in all tasks and estimates if there was evolution
or involution in the different cognitive domains of the patient’s
profile, defining a predicted cognitive profile.
Challenges: Defining the predicted cognitive profile involves
multiple challenges. Given a profile representation, defining
the profile dynamics when new information is provided is
necessary. The system must perform minimal changes in the
profile to accommodate the new information. This minimal
change requires applying belief revision techniques adapted to
the profile representation languages mentioned in Step 1.

The system calibration: This part describes the system’s calibration
when comparing the predicted profile with newly acquired data.

9. A new NPA is performed when a patient ends a training
session and the cycle restarts. The newly assessed cognitive
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profile is compared with the predicted cognitive profile of the
system. If they differ, the system analyzes the possible causes
of the divergence and (re)calibrates the system adequately.
Challenges: The divergences can have different origins: (1) a
wrong prediction in step 8; (2) a non-accurate model of the
relationship between tasks and cognitive domains in step 5; or
(3) a suboptimal adjustment of the parameters in step 7.

2.1.1 The role of artificial intelligence
As previously explained, the implementation of the proposed

framework entails several challenges. This subsection briefly
describes which parts and AI techniques we use to address
the challenges.

The first resort to AI appears in the creation of the ACP
[see (2) in Figure 1]. Here, we distinguish two different phases:
In order to start with no data, a focus group of six experts
in neuropsychological assessment and rehabilitation made an
empirical analysis of the NPAs to aggregate them by cognitive
domain. This aggregation (a weighted sum) was later checked by
using belief merging and judgment aggregation procedures [for an
overview, see (29, 30)] and compared with correlations between
NPAs, established using ML techniques with available data for
Alzheimer’s disease, which also involves cognitive impairment.
For the second phase, with a fully operational system, and after
collecting enough data, we will calibrate the weight assigned to
each NPA regarding each cognitive domain and subdomain by ML
techniques. All this process is explained in detail in Section 2.2
(The Profiling Challenge). The same approach is used to aggregate
the relation between each NPA and the normative data to obtain a
consolidated CS.

The second appearance of AI methodology is to optimize the
process of CTTs selection from the CTT repository [(5) in Figure 1].
This optimization is explained in detail in Section 2.4.1.

The next resort to AI appears for deciding the difficulty
level of a CTT during a training session [(7) in Figure 1]. The
CTT parameters must be adapted so that the patient obtains
a performance between 50 and 70%. This adaptation is better
explained in Section 2.4.2.

The overall training performance comparison along the 12
sessions intervention will be the input for calculating the Predicted
Cognitive Profile (PCP) [(8) in Figure 1]. The process of relating the
CTTs’ difficulty and cognitive domains is not linear, mainly because
a CTT trains multiple cognitive domains. It can be challenging to
differentiate how much of an obtained performance relates to each
specific domain. To create the PCP, the performance of the patient
in the training session is transformed into a new entity described in
a sentence in formal language (see Section 2.2.1). This constitutes
an input for an update function that will actualize the profile,
making aminimal change to incorporate the new information. The
algorithm for this update is based on the theoretical framework for
updates of profiles developed in (24).

Finally, the last AI challenge is to calibrate the system. As
mentioned in Challenge 9, the divergences can have different
origins. In this case, we will collect all the data to identify, via ML
approaches, the origin of the divergences.

2.2 The Profiling Challenge

The Profiling Challenge corresponds to Steps 1, 2, and 3 of the
framework illustrated in Figure 1.

2.2.1 The profile’s structure
In this subsection, we identify which aspects of cognitive,

functional and emotional domains are relevant to include in the
patient’s profile and which NPA instruments are representative of
those aspects. We start by defining a formal profile.

Definition 2.1. (24) A profile P is a tuple ≪label1, . . . , labeln≫,
where labeli ∈ N0.

Informally, each element of the tuple of a profile is a
characteristic that assumes a finite number of possible values.
We have used natural numbers for the content of each labeli.
However, it is easy to change the definition to use linguistic labels;
for instance, if label1 represents the marital status, we can use
“single/married/separated/widowed”, etc., as possible values.

A simple example of a profile structure is ≪age, weight,
height≫ and a possible profile is John =≪20, 80, 178≫.

The next step is to define a formal language for expressing the
profile properties, for computing metrics about it and for defining
its dynamics.

Definition 2.2. (24) A profile language is a finitary language L,
defined in the following way:

X is a term if and only if:

1. X is a label.
2. If X is a term, then−X is a term.
3. If X and Y are terms, then X + Y is a term.

An atom is an expression of one of the following forms:

1. X = n,
2. X < n,
3. X > n,

where X is a term and n ∈ N0. A well-formed formula (wff) is
defined as:

1. An atom is a wff
2. If X is a wff, then ¬X is a wff
3. If X and Y are wff, then X ∧ Y are wff

where ¬ (negation) and ∧ (conjunction) are the classical negation
and conjunction connectives.

≤,≥ are defined in the usual way, as well as the classical
connectives∨ (disjunction),→ (implication) and↔ (equivalence).
Backing to the previous example, “weight≥ 90∧ height≤ 180” is a
wff.

After defining the profile structure and language, the next step is
to define the contents of a profile in NeuroAIreh@b. Therefore, an
integration of the relevant NPA instruments, with different weights
per domain and subdomains, is essential for a comprehensive
evaluation of cognition (see Table 1). For example, screening tests,
such as the Montreal Cognitive Assessment (MoCA) (31), are
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brief multidomain screening instruments to identify cognitively
at-risk patients requiring a more comprehensive evaluation.
For example, in a domain and subdomain analysis, we have
identified the following NPA dimensions in the MoCA: general
cognition; orientation; immediate verbal memory; executive
functions (namely, working memory, processing speed, verbal
fluency and inhibition and visuoconstructive capacity); language
(such as comprehension and expression) and sustained attention.

We considered the demographic variables, such as education
and age for analyzing the NPA instruments results. The rationale
for this option recognizes the impact of these variables in explaining
the variance of results and defining the test scores’ normative
benchmarks. From a rehabilitation perspective, it is essential to
consider other variables such as household and occupation.

The results obtained with a comprehensive battery of
NPA instruments provides a baseline of impaired cognitive
function(s), which helps to define the duration and type of
neurorehabilitation that needs to be performed. For example,
executive functions deficits, specifically in inhibition, planning and
monitoring, demand intervention programs focused on executive
functioning. Additionally, the results obtained in the memory
tests contribute to personalizing and adapting CR sessions to
involve the use of a calendar and notepad, warnings, teaching and
training of mnemonics, face-name associations, improvement of
episodic memory, semantic memory, autobiographical memory,
and visual memory.

Additionally to the MoCA screening instrument, we have
established the following multidimensional battery of NPA
instruments to create a profile in the NeuroAIreh@b: the Clinical
Dementia Rating (CDR) (32); the Subjective Memory Complaints
(SMC) (32); the Free and Cued Selective Reminding Test (FCSRT)
(33); the Visual Reproduction from the Wechsler Memory Scale
(WMS-III) (34); the Semantic and Phonemic Verbal Fluency
Tests (35); the Toulouse-Piéron test (36); the Digit Symbol
Coding, the Symbol Search and the Vocabulary Subtests from
the Wechsler Adult Intelligence Scale Subtests (WAIS-III) (37);
the Rey-Osterrieth Complex Figure Test (38); the Adults and
Older Adults Functional Assessment Inventory (IAFAI) (39) or
the Patient-Reported Evaluation of Cognitive State (PRECiS) (40);
the Geriatric Depression Scale-30 (GDS-30) (41) or the Beck
Depression Inventory-II (BDI-II) (42); and the World Health
Organization Quality of Life — Old (WHOQOL-OLD) (43) or
the Quality of Life after Brain Injury (QOLIBRI) (44). This
selection was made according to the following criteria: (1) NPA
instruments that are standard and widely used in Portuguese
clinical and research contexts; (2) adequate NPA instruments with
specificity for detecting impairments in the cognitive, functional
and emotional dimensions of stroke, MCI and dementia clinical
populations; and (3) NPA instruments with normative data for the
Portuguese population.

2.2.2 Aggregation of neuropsychological
assessments

To create the ACP, we established a bridge between the different
NPAs and the SDI of the patient. To the best of our knowledge,
there is a gap in the literature regarding the integration of data from
multiple and heterogeneous NPA instruments to create an ACP.

As stated above, in the initial phase we did not have enough data
on stroke, MCI and dementia patients to use an ML approach and
quantify the contribution of each NPA to the different dimensions
of the profile. Therefore, we developed the following strategy: (1) A
focus group of 6 neuropsychological assessment and rehabilitation
experts defined a general formula for aggregating the NPAs,
considering weights for the relation between NPA instruments
and cognitive domains/subdomains (2) the NPA instruments were
empirically aggregated, based on the expert’s experience, and a first
value for the weights was obtained, (3) the previous aggregation
was pre-validated by using correlations obtained from patients with
dementia and weights were readjusted, and (4) ML algorithms for
future calibrations were defined.

2.2.3 The general formula
We propose to map NPA instrument scores to a consolidated

ACP in the interval between 0 and 100, and the Equation (1) is used
for theMapping. Note that it is formulated owing to no data.

ACPk =

n
∑

i=1

m
∑

j=1

Norm(NPAiDomj).Wkij (1)

where, m is the number of times a Dom a NPA tool appears and
n the number of NPA instruments. ACPk is the cognitive domain
k for this ACP, NPAiDomj is the domain/subdomain j of the NPA
tool i, Norm is a normalization function, which interval is ranged
between 0 and 100. Finally, Wkij is a weight value in the interval 0
to 1, where

∑

wkij = 1. The ACP for a patient is therefore defined
as

ACP = ≪ACP1, . . . ,ACPr ≫ . (2)

where r is the total number of domains/subdomains considered.
For example, if we use the weights for working memory (wm)

provided on Table 1 we obtain:

Working_Memory =



















WaisIII_DSCwm ∗ 0.6854+
+MoCA_digitwm ∗ 0.1713+
+MoCA_calculuswm ∗ 0.0857+
+MoCA_targetwm ∗ 0.0576

The ACP itself is not enough to determine the CS of a patient.
To obtain it, we need to compare it with the Normative Data (ND).
The ND is organized considering the SDI of the patient. If we
interpret the ACP using the ND from all the NPAs considering the
patient’s SDI, we will get his/her CS. The next step is to solve how
to contextualize this profile. We propose the following formula:

SCPk =

n
∑

i=1

Norm(NDi, SDI).wi (3)

where n = number of NPA instruments. SCPk is the CS for the
domain/subdomain k from ND and SDI. Norm is a normalization
function in which the interval ranges from 0 to 100. NDi is the
profile placement in the normative data of k for each NPA tool i
used to calculate ACP and SDI is patient’s SDI. Finally, wi is the
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TABLE 1 Combination of the NPA instruments according to the cognitive domains and subdomains assessed.

General cognition MoCA total
100% (50%)

CDR cognitive
cluster
100% (50%)

Orientation CDR orientation
33,33% (72,73%)

MoCA temporal and
spatial orientation
12,5% (27,27%)

Memory Immediate Verbal FCSRT
immediate memory
100% (68,57%)

CDR immediate memory
33,33% (22,86%)

MoCA
delayed recall
12,5%

(8,57%)

Visual FCRey 3 min 100%

(50%)

WMSIII visual reproduction
immediate recall
100% (50%)

Delayed Verbal FCSRT delayed recall 100%
(75%)

CDR memory delayed recall
33,33% (25%)

Visual WMS-III visual reproduction
delayed recall 100% (50%)

WMS-III visual reproduction
recognition
100% (50%)

Executive
functions

Working memory WAISIII digit
symbol coding
50% (68,54%)

MoCA digit
in reverse 12,5%
(17,13%)

MoCA calculus
6,25% (8,57%)

MoCA
target detection
4,2%

(5,76%)

Processing speed WAISIII symbol
search
50% (36,36%)

WAISIII digit
symbol coding 50%
(36,36%)

Phonemic and
semantic verbal
fluency
33,33% (24,23%)

MoCA
phonemic
verbal fluency
4,2%

(3,05%)

Verbal fluency Phonemic and semantic
verbal fluency
33,33% (88,81%)

MoCA phonemic
verbal fluency 4,2% (11,19%)

Inhibition Phonemic and semantic
verbal fluency
33,33% (79,88%)

MoCA
target detection
4,2% (10,06%)

MoCA
phonemic
verbal
fluency
4,2%

(10,06%)

Visuoconstructive capacity FCRey copy
100% (50%)

WMSIII visual reproduction
total score 100% (50%)

Language Comprehension WAIS-III vocabulary
50% (100%)

Expression MoCA naming and repetition
12,5% (100%)

Attention Divided WAIS-III symbol search
50% (100%)

Sustained Toulouse-Piéron
test
100% (81,33%)

MoCA
target detection
4,2% (3,42%)

MoCA calculus
6,25% (5,08%)

MoCA
digit direct
12,5%

(10,17%)

Premorbid intelligence WAIS-III vocabulary 50%
(100%)

Functionality Basic ADLs IAFAI basic ADLs
100% (50%)

CDR personal care 100%
(50%)

Instrumental –
familiar ADLs

Instrumental – familiar ADLs
100% (50%)

CDR home and hobbies 100%
(50%)

Instrumental –
advanced ADLs

Instrumental – advanced
ADLs
100% (33,33)

CDR
community affairs
100% (33,33%)

CDR judgment and problem
solving
100% (33,33%)

Cognitive deficits perceived
impact

PRECiS or SMC∗
100%

Depressive symptomatology GDS-30 or BDI-II∗ 100%

The normalized values are presented between (). *Selection according to the patient’s age.
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weight value of the ND i for the domain k in the interval 0 to 1, and
the

∑

wi = 1.
First, it is essential to mention that we do not have access to

the normative values for each NPA /task/question. These data are
only available for the total and, in some cases, sub-totals of each
NPA. A weight needs to be given for the pair ND-SDI to have the
aggregated result of all NPA instruments involved when we do the
sum. This pair provides the average performance on a specific NPA
for someone that belongs to the same socio-demographic group
(e.g., 65–70 years old, 12 years of schooling) as the patient. Since
the MoCA ND values are available for the Portuguese population
(45), we will use it as an example, considering the memory domain.
The result of this formula would be the average result expected
for someone with a similar SDI as the patient. By doing a simple
cross-multiplication between the ACPmemory score and the result
of this function, we can get the relative value of the patient when
compared with the ND. This value would be, in this example, the
memory domain in the CS of the patient, where 50th percentile
represents an average performance considering the patients’ socio-
demographic group in the memory task.

The main challenge here is how to determine the value
of weight Wkij in Equation (1) and the value of weight wi in
Equation (2).

2.2.4 Starting with no data
Table 1 depicts each of the NPA instruments’ weight in the

different cognitive domains and subdomains. As stated above,
this NPA instrument aggregation resulted from a focus group
session with six neuropsychological assessment and rehabilitation
experts. Since most of the selected NPA instrument scores and
subscores may contribute to evaluating different cognitive domains
and subdomains, the NPA instrument weight was divided for the
number of sub-scores it involves and the number of cognitive
domains and subdomains it targets.

For example, the MoCA (100%) is a cognitive screening
measure that gives us information about general cognitive
functioning. Through eight of its subtests (12.5% each), such a
multidimensional and comprehensive tool contributes to assessing
different domains and subdomains: MoCA calculus (12.5%)
contributes to the executive functions assessment in the working
memory subdomain (6.25%) and attention in the sustained
attention subdomain (6.25%).

For each domain to sum a total of 100%, these values were
normalized. As such, if a subdomain has only one NPA tool
entry with 50%, it will be normalized to 100%. If no score
is given in one or more NPA instruments subdomain, the
NeuroAIreh@b system will normalize the existing scores according
to the non-normalized values.

These empirical values were validated in two different ways:
First, we checked if the weighted sum for the aggregation of NPAs
validates the basic aggregation rules [see (29), (Chapter 6)]. For the
second validation, we compared it with data from other sources,
namely the Alzheimer’s Disease Neuroimaging Initiative database
(ADNI).1 The ADNI is a longitudinal multisite observational study

1 http://adni.loni.usc.edu

of elderly individuals with normal cognition, MCI, and AD. Since
it includes a battery of NPAs, we used ML techniques to find
correlations between the different NPA instruments and compare
them with the empirical correlations, establishing an analogy.
To obtain the aggregations for Alzheimer’s disease, the following
procedure was adopted:

1. A file from the database containing all key tables merged into
one was prepared. As an outcome, this file contains the totals
from all the key tables and all the assessment results. It includes
the diagnosis of each patient, filtered by the NPAs used in
NeuroAIreh@.

2. The records were depurated with incomplete data, removing
it from the dataset and obtaining a new dataset with around
2200 lines. To clean data sets before creating a model, we have
tested the Variance threshold, Pearson Correlation and Analysis
of variance.

3. The correlation between tests was checked using the following
ML algorithms: Linear Regression, Logistic Regression,
Decision Tree, Support Vector Machine, Naïve Bayes, K-nearest
neighbors, and Random Forest. Figure 2 shows an example of
the correlations obtained. For a full description, see (46). This
correlation showed which NPA instruments can assess the exact
domains (e.g., memory, depressive symptomatology).

Once we get enough data, we will calibrate Wkij in
the Equation (1) and wi in the Equation (2). For the weight
computation, some statistical learning,ML or DL techniques will be
applied to NPA instruments data to obtain highly optimalW in the
Mapping process, such as Principal Component Analysis, random
forest or neural network. Besides, if the number of Dom and NPA

grows over time, the system performance may decline, and the data
will suffer from high dimensionality. To overcome such problems,
feature selection techniques like Principal Component Analysis,
LASSO, Ridge or t-distributed Stochastic Neighbor Embedding can
be used. These techniques generate highly influential parameters
without losing much information.

2.3 The training challenge

The training challenge encompasses two different parts: the first
one is the development of CTTs to create the CTTs repository, and
the second one is the selection and personalization of CTTs given a
training objective [see (5) in Figure 1].

The set of CTTs is integrated and managed by a software, the
Reh@Sync (47), that is in charge of:

1. Exchanging and managing patient data related to the training
sessions with the CTTs.

2. Selection of the ideal CTTs for the provided cognitive profile.
3. Difficulty adaptation during a session and in between sessions.
4. User interface (UI) for patient’s interaction with his/her training

sessions and CTTs.

2.3.1 The training tasks definition
To identify and select the most relevant ADL-oriented

CT content to create the training tasks repository, interviews
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FIGURE 2

Pearson correlation in the ADNIMERGE table with filter above 60% and p-value below 5%.

were conducted with chronic stroke patients (n = 15) and
neuropsychologists (n = 20).

We recruited a sample of 15 stroke participants (nine male,
six female) in the community setting, with a mean age of
59.66 (SD = 11.25) and an average of 8.46 (SD = 4.73) years
of formal education. Participants were administered the Adults
and Older Adults Functional Assessment Inventory (IAFAI)
(39), which is a self-report functional incapacity measure that
includes both basic (BADL) and instrumental activities of daily
living (IADL). We aimed to identify which activities of daily
living participants presented impairment—independence with
difficulty or dependency—due to cognitive-related factors.
Impairment in activities of daily living (ADLs) due to physical
or emotional-related factors was not considered. Overall,
participants reported more difficulties performing household
and advanced IADL, as illustrated in Table 2, due to cognitive-
related factors (e.g., attention, memory, problem-solving,
mental fatigue). The three most affected IADL domains were
conversation and telephone (IADL - Household), comprehension
and communication (IADL—Advanced), and use and home
security (IADL—Advanced) (48).

Concerning the interviews with neuropsychologists, semi-
structured interviews were used to inquire about 20 Portuguese
professionals with expertise in assessing and rehabilitating
stroke patients. These interviews had three main objectives: (a)
identify the most common post-stroke cognitive and functional
impairments according to their clinical practice; (b) characterize
and describe which conventional and/or innovative CR approaches

were typically provided following a stroke in the Portuguese clinical
setting; and (c) determine guidelines for the development of
ICT-based ecologically valid cognitive training interventions (e.g.,
content, parameters, operationalization procedure, assessment
measures) designed for stroke patients. Here, we will focus
specifically on objective (c) because it tackles aspects related to
the content selection and implementation procedure. As such, the
most relevant findings concerning the training content selection
and implementation processes will be summarized below (49).

Regarding training content, neuropsychologists stated the
importance of designing more ecologically valid cognitive CTTs.
They agreed that this could be accomplished by incorporating
IADLs’ simulations within the CTTs since these activities are
known to involve more significant interaction with the social
contexts and higher cognitive demands compared to BADLs.
In fact, the term cognitive IADLs can be used when referring
to everyday or functional cognition, defined as the ability to
solve cognitively complex tasks of everyday life in the real world
(50). These functional activities typically have a multitasking
component and, hence, involve integrating several cognitive
processes being engaged simultaneously (51, 52). On that note, the
three most mentioned IADLs by the neuropsychologists were meal
preparation and cleanup, shopping (e.g., supermarket, restaurant,
pharmacy), and financial management, followed by health
management and maintenance, driving and community mobility
(use of public or private transportation), home management,
and functional communication. After specifying the content of
the tasks, neuropsychologists were questioned about the tasks’
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TABLE 2 Compromised IADL domains according to community-dwelling stroke patients (N = 15).

Type of IADL IADL domain (items) Items Frequency (%) of patients

IADL-household Conversation and telephone use
(five items)

Transmit a message 7 (46.67%)

Understanding what people say 3 (20%)

Holding a conversation with someone 4 (26.67%)

Meal preparation (two items) Cooking a meal 2 (13.33%)

Home security (six items) Having contacts for emergencies 1 (6.67%)

Remembering where important objects are (e.g., keys,
documents or money)

5 (33.33%)

Turn off the stove, oven or iron 1 (6.67%)

IADL-advanced Comprehension and
communication skills (two items)

Telling someone the main aspects of TV news 8 (53.33%)

Reading and understanding a book or a newspaper 1 (6.67%)

Health-relation decision making
(three items)

Be careful to pick a recipe or buy medication before it
runs out

2(13.33%)

Going to a medical appointment and explaining clearly
why

2(13.33%)

Taking medications as prescribed 4 (26.67%)

Going out and transportation use
(two items)

Going out without getting lost 2 (13.33%)

Using public transportation when needed 2 (13.33%)

Leisure time and interpersonal
relationships (two items)

Plan and organize something with family or friends 4 (26.67%)

Continue to perform some usual activities 4 (26.67%)

operationalization procedure, i.e., for instance, how did they
envision a CTT inspired by the IADL “meal preparation and
cleanup” (e.g., what type of instruction would the task have, what
would the task goal be)? We found that most neuropsychologists
struggled to provide concrete examples regarding this issue;
nonetheless, some operationalization proposals for CTTs were
given according to their underlying IADL (see Table A1).

The data gathered from the semi-structured interviews were
used to create a preliminary prototype of the digital CTTs using
the Musiquence platform (see Figure 3). This platform was
initially designed by our team for the cognitive stimulation of
people with dementia, capitalizing on music and reminiscence
therapy principles (53). Musiquence includes a Game Editor that
allows users to develop and customize CTTs based on the users’
specificities. Each slide within the Game Editor represents an
activity (e.g., quiz 2.0, association, search) that can be completely
customized regarding instructions, background images, and
response options (53). Each CTT was developed by a psychologist
who adjusted task difficulty according to her clinical judgment
by manipulating several task parameters (e.g., number of target
stimuli, number of distractors, length of the instruments). The
CTTs were then organized according to three major themes related
to IADLs: functional communication and transportation use,
cooking and shopping, and financial management and health-
related issues. Subsequently, we have designed a computerized
CT program comprising 14 sessions, each lasting 30 min. This
programwas administered to chronic psychiatric inpatients instead
of stroke patients due to restrictions related to the COVID-19

pandemic in accessing the stroke population. The findings
of this pilot randomized controlled trial revealed promising
preliminary outcomes regarding the impact of the computerized
CT program on participants’ cognitive and noncognitive
domains (54).

2.3.2 The training tasks development process
The design process of the initial set of CTTs consisted of a series

of brainstorming sessions among psychologists and developers
of the NeuroAIreh@b team. These brainstorming sessions were
divided into two parts:

1) First, the information gathered in Section 2.3.1 was analyzed
and structured so that the different variables needed for the
construction of the digital version of the CTTs were identified.

2) Second, the Braindrawing method was used to design the
User Interface, which was also useful for brainstorming the CTTs
mechanics (55). Four participants sketched the UI in short design
rounds, exchanging the sketches between themselves at the end
of each round. At the end of all rounds, results were discussed,
and both the UI and the task mechanics were redesigned. Cooking
was one of the most mentioned ADLs and, consequently, was
the first to be implemented. This task was also used as the basis
for deciding on the design and mechanics of the first set of
CTTs. The cooking ADL-related tasks addressed three different
types of cognitive tasks inspired in our previous work with the
Reh@City (11, 12, 56): search and selection (Reh@bSearch), action-
sequencing (Reh@bOrganize) and categorization (Reh@bCat) (47).

Frontiers inNeurology 10 frontiersin.org

https://doi.org/10.3389/fneur.2023.1258323
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Faria et al. 10.3389/fneur.2023.1258323

FIGURE 3

This figure represents four CTTs used in the computerized CT program: (A) Analyze the bill task—participants are required to analyze a specific bill

(e.g., internet, electricity, gas) and to answer several questions related to that bill (e.g., What is the total cost of the bill?); (B) Choose the correct

invoice—based on the prices of grocery items shown on a from the previous task, participants were required to select the correct invoice among

incorrect invoices. To do so, they needed to retain the information regarding the prices and the number of items and then perform some calculations

to estimate the total cost of their purchase; (C) Pay the lunch menu(s) task—participants are required to analyze several lunch menus and to select

the right menu(s) considering the amount of money available; and (D) Pay the lunch—participants must select the correct amount of money needed

to pay the previously selected lunch menu(s).

In the Reh@bSearch, which consists of a cancellation task, the
patient is presented with a list (i.e., shopping list, recipe) and
must select the target items (minimum 1; maximum 12) among
distractors (maximum elements per section: 20; maximum number
of sections: 8) within a time limit in the different sections of a
scenario. Reh@bSearch allows the use of different scenarios, such
as a supermarket, a kitchen, or a warehouse. The Reh@bOrganize
task consists of an action-sequencing task where steps are displayed
scrambled to the patient. The patient must organize them in the
correct order of execution. This task supports both text and images,
with aminimum of 2 and amaximum of 12 steps. In the Reh@bCat,
the patient must categorize items (minimum 2; maximum 60) into
the correct category container (maximum 4), which can be a fridge
or a cabinet, for instance. After being correctly categorized, the item
is removed, and a new item to categorize is listed. At the same time,
there are yet items to categorize on a list (see Figure 4).

A selection of broad contexts to integrate different tasks was
performed. For example, in everyday life, meal preparation and
cleanup are commonly performed in the context of a kitchen, and
shopping is commonly done in a supermarket. As such, the kitchen
contextualized both meal preparation and cleanup activities,
and the supermarket contextualized the shopping activity. All
the described tasks target several cognitive domains, namely,
attention, executive functioning, memory, and language (57). The
involvement of each cognitive domain is manipulated according to

the goal of the CTT (e.g., to increase memory involvement, the
instruction can be removed during task performance; for higher
attentional involvement, the number of items can be increased).

There is a process of feedback and reward that is followed
by all the tasks, namely: (1) colors and sounds distinguish the
correct/incorrect feedback; (2) for each correct action, the patient
is rewarded with points and no negative scoring is given on errors;
(3) when the established task time ends, the system is prepared
to display hints to complete the task and the patient gets half
the points; (4) the performance in each task is translated into a
percentage that will inform the reward system (lower than 50%—
no medal is given, 50–70%—copper medal, 70–90%—silver medal,
more than 90%—gold medal).

2.3.3 The training tasks’ interdependency
As previously mentioned by neuropsychologists, it is crucial

that one task can be transformed into a more complex one.
However, previous studies reported that an increase in complexity
does not always translate into an increase in performance (58, 59).
One way to simplify a complex task is to divide it into smaller
steps, and if we take a close look at an ADL, it consists of a series
of steps and activities. Let us consider the example of cooking.
First, we need to identify the ingredients needed for a determined
recipe (interpretation); then, we need to select them from the
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FIGURE 4

The four Reh@Apps of the NeuroAIreh@b CT platform: (A) Reh@Search; (B) Reh@Org; (C) Reh@Pay; and (D) Reh@Cat (47).

different places they can be stored in the kitchen (cancellation).
Subsequently, we need to perform the needed steps to execute
the recipe (action sequencing). Finally, we may need to organize
the place by putting the items in their storage place (similar to
a categorization task). Although this all happens in the kitchen,
we may identify other related activities happening in different
scenarios, such as supermarkets. To have the items to cook a
specific recipe, we may need to buy them first. Therefore, we
identify a specific dependency between activities and scenarios of
the same context.

Previous work with the Reh@City did not consider
interdependency between activities (12, 56, 57). Nonetheless,
we hypothesize that it may be important to improve rehabilitation
outcomes since it may increase the ecological validity of the
tasks, helping in retaining and transferring decision-making and
programming abilities related to complex tasks (59). Therefore,
we want to implement this interdependency between the activities
of the same context in the NeuroAIreh@b platform. For this,
the CTTs content consists of contexts (Main ADLs) and their
respective activities (Sub-ADLs) are performed through a
cognitive task (for instance, cancellation, action sequencing or
categorization).

Since most of the content items that are used to
personalize the tasks and adapt difficulty levels are the
same for different activities and scenarios, we developed
the Daily Life Library (DLL), an Asset Bundle created
in Unity 3D R©(Unity Technologies) where all objects and
scenarios, common to all CTTs, are stored. This translates into
improving system performance while enabling accessibility to

a library of everyday life objects for the current and future
NeuroAIreh@b tasks.

2.4 Executing the training tasks

2.4.1 The training tasks selection
All the defined ADLs-based CTTs are integrated into the

Reh@Sync. All CTTs are independent softwares and can receive the
values of their parameters from an external source. Each CTT has
its model, which gathers information on the levels of the cognitive
domains/subdomains that each CTT trains. This is used by the
Reh@Sync to optimize the selection of CTTs [see (5) in Figure 1]
in the following way:

1. Reh@Sync receives the cognitive profile of the user, the challenge
thresholds, the preferences in terms of ADLs, and the emotional
profile as inputs.

2. The personalization manager iterates through all the CTTs,
checks their domains’ levels and matches them to the
CTTs that train the most needed domains of that specific
patient. Then, the system returns a list of CTTs ordered
by their importance to that patient, where the ones at the
top are the ones that target the domains/subdomains that
the patient requires to train the most. To calculate this
order, we defined a distance (which is a slight variation
of Hamming distance) for each domain/subdomain in the
following way:
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• 0 if the value of the CS for a domain/subdomain that the
patient needs to train is in the range covered by the CTT.

• n, where n is the minimal distance between the value of the
CS for a domain/subdomain that the patient needs to train
and the range covered by the CTT.

• 10 (the maximal distance value) if the domain/subdomain
that the patient needs to train is not covered by the CTT.

3. The content of the activities is filtered by the contexts that match
the patient’s ADLs with more impairments and the training
details (number of sessions and time per session).

4. The Reh@Sync reads each of the selected CTTs and launches it
parameterized according to the patient’s cognitive profile. The
Reh@Sync also oversees the personalization and adaptation of
the CTTs to each cognitive profile.

2.4.2 Adaptation during the training session
In our previous studies with the Reh@City (56), each

participant was assigned a set of CTTs individually, personalized
according to the patient’s cognitive profile domains: attention,
memory, executive function, and language. This profile was found
through the administration of MoCA, with values being converted
to a 1–10 scale, with 0.5 intervals. For instance, the maximum value
that is possible to achieve on the attention domain of MoCA is
6; this result was then normalized to the Reh@City 1–10 scale,
corresponding to the value of 10. The process was similar for the
remaining domains: memory, executive function, and language,
which can hold the maximum values of 11, 7, and 6, respectively.
One additional parameter, the difficulty, was used to adjust the
cognitive tasks based on the user performance. The initial value of
the difficulty was found by normalizing MoCA’s total score to the
Reh@City scale.

Then, the intervention consisted of performing task sets. At the
end of each set, the difficulty level for the following set of tasks
was calculated based on the participant’s performance. If the user
obtained an average performance lower than 50%, the difficulty
was reduced by 0.5 points; if higher than 71%, the difficulty was
increased by the same amount; if performance was from 51 to
70%, the difficulty value remained the same. In the NeuroAIreh@b
prototype, we implemented this same adaptation method but
in a more flexible manner. As such, the neuropsychologist
administering the training through NeuroAIreh@b can adjust the
minimum and maximum thresholds. This helps the Reh@Sync to
learn how to make decisions about when to increase, decrease, or
maintain the difficulty. This translates into the following:

• The narrower the thresholds, the higher the number of
fluctuations that may occur in terms of difficulty change.

• The wider the thresholds, the lower the number of expected
changes in difficulty.

• The lower the maximum threshold, the more difficulty may
increase.

• The higher the maximum threshold, the harder it is to have an
increase in difficulty.

• The lower the minimum threshold, the more difficulty may
decrease.

• The higher the minimum threshold, the harder it is to have a
decrease in difficulty.

The Reh@City activities were initially personalized to a specific
cognitive profile. Only one parameter, the difficulty level, would
change from session to session, considering the overall mean
performance of all activities together. In the Reh@Sync, we refine
this information in session by evaluating each CTT performance
and adjusting the difficulty level for that specific task accordingly.
This allows us to tweak the difficulty of the settings to keep the
patient in a state of flow (60). It has been proven that people at this
level of concentration and immersion are most effective, which is
expected to lead to better rehabilitation outcomes.

At the end of a training session, all the performance
information is sent to the NeuroAIreh@b server, which estimates
a new cognitive profile for the patient that will be sent again to the
Reh@Sync, restarting the cycle of CTTs.

2.5 The profile dynamics

As we mentioned in Section 2.4.2, the training task adapts
the parameters to maintain the performance between a predefined
range (e.g., 50–70%). Suppose that a determined parameter of a
CTT suffers an increment in its value during the training sessions.
In that case, the patient manifests an improvement in his/her CS
due to the rehabilitation.

The performances obtained at the end of a training session
through the CTTs are used to estimate an intermediary virtual
profile that will serve as input to the next session, enabling the
CTTs to be adapted to the patient. However, relating the CTTs’
difficulty and cognitive domains is not linear because a CTT trains
multiple cognitive domains, and it can be difficult to differentiate
how much of an obtained performance relates to each specific
domain or subdomain.

To help establish this relationship, NeuroAIreh@b creates and
maintains a correlation between the parameters of the CTT and
the domains/subdomains for each CTT. With these correlations
and the performances of all the CTTs in the session, the system
summarizes the outcome in a sentence in the language defined in
Definition 2.2. This sentence is the input for the profile update.
Hence, all combinations of the different domains that could output
that specific performance should be considered. By analyzing all
the different combinations, we chose the model that displays the
lower distance from the previous cognitive profile. The weights of
the tasks (CTTs models) are used as a criterion of tiebreaker in
case needed [see (24) for the theoretical method]. The new profile
obtained will be the input for further training sessions; in other
words, it will be used to adapt the CTTs to keep them parameterized
to the ideal difficulty level over an iteration of multiple training
sessions (which we will call a training program). At the end of each
CT program, the patient is reassessed, and the cognitive user profile
is compared to the estimated baseline profile.

This comparison will allow us to evaluate the system’s
performance and see if it performs as expected. The study (61) can
help us to understand in which step there was a wrong prediction by
the system, given the final result. Once all is done, the loop restarts
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until the neuropsychologist concludes that the neurorehabilitation
process is completed.

3 Results

The prototype version of the NeuroAIreh@b has been through
a number of clinical validation studies. Since, at the moment,
there is a reduced amount of CTTs, a simplification of the
NPA aggregation (depicted in Table 1) was performed (Table 3).
Instead of assigning weights for each NPA, we considered the
minimum and maximum raw scores that could be attained in
the different performance-based NPAs. Subsequently, these scores
were normalized on a scale of 1–10. Finally, we computed the
mean of all the normalized scores within each subdomain to
derive a normalized score representing each of the five macro-
cognitive domains. This process allowed us to generate the
participants’ baseline neuropsychological profile, comprising the
following macro-domains: general cognition, attention, memory,
language and executive functions.

An initial pilot study was conducted with ten chronic stroke
survivors who were enrolled in a one-month intervention with
the prototype version of the NeuroAIreh@b platform (62). The
intervention encompassed eight 45-min tablet-based CT sessions.
Participants were required to perform four different types of
CTTs that were inspired by IADLs (e.g., a cancellation task in
the kitchen involving the selection of the correct ingredients
necessary to prepare a given recipe, a calculation task in the
supermarket consisting of selecting the coins and/or bills necessary
to pay for the groceries). The CTTs were implemented using
the following reh@apps: Reh@Search (cancellation), Reh@Org
(action-sequencing), Reh@Pay (calculation), and Reh@Cat
(categorization). In this pilot study, the psychologist was required
to parameterize the CTTs manually according to the participant’s
performance in each iteration, thus modulating task difficulty
considering her clinical judgment. Each participant performed
each type of CTT for about 11 min. Post-NPAs were conducted
to assess the intervention’s short-term efficacy. Thus, at post-
intervention, there were significant improvements in general
cognition, as measured by the MoCA, and in functional abilities,
as assessed by the IAFAI. The results from this pilot study
suggested that tablet-based CT using the NeuroAIreh@b can lead
to immediate short-term benefits in chronic stroke survivors’
cognitive functioning and functional abilities. Furthermore, we
observed a generalization of training gains to ADLs, potentially
attributed to the greater ecological validity of the training content.
Importantly, the performance data obtained from this pilot study
were used to develop a difficulty progression algorithm to optimize
training personalization and adaptation based on participants’
neuropsychological profiles and task iterations.

Moreover, a five-week blended neurorehabilitation
intervention was conducted with four community-dwelling
stroke survivors to evaluate its feasibility, acceptability and
preliminary efficacy. The intervention consisted of a total of
15 sessions, delivered between two to three times a week. This
program comprised four 90-min in-person sessions, focusing
on psychoeducation and compensatory strategies training,
and eleven 30-min remote sessions consisting of tablet-based

CT with the NeuroAIreh@b platform. Regarding the latter
sessions, an additional CTT was incorporated into the platform,
specifically designed to target alternating attention. This CTT
was implemented through the Reh@Drive app and consisted
of driving a car while avoiding road obstacles and collecting
gasoline bins. To evaluate the short and long-term impact of the
program, a comprehensive neuropsychological assessment was
conducted at three different moments: baseline, post-intervention
and three-month follow-up.

Firstly, regarding the feasibility of the blended
neurorehabilitation program, all participants successfully attended
the in-person sessions and completed the prescribed remote
sessions, with only minor technical issues (12.5% of technical
problems). Consequently, the high training compliance rate
highlights the feasibility of the intervention. Secondly, in
terms of acceptability, participants reported high levels of
satisfaction following the intervention, indicating that the program
was meaningful at a cognitive and emotional level. Finally,
efficacy-wise, participants demonstrated reliable, differential
improvements in several neuropsychological assessment measures
immediately after the intervention, some of which were maintained
at three-month follow-ups. Furthermore, reliable declines were
also observed in two participants, more specifically in processing
speed, semantic verbal fluency and visual memory. In addition,
no differences were observed concerning participants’ changes in
goal attainment at post-intervention compared to the baseline.
Nonetheless, differences emerged during the three-month follow-
up; two participants reported successfully attaining all their
rehabilitation goals. On the other hand, only one participant could
not achieve any rehabilitation goal.

Overall, our findings provide evidence supporting the
feasibility, acceptability and preliminary efficacy of the
blended neurorehabilitation. To further validate the tablet-
based CT framework (NeuroAIreh@b), we plan to conduct
a randomized controlled trial with a larger sample of
stroke survivors (63).

4 Discussion

Over the last few years, AI techniques have been widely applied
in healthcare, raising the discussion of whether, in the future,
they would replace health professionals. From our perspective,
AI techniques have the potential to complement and enhance
the work of health professionals by assisting them in optimizing
clinical diagnosis, treatment decision-making and data analysis
(64). The ability to learn, self-correct and update the knowledge
based on feedback are important AI features that improve its
accurateness, thereby reducing assessment and rehabilitation errors
that may occur in clinical practice (65). As mentioned above,
cognitive deficits rehabilitation is a quite complex process with
a series of clinical decisions based on empirical knowledge that
would largely benefit from these AI techniques features as a
supportive tool.

This work aims to contribute to the advancement of the
scientific literature in the area of AI techniques (such as ML and
belief revision) applied to the neurorehabilitation of people with
cognitive deficits. We believe that the complementarity between AI
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TABLE 3 Cognitive profiling reformulation and simplification.

General cognition (Min-max = 0–10) MoCA – Total score (Min-max: 0–30)

Memory
(Min-max=0-10) Immediate

Verbal FCSRT – Total immediate memory (Min-max: 0–48)

Visual ROCFT – 3-minute immediate recall trial (Min-max: 0–36)

Delayed
Verbal FCSRT – Total delayed recall (Min-max: 0–16)

Visual NA for this study

Executive functions
(Min-max = 0–10)

Working memory Digit symbol coding (WAIS III) (Min-max: 0–133)

Processing speed Symbol search (WAIS III) (Min-max: 0–60) Digit symbol coding WAIS III (0–133)

Verbal initiative Phonemic verbal fluency test (Min-max: 0–57) Semantic verbal fluency test (Min-max: 0–27)

Inhibition Phonemic verbal fluency test (Min-max: 0–57) Semantic verbal fluency test (Min-max: 0–27)

Visuoconstructive capacity ROCFT – Copy trial (Min-max: 0–36)

Language
(Min-max = 0–10)

Expression Phonemic verbal fluency test (Min-max: 0–57) Semantic verbal fluency test (Min-max: 0–27)

Comprehension Vocabulary (WAIS-III) (Min-max: 0-66)

Attention
(Min-max = 0–10)

Divided Symbol search (WAIS-III) (Min-max: 0–60)

Sustained Toulouse-Piéron test – Total score (Min-max: 0–37.5)

Premorbid intelligence (Min-max = 0–10) NA for this study

and neuropsychology creates a virtuous circle advancing both fields’
objectives in such an important area as neurorehabilitation. As
such, our ultimate goals are 2-fold: (1) provide neuropsychologists
with an innovative paradigm to support the clinical decisions in
prescribing CT sessions for people affected by cognitive deficits,
the NeuroAIreh@b and (2) contribute to a worldwide effort aiming
at using AI techniques to improve the management of cognitive
deficits associated to stroke, other acquired brain injuries and
degenerative disorders (66).

The fact that the NeuroAIreh@b CT tasks are being
implemented in VR-based ADLs simulations provides greater
ecological validity to the CT (10, 12). Although there is no
strong evidence that the use of VR is more beneficial than
conventional therapy in cognitive deficits rehabilitation, this
technological approach has been demonstrated to be beneficial
as complementary to usual care for different reasons: it is more
engaging, enables a more intensive training, provides immediate
feedback and tasks have greater verisimilitude and validity (7).
We believe that the operationalization in VR according to the
interviewed patients and neuropsychologists’ requirements, will
have a positive impact on CT efficacy and transference to
everyday-life activities performance, which is the major goal of
neurorehabilitation (5).

The NeuroAIreh@b entails an ML component for managing
NPA data, which is represented by the ACP, to adapt and
personalize the intervention to the patient CP. Although the first
CP is made according to the NPA static scores, according to
our experts’ NPAs aggregation, session-to-session performance in
the NeuroAIreh@b CTTs is used by the system to update the
profile dynamically. For instance, the patient starts with 7/10 in
Memory, but if he/she outperforms, the profile is changed to 7.5/10.

The accurate adaptation of the training challenge to the patient
performance, together with the use of ecologically valid content,
are key elements to enhance engagement, optimize learning, and
address specific cognitive deficits more effectively. This has been
partially (in our pilot study, adaptation and personalization were
manually performed by the psychologist) corroborated by our
pilot study, where we concluded that CT with the NeuroAIreh@b
platform appears to be beneficial in the chronic phase of stroke,
leading to gains in general cognition (MoCA) and functional
abilities (IAFAI). These preliminary findings with the prototype
version of the NeuroAIreh@b platform were encouraging and
suggest the generalization of training gains to the patient’s
everyday life, which is our main goal and makes our work
unique (62).

To strengthen our conclusions and collect data to validate
the specific ML algorithms to calibrate the system for profile
dynamics, we are performing a randomized controlled trial
with stroke patients, which has been approved by the health
committees of the involved healthcare institutions (Clinical Trials
registration reference: NCT05929287). The intervention with
NeuroAIreh@b involves twelve sessions of 30 min during a month.
There are two control groups: one performs a paper-and-pencil
intervention with the TG (https://neurorehabilitation.github.io/
TaskGenerator/), and one is from the waiting list. All participants
undergo a baseline NPA to build the initial cognitive profile -
the ACP. At the end of the intervention, all participants are re-
assessed to measure improvements in the NPA instruments scores.
NPA results, together with the data on NeuroAIreh@b and TG
performance, will be used to provide real-data evidence to prove
the reliability and robustness of the described methodology and
models. To verify the maintenance of potential cognitive and
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functional improvements, participants are submitted to a follow-
up assessment at 3 and 6 months post-intervention. Additionally,
as we foresee contingencies in accessing large samples of patients,
we are already conducting a feasibility study at home. In this study,
patients perform a pre and post-neuropsychological assessment
at the hospital, but the training sessions are performed at home.
This procedure enables the inclusion of participants who do not
have the availability or possibility to go to the clinic several times
a week. The 10 participants who finished the intervention only
reported minor issues and completed the training successfully.
After finishing data collection, we will establish partnerships with
other Portuguese hospitals and clinics to enable a more significant
number of participants.

5 Limitations

Since this work refers to presenting a methodology that has
not been completely validated with an RCT, there are important
limitations to be acknowledged. First, there is the fact that we are
starting with no data, and the ACP algorithms are only learned
through reasoning by analogy from similar existing work with the
ADNI database. Using algorithms that are based on Alzheimer’s
Disease patients’ data might not apply equally to all persons with
cognitive disorders. For instance, it is expected that the evolution
of the CS of acquired brain injury patients (namely, stroke and
acquired brain injury) is different from the degenerative disorder
patients (namely, Alzheimer’s Disease). For the ACP to be updated
during an intervention, the AI system needs to learn with data
from patients’ performance in undergoing future clinical RCTs.
The pending verification/validation of the specific ML algorithms
to calibrate the system for profile dynamics, which depends on
collecting a considerable amount of data, is one of the limitations
of our present work and one of the main challenges we face in
our future work. Second, we use the MoCA subtests to account for
specific domains of cognition in the NPA instruments aggregation
to create the ACP. Since the MoCA is a screening tool and does
not comprehensively assess specific cognitive domains, wemay lack
precision in our approach, especially in the cognitive domains that
mainly rely on MoCA subdomain assessment results. Third, in this
phase, the conceptualization and selection of the cognitive domains
that are trained with each CTT are assumed and selected based
on experts’ opinions and experience and are still not empirically
validated. Due to this inherent growing complexity of underlying
models and algorithms in this methodology, AI appears here as a
“black box” because the internal learning processes, as well as the
resulting models, will not be entirely comprehensible (67). In other
words, as we collect more data, we may not be able to understand
what the cognitive constructs involved in each CTT are and how
they are selected to match each ACP. Fourth, we make assumptions
on what needs to be prioritized with regard to the CTTs to be
selected based on numeric data from the ACP, that is, by its turn,
based on our NPA aggregation (an implicitly made relationship
between different types of cognitive functions and different levels
of test results and their interaction). Additionally, we propose
specific CTTs and implicitly assume an inherent cognitive profile.
Again, in this phase, we cannot warrant that this approach is more
clinically effective than any other that could be used here. The

NeuroAIReh@b methodology still needs to be validated, and then,
as future work, we could compare it with a different personalization
and adaptation approach.
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