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Due to shared hippocampal dysfunction, patients with Alzheimer’s dementia 
and late-onset epilepsy (LOE) report memory decline. Multiple studies have 
described the epidemiological, pathological, neurophysiological, and behavioral 
overlap between Alzheimer’s Disease and LOE, implying a bi-directional 
relationship. We  describe the neurobiological decline occurring at different 
spatial in AD and LOE patients, which may explain why their phenotypes overlap 
and differ. We provide suggestions for clinical recognition of dual presentation 
and novel approaches for behavioral testing that reflect an “inside-out,” or 
biologically-based approach to testing memory. New memory and language 
assessments could detect—and treat—memory impairment in AD and LOE at an 
earlier, actionable stage.
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1 Introduction

Both patients with Alzheimer’s disease and epilepsy patients report difficulty with episodic 
memory, or remembering autobiographical events (see Box 1) (1, 2). Common complaints 
including forgetting conversations, losing personal items, or repeating questions or stories. 
Besides similarity in clinical presentation, the epidemiological, pathological, and 
neurophysiological overlap between Alzheimer’s Disease and late-onset epilepsy (LOE, first 
seizure after the age of 60) has been well-described (3–5) (see Box 1). Epidemiologically, AD 
patients have a seizure incidence of 12%–28% (6), while patients with LOE have a 3-fold higher 
risk of developing dementia (3). After a diagnosis of LOE, patients have a median time of 
3.66 years to dementia ascertainment (2).

When should clinicians suspect AD pathology in the older patient presenting with their 
first lifetime seizure, and seizures in dementia patients? The authors propose that 
understanding the shared and distinct biology between AD and LOE will improve diagnosis 
and management, especially during early stages of each condition.

In this review, we will describe the pathological, neurophysiological, and neuroimaging 
overlap between AD and LOE. With this biological foundation, we review their cognitive 
phenotypes as revealed in neuropsychological testing and suggest a few diagnostic approaches. 
Finally, we propose new behavioral assays that reflect an “inside-out,” or biologically-based 
approach to testing memory. New memory assessments could be  used to detect—and 
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treat—memory impairment in AD and LOE at an earlier, actionable 
stage (11–13).

Search terms used in PubMed for this review include Alzheimer’s 
disease; late-onset epilepsy; early-onset epilepsy; Alzheimer’s Disease 
pathology; late-onset epilepsy; early onset-Alzheimer’s; late-onset 
epilepsy clinical presentation; neuropsychology and epilepsy; 
neuropsychology and Alzheimer’s disease; cognitive and epilepsy; 
cognitive and Alzheimer’s disease; cognitive phenotype and epilepsy; 
cognitive phenotype and Alzheimer’s disease; memory and epilepsy; 
memory and Alzheimer’s disease; naming and epilepsy; naming and 
Alzheimer’s disease; language and epilepsy; language and Alzheimer’s 
disease; executive functions and epilepsy; executive functions and 
Alzheimer’s disease; Natural Language Processing and Epilepsy; 
Natural Language Processing and Alzheimer’s Disease; Automated 
Speech Analysis and Alzheimer’s Disease; and Eye tracking 
and Memory.

The authors acknowledge the heterogeneity in AD presentation 
and etiology but will focus this review on typical AD, which presents 
with memory dysfunction as a chief complaint. AD includes both 
early and late onset AD, which share pathology and clinical features. 
Atypical presentations of AD, or “non-amnestic” AD have been 
estimated to comprise less than one-third of young AD patients 
(<65 years) (14), and thus only 6%–7% of the total AD cohort. While 
atypical AD is a rare but important condition to recognize, we will 
focus on typical AD and its overlap with LOE. Likewise, familial (i.e., 
genetic etiology due to APP, PSEN1, or PSEN2 mutations) and 
sporadic AD share similar neuropathology and clinical features, but 
familial AD presents earlier. Because familial AD is relatively rare (5% 
of total AD prevalence), we will not treat familial AD separately from 
sporadic AD (1).

Furthermore, the terminology LOE will be used in this paper to 
include both known and unknown causes of seizures in older age. AD 
pathology can co-exist with other known structural causes in older 
age, especially vascular etiologies such as stroke or microvascular 
disease. AD pathology may also comprise a meaningful portion of the 
one-third of older patients with epilepsy of unknown cause. Of note, 
TLE is the dominant cohort of focal epilepsy patients and represents 
the largest cohort of LOE cases (15). The grouping of late-onset 
temporal lobe epilepsy (TLE) and TLE has been used in neuroimaging 
and neuropsychology, and thus will be used in this review.

2 Shared pathological processes in AD 
and LOE

AD and LOE mainly affect temporal lobe and specifically 
hippocampus (5, 15, 16) at early stages. Several MRI, pathological, 
neurophysiological, and behavioral studies demonstrate the 
pathophysiological overlap between the AD and LOE pathways, which 
may explain similar cognitive presentations (17, 18).

2.1 Pathological amyloid and tau 
accumulation

Similar accumulation patterns of extracellular amyloid-beta 
peptides (A-beta) and intracellular tau tangles (Box 1) (8, 19) that have 

been well described in the AD population with recent rodent and 
human work suggesting a similar process in LOE patients (19). 
Amyloid precursor protein (APP) is an essential membrane 
glycoprotein that supports numerous physiological functions, 
including neuronal development, signaling, and intracellular transport 
(20). Normally, APP cleavage results in several types of a-beta 
peptides. An imbalance between a-beta production and degradation 
and clearance leads to extracellular accumulation in hippocampus, 
neocortex, and the cerebral vasculature, likely initiating AD (20–22). 
a-beta accumulation outside of neurons blocks cell to cell signaling in 
the brain and triggers microglial activation. Chronic low-level 
inflammation characterizes AD, can overwhelm the glial response, 
and leads to brain atrophy. A-beta’s role in contributing to 
hyperexcitability and seizures has recently been reported (8, 13). 
Pathologically high CSF a-beta levels are measured in 37.5% of LOE 
patients compared to healthy age-matched controls and are associated 
with a 3.4-fold higher risk of progression to dementia (23).

Tau is an intracellular micro-tubule associated protein whose 
pathologic accumulation results in impairment of intracellular 
function including glucose transport and direct neural degeneration. 
Phosphorylated tau (p-tau) is seen multiple degenerative and epilepsy 
conditions, including AD, movement disorders, temporal lobe 
epilepsy, post-traumatic epilepsy, autism, Dravet’s syndrome, focal 
cortical dysplasia, and tuberous sclerosis (9). Examination of resected 
temporal lobe tissue in a cohort of older TLE patients (n = 33, age 
50–65) revealed excess tau pathology in 94% of samples (24). Tau 
burden correlated with the degree of cognitive impairment (24) 
(Figure 1).

2.2 Brain atrophy

Both amnestic mild cognitive impairment (aMCI), the 
precursor to AD, and LOE patients show atrophy of the bilateral 
medial temporal lobe structures—including entorhinal, 
parahippocampal, hippocampal, temporal pole, and fusiform 
regions (18, 25). LOE patients posssess greater left entorhinal and 
temporal pole thinning, while patients with amnestic MCI show 
greater thinning of the bilateral middle temporal cortex and right 
inferior temporal cortex (Figure 1). Patients with LOE show thinner 
motor cortex compared to healthy controls (HCs) and amnestic 
MCI subjects. There has been recent interest in the piriform cortex, 
a small region sitting adjacent to MTL that supports olfaction and 
memory and contributes to seizure kindling (26, 27). The piriform 
cortex is bilaterally atrophied in patients in MCI and AD, and 
unilaterally atrophied on the side of mesial temporal sclerosis in 
epilepsy (26).

What is the effect of epilepsy duration? Lifetime seizure frequency 
may not be the sole driver of cortical thinning (28), as pathological 
decline can start earlier than clinical presentation in LO-TLE patients 
(2, 18). Slightly different patterns emerge in early and late onset 
epilepsy. Patients with LOE demonstrate greater atrophy of the 
fusiform gyri and similar cognitive profiles compared to patients with 
early-onset TLE (EO-TLE), even though the latter group endured over 
30 years of seizures. As would be expected from this shared pattern of 
brain atrophy, both LOE and aMCI patients demonstrate memory 
impairment compared to HCs (17, 18).
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BOX 1 Definitions

Episodic Memory is memory for personally-experienced events, for example, what one ate for lunch, a conversation with a friend, a movie narrative, and or the birth of 

one’s child. These memories may include people, context, perceptual detail, timing and sequence, emotion, and meaning. Episodic memory includes 3 phases: encoding, 

consolidation, and retrieval. The hippocampus is thought to be critically involved in these three stages during waking and sleep. Patients with hippocampal dysfunction, such 

as patients with Alzheimer’s Disease, traumatic brain injury, and temporal lobe epilepsy commonly report memory impairment as a cognitive comorbidity.

Alzheimer’s Disease (AD) is the most common neurodegenerative disorder in the US, affecting 1 in 9 people aged 65 or older in the US (6.7 million). Age is the greatest 

risk factor for AD: 13.1% of people ages 75 to 84, and 33.3% of people age 85 or older have AD (1). Classically, AD presents as impairment in episodic memory function, then 

language and executive function. While there are no effective cures, there are medications which can slow cognitive decline or address comorbid symptoms. Recent work 

suggests that between 12% and 28% of patients with AD have seizures arising from the mesial temporal lobe (7).

Early onset Alzheimer’s Disease (EOAD) is the clinical presentation of Alzheimer’s Disease before the age of 65. Clinical features and pathology are similar to late-onset 

Alzheimer’s disease (LOAD).

Amyloid Beta. Accumulation of the protein beta-amyloid outside neurons defines early pathophysiological changes in AD. Extracellular a-beta accumulation is associated 

with neuronal cell dysfunction, inflammation, and cell death (8).

Tau. Tau is an intracellular microtubule associated protein whose pathologic accumulation impairs intracellular function, including glucose transport, and contributes to 

direct neural degeneration. Phosphorylated tau (p-tau) is seen multiple degenerative and epilepsy conditions, including AD, movement disorders, temporal lobe epilepsy, 

post-traumatic epilepsy, autism, Dravet’s syndrome, focal cortical dysplasia, and tuberous sclerosis (9).

Seizures are events of abnormal sustained electrical activity in the brain that manifest silently or as sudden changes in awareness, sensation, movement, or behavior. Seizures 

can be provoked by transient medical factors such as excessive alcohol, recreational drug use, or infection. Seizures can also recurrent event arising from abnormal brain activity.

Epilepsy is a neurological disease defined by the potential for recurrent seizures, and may be treated by medications, devices, or surgery. Epilepsy can be caused through 

many mechanisms, such as genetics, developmental malformations, traumatic brain injury, or stroke. A Many patients with epilepsy do not have a known cause to seizures, 

and are classified as “cryptogenic-onset epilepsy”.

Late-Onset Epilepsy (LOE) is presentation of first seizure in an epilepsy patient after the age of 60. In two thirds of cases of LOE, a structural cause can be determined, such 

as cerebrovascular disease (stroke, 30%–50%), neurodegenerative disease (10%–20%), traumatic brain injury (TBI, ≤25%) and brain tumors (10%–30%). Other less common 

causes of seizures are infection, drug and alcohol toxicity and withdrawal, and autoimmune encephalitis (10).

Late-Onset Epilepsy of Unknown Etiology (LOUE). For the one-third of patients without an identified structural cause, or cryptogenic epilepsy, occult cerebrovascular 

disease and/or prodromal neurodegenerative disease, are highly suspected.

FIGURE 1

Overlapping patterns of MTL cortical atrophy in TLE and amnestic MCI. Patterns of cortical thinning for (A) TLE and (B) amnestic MCI patients relative to 
healthy elderly control subjects (HC). Dark blue represents cortex thinner than healthy controls while turquoise regions demonstrate the most thinning. 
Both patient groups showed prominent cortical thinning in bilateral medial temporal lobe (MTL) regions highlighted by dashed lines; TLE patients also 
showed thinning of the primary motor cortex compared to HCs. From Kaestner (2020) with permission (18).
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2.3 Patterns of hippocampal subfield 
dysfunction

The hippocampus and adjacent medial temporal lobe structures 
are affected in AD and temporal lobe epilepsy, as well as several 
cognitive and psychiatric disorders such as vascular disease, 
schizophrenia, depression, and PTSD (29). Our understanding of the 
heterogeneity of cell types, gene expression profiles, and related 
function has been studied across the long and transverse axes within 
the hippocampus. The entorhinal cortex (EC) is considered a gateway 
to the hippocampus, receiving monosynaptic input from various 
cortical regions, including the perirhinal cortex (the “what” 
pathway), the parahippocampal cortex (the “where” pathway), the 
amygdala, and the sensory cortex (Figure 2A). The EC relays this 
topographically organized information to the hippocampus. Anterior 
structures such as the amygdala have direct and indirect (via EC) 
connections to the anterior hippocampus, or head. Conversely, 
posterior structures such as visual and association cortex have 
extensive direct and indirect connections with the posterior 
hippocampus, or tail (29). Along the transverse axis, the entorhinal 
cortex connects with the dentate gyrus, CA3, CA1, and the 
subiculum. In the tri-synaptic pathway, information from EC is 

delivered to DG → CA3 → CA1→ subiculum (Figure 2B). Within 
CA3, there are auto-association fibers with extensive connections 
along the hippocampal long axis. Information largely flows out 
through CA1 and subiculum to be delivered directly or indirectly to 
cortext through EC, in a topographically preserved manner (29).

High-resolution structural and functional MRI, CT perfusion, and 
post-mortem studies suggest that hippocampal subfields along the 
anterior and posterior hippocampus are differentially vulnerable in the 
spectrum of neuropsychiatric disorders, likely due to differential gene 
expression profiles (29). A functional differentiation of hippocampal 
subfields has been proposed (Figure  3), which may be  useful to 
distinguish patient groups. Because each subfield serves as a conduit 
of information flow, upstream injury will impair downstream 
functioning and result in more severe memory deficits.

For example, imaging and pathology studies show that the dentate 
gyrus (DG) is particularly important in “pattern separation,” or 
representation of similar events as distinct and non-overlapping items 
(Figure 3) shown in rodents and humans (30–34). DG is particularly 
vulnerable to aging across species (35). Behaviorally, aged rats and 
humans have difficulty in distinguishing between similar contexts (36).

AD involves early cell loss in entorhinal cortex (EC) which affects 
downstream structures such as DG, CA3, CA1, and subiculum 
(Figure 4), the primary outflow tracts (25, 37). AD patients therefore 
present with difficulty in all stages of memory, including maintaining 
information over brief delays (e.g., delayed match to sample tasks, 
pattern separation deficits, consolidation, and retrieval). In contrast, 
temporal lobe epilepsy begins with cell loss in dentate gyrus and CA3/
CA1, with relatively preserved subiculum, CA2 and EC entorhinal 
cortex (Figure 4) (38). Therefore, one may expect that TLE patients 
have difficulty with separation of details (DG), association and 
consolidation between present and past (CA3/CA1), but less difficulty 
with forming and retrieving memories per se. Both pathological 
patterns differ from the decline of dentate gyrus function seen in 
normal aging (35, 39).

FIGURE 3

Hypothesized functional organization of the hippocampal transverse 
axis. Rodent and human studies suggest a functional specialization 
between the hippocampal subfields. From Small (2023) with 
permission (29).

FIGURE 2

Hippocampal functional organization. (A) The hippocampus receives 
and delivers input from cortex in a topographically organized 
manner. Anterior cortical regions such as amygdala and frontal lobe 
relay information directly and indirectly (via entorhinal cortex, EC) to 
anterior hippocampus (head) and amygdala. Likewise posterior 
regions such as occipital cortex connect directly and indirectly to 
posterior hippocampus (tail). (B) The hippocampal transverse axis 
shows how input received by EC is processed within the 
hippocampus, then delivered back to cortex directly via CA1/
subiculum and indirectly through EC with a preserved topographical 
gradient. From Small (2013) with permission (29).

https://doi.org/10.3389/fneur.2023.1260523
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Liu and Barr 10.3389/fneur.2023.1260523

Frontiers in Neurology 05 frontiersin.org

Indeed, patients with amnestic MCI have demonstrated poorer 
delayed memory performance relative to late onset TLE (18, 40). 
Knowledge of differing subfield patterns of early stages of AD and TLE 
could be  used to design more behaviorally specific tasks to aid in 
diagnosis and to provide a benchmark for performance (29). Of course, 
as each of these disease progresses, pathology spreads to nearby regions.

2.4 Interictal epileptiform discharges

Interictal epileptiform discharges (IEDs) are pathological bursts 
of neuronal activity suggestive of cortical hyperexcitability. These 
subclinical epileptiform events have been observed in 20–50% of AD 
patients (5, 16, 41), and are associated with accelerated cognitive 
decline (16). A-beta’s role in contributing to hyperexcitability and 
seizures has been reported (8, 13). Converging evidence demonstrates 
that IEDs impair encoding, maintenance, consolidation, and retrieval 
of verbal material (42–47). Left temporal and parietal neocortical 
IEDs are associated with impaired memory for word list items and 
word pairs (44, 47). IEDs outside the seizure onset zone (SOZ) in 
higher order visual processing regions have been associated with 
impaired encoding and retrieval performance for words (47). 
Hippocampal IEDs during encoding of a face-profession pair can 
reduce odds of recall by 15%; IEDs during recall can reduce odds of 
recall by 25%, potentially by acutely decreasing hippocampal sharp 
wave ripples (SWRs). Hippocampal IEDs during sleep impair long-
term memory consolidation of verbal and visual material (48). 
We hypothesize that hippocampal IEDs, prevalent in AD and LOE, 
can occur during critical memory stages during wake and sleep states 
to directly compete with physiological processes (49). These 
interactions contribute to dynamic fluctuations in memory function, 
and a potential target for closed loop neurostimulation protocols to 
remediate memory function.

3 Characterizing AD and LOE 
cognitive phenotypes

While neuroimaging and neurophysiology (i.e., EEG) play an 
essential role in making the clinical diagnosis of AD or LOE, 

neuropsychological assessment is the gold standard for the assessment, 
characterization, and tracking of cognitive impairment.

The impairments arising in these conditions differ in the onset, 
severity, and course from the decline seen in normal aging, including 
decreased processing speed, memory, language, and executive 
function (50). Episodic memory and language are the neurocognitive 
domains most affected in typical AD and TLE and emphasized during 
neuropsychological testing in both clinical and research settings. 
Episodic memory has been evaluated by using list-learning, story 
recall, and figural reproduction tasks (e.g., Rey Auditory Verbal 
Learning Test & Wechsler Memory Scale) (51). Language tasks have 
included measures of picture naming (e.g., Boston Naming Test) and 
verbal fluency (e.g., letter & category). Measures of executive 
functioning, including tests of rapid mental tracking and problem 
solving (e.g., Trail Making Test & Wisconsin Cart Sorting Test) are 
also used in patients with other etiologies such as frontotemporal or 
vascular dementia. The neuropsychological tests used today for these 
purposes are criticized for using outdated methodology and for 
extensive time required to administer and score the tests (52).

Patients with AD and TLE both exhibit deficits on 
neuropsychological tests requiring recall of newly learned material 
after a delay period of 20-min or more (53, 54). Results from 
neuropsychological studies show subtle but important differences 
in the cognitive presentation between these two groups. Deficits 
in episodic memory, or difficulty remembering personally 
experienced events, are commonly  the first manifestation of 
AD. This deficit may involve a combination of reduced encoding 
of new information and a disturbance of the ability to transfer that 
information into long-term storage, or a consolidation deficit 
(54). These cognitive deficits may be due to early involvement of 
entorhinal cortex (hippocampal input and output, short term 
retention), (Table 1; Figures 3,4).

The memory deficits seen in TLE are believed to result from 
difficulty consolidating newly learned information. On testing, this 
is displayed as rapid forgetting (58). These could be secondary to 
early involvement of dentate gyrus/CA3 and CA1, subfields 
responsible for pattern separation and integration (Figures  3,4; 
Table 1) (29, 35). Furthermore, difficulty with long term consolidation 
could be secondary to increased frequency of interictal discharges 
during NREM sleep (59, 60) or decreased spindle activity seen during 

FIGURE 4

Differential vulnerability of hippocampal subfields in early AD, TLE, and normal aging. Subfields include EC: entorhinal cortex; Sub: subiculurm; DG: 
dentate gyrus; CA3; CA1. Early involvement of subfields varies between neurological disorders and normal aging, causing local and downstream 
cognitive dysfunction. Adapted from Small et al. (2013) (29).
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NREM sleep (61). Additionally, TLE patients with unilateral onset of 
left or right hemisphere seizures may exhibit a material-specific 
impairment in memory for verbal or nonverbal material (62). Finally, 
there is converging evidence suggesting that subclinical discharges 
may disrupt consolidation processes causing accelerated rates of 
forgetting in both conditions (48, 63).

Patients with AD are believed to progress to more widespread and 
profound declines in language and other domains as the 
neuropathology spreads from medial temporal lobe structures to 
association cortices of the temporal, frontal, and parietal lobes (55). 
Deficits in confrontation naming and semantic fluency (i.e., number 
of words generated within a category such as animals or fruits) result 
from loss of semantic knowledge stores. In contrast, naming deficits 
present when seizures arise from the language dominant hemisphere 
and are characterized by a deficit in semantic retrieval (64). Executive 
dysfunction can be  identified in early and later stages of both 
conditions, but is milder than the executive dysfunction associated 
with other variants of dementia and epilepsy, including frontotemporal 
dementia (FTD) and frontal lobe epilepsy (FLE) (65, 66).

The profiles of neurocognitive disturbance in AD and TLE are 
generally studied at the group level. Individual patients exhibit a more 
heterogenous profile of deficits in episodic memory, language, and 
executive function than what is reported in group studies. 
Neuropsychology has recently transitioned to a more empirical 
approach to identify cognitive phenotypes associated with AD and 
TLE. Using data science methods, studies of AD have identified a 
number of phenotypes presenting with generalized cognitive deficits 
or focal profiles of impairment in memory, language, or other function. 
These phenotypes may differ in rates of progression and can 
be distinguished by unique genetic and biomarker profiles (67, 68). A 
similar literature in TLE has yielded a set of 3–4 cognitive phenotypes 
initially identified by Hermann and colleagues (55) and replicated, and 
differ in rates of cognitive decline and brain atrophy (69, 70).

Historically, study of neurocognitive impairment in TLE has 
focused on children and younger adults. Attention is shifting to 
older patients with longstanding epilepsy (EOE) and/or those with 
LOE to better understand how decades of seizures contribute to 
cognitive decline (71). Surprisingly, patients with EOE demonstrate 
a pattern of impairment on neuropsychological tests analogous to 
the decline seen in LOE to and aMCI patients (17). However, direct 

comparisons of MCI and TLE groups find that MCI patients exhibit 
greater impairment on tests of delayed memory while LOE patients 
have a more widespread profile of deficits in language, executive 
dysfunction, and visuospatial skills (18, 72, 73).

Several studies have demonstrated accelerated cognitive decline 
in patients with epilepsy, correlating with findings of increased 
atrophy on neuroimaging (2, 74). Research progress has been hindered 
over the years by a lack of an accepted taxonomy to classify cognitive 
disorders in patients with epilepsy across the lifespan (75). Studies 
using methods for diagnosing MCI in non-epileptic populations have 
found that approximately 60% of older individuals with epilepsy 
would meet diagnostic criteria for MCI (72, 73). Questions have arisen 
whether these findings are reflective of the effects of early cognitive 
deficits interacting with effects of normal aging, an accelerated form 
of aging, or chronic accumulation of environmental and health-related 
factors that reduce cognitive reserve (76).

While there is significant overlap in AD and TLE cognitive 
profiles, subtle differences exist. Patients with neurodegenerative 
conditions would be expected to decline over time while patients 
with well controlled epilepsy may not have significant memory 
decline. A more sophisticated understanding of their pathological, 
anatomical, and neurophysiological profiles could guide clinical 
phenotyping and diagnosis, especially at early stages of cognitive 
decline or seizure presentation.

4 Clinical diagnosis and differentiation

For guidance on diagnosing Alzheimer’s Disease and late-onset 
epilepsy, we refer readers to published guidelines (77, 78). However, 
even clinicians who diagnose and manage dementia or epilepsy may 
have difficulty recognizing seizures in AD patients or vice versa, 
especially at initial presentation. We offer several recommendations 
based on this review of the literature and our clinical experience with 
both populations.

 1 A careful medical and family history should be  taken to 
identify vascular causes which can cause cognitive decline 
or contribute to accelerated AD; sleep apnea; alcohol and 
drug use; family history of early onset dementia and 

TABLE 1 Patterns of cognitive impairment seen in Alzheimer's disease and temporal lobe epilepsy using traditional neuropsychological testing.

Neuropsychological 
domain

Representative 
neuropsychological tests

Alzheimer's disease Temporal lobe epilepsy

Episodic memory List learning (e.g., RAVLT) Reduced encoding of new information 

and consolidation information into 

long term storage (55).

Intact encoding; Disruption in consolidation of newly 

learned information (56). Material specific 

impairments in verbal and visual memory in 

lateralized cases (57).

Story recall (e.g., WMS LM)

Figural reproduction (e.g., RCFT)

Language Picture naming (e.g., BNT) Deficits in confrontation naming and 

verbal fluency secondary to a loss of 

semantic knowledge stores (55).

Intact knowledge stores with a primary difficulty in 

retrieving lexical and semantic information (61).Letter fluency (e.g., COWAT)

Category fluency (e.g., Animal 

naming)

Executive functions Trail making test (TMT) Mild deficits that do not extend to the 

severity observed in cases of 

frontotemporal dementia FTD (62).

Mild deficits that do not extend to the severity 

observed in cases of frontal lobe epilepsy (63).Sorting tests (e.g., WCST)

Planning tests (e.g., TOL)
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traumatic brain injury (which causes both cognitive decline 
and seizures).

 2 Patients with amnestic MCI or early AD often have difficulty 
with both information encoding and retrieval, whereas patients 
with LOE primarily have impairments in retrieval, especially 
during delayed recall. This observation is consistent with the 
concept of differential subfield vulnerability at early stages (29). 
This subtle difference can be assessed during the MMSE or 
MOCA during the clinical visit. During verbal encoding of 3 
or 5 words, patients with aMCI or AD struggle to learn words, 
require multiple registration trials, and demonstrate difficulty 
with retrieval. LOE patients show more selective weakness in 
delayed retrieval. Neuropsychological evaluation should focus 
on whether memory impairment is isolated to difficulty with 
consolidation (more likely to be TLE only) or difficulty with all 
stages of memory function, including encoding and retrieval 
(more likely to be  AD); other cognitive domains such as 
language and executive function are often more affected in 
neurodegenerative conditions than in isolated LOE.

 3 Clinical follow-up is important. The degree and pace of cognitive 
decline is often faster in patients with aMCI or AD than in LOE 
patients (18). Patients with well controlled LOE are more likely 
to remain cognitively stable over time if their seizures and 
other medical issues are well controlled.

 4 When patients with aMCI and AD report a history of fluctuating 
mental status, or discrete episodes of altered awareness, agitation, 
or psychosis, seizures should be suspected. Mesial temporal lobe 
onset seizures (mTLE) can present with psychic auras of anxiety 
and déjà vu, or viscero-sensory sensations with nausea, 
“butterflies,” and epigastric rising. Seizures can occur with or 
without alteration in awareness (focal impaired aware or focal 
unimpaired aware) and result in behavioral arrest. Seizures 
typically last from seconds to a minute, and rarely continue past 
1–2 min. Seizures involving mTLE can progress to include 
obvious motor signs, such as posturing, repetitive clonic jerking 
(unilateral or bilateral, or tonic stiffening). Patients may 
be lethargic, confused, agitated, or even psychotic after seizures. 
Occult seizures should be suspected when MCI and AD patients 
become suddenly agitated or psychotic, or demonstrate 
fluctuating mental status (although Lewy Body Dementia could 
also be in the differential). Nocturnal seizures should 
be suspected when the patient wakes up confused or disoriented.

 5 We recommend an MRI Brain for all patients who report 
memory or cognitive issues, and patients presenting with late-
onset epilepsy. Besides obvious structural abnormalities, special 
attention should be paid to hippocampal volumes, white matter 
disease, lobar specific atrophy, or generalized atrophy that could 
point to underlying AD (bilateral hippocampal/temporal; 
parietal) or another neurodegenerative pathology. When the 
MRI Brain is structurally normal, and a neurodegenerative 
condition is strongly suspected, we recommend a PET MRI 
Brain to assess for lobar-specific dysfunction.

 6 We recommend ambulatory EEG (24 h) in all patients, given that 
interictal epileptiform discharges (IEDs), especially from 
temporal lobe, are facilitated during non-REM Sleep (60, 79). 
Patients with temporal lobe epilepsy typically have unilateral 
spikes, whereas patients with aMCI or AD have bilateral 
hyperexcitability (16). AD patients with clinical seizures have 

characteristic IEDs seen on ambulatory EEG—discharges are 
bilateral, small and spiky in appearance, frequent, and 
occurring in wakefulness and REM sleep (16). Even with a 
normal ambulatory EEG, there may undetected interictal 
epileptiform discharges and silent seizures in AD patients that 
are only detected with invasive recordings (7). Besides IEDs, 
other EEG changes are apparent in aMCI and early 
AD. Bilateral frontotemporal slowing and mild slowing and 
desynchronization in the posterior dominant rhythm have 
been linked to the degree of amyloid and tau deposition, 
respectively (19). Sleep EEG in patients with temporal lobe 
epilepsy shows decreased spindle density (61). While mesial 
temporal IEDs can be difficult to detect with conventional scalp 
EEG, our center has had improved sensitivity with adding 
subtemporal (T1/T2) leads.

Taking the next step will require development of more sensitive 
and automated cognitive assays. Current neuropsychological tests are 
reliant on outdated models of cognitive functioning and depend on 
paper-pencil format (52, 80, 81). There is a clear need to “update 
testing” to reflect more contemporary cognitive models of 
development and administration through digital formats such as 
computers or smartphones, and could facilitate more frequent testing. 
Empirical study of cognitive phenotypes using network and artificial 
intelligence (AI) approaches can be used to efficiently and objectively 
analyze test findings (82, 83).

5 Novel directions in memory 
assessment

An ideal clinical assessment could (1) differentiate between early 
stages of AD and LOE, (2) detect early and subtle forms of memory 
impairment and precisely measure cognitive performance over time, 
and (3) be scaled to widespread patient populations. Testing would 
capture clinically meaningful memory behaviors, disambiguate 
language from memory, measure these behaviors sensitively and 
objectively, and allow serial assessment over time (84).

Subjective memory impairment, which correlates with initial 
amyloid accumulation in the brain, can precede AD dementia 
ascertainment by up to 18 years (56). Yet these subtle declines may not 
be detected by current neuropsychological testing methods. Many of 
the current cognitive assessments have been criticized as labor-
intensive, subjective, and data-poor estimates of human behavior (52, 
85, 86). In contrast to current practice of testing word lists, pairs, 
paragraphs, and abstract drawings, patients report difficulty with 
episodic memory, or remembrance of personally experienced events. 
Episodic memory under real-world circumstances binds perceptual 
details, spatial context, and temporal order to specific events (87), 
which may be missed in standard neuropsychological tests.

For example, development of tasks that measure subfield-specific 
functions could be  useful for early diagnosis, phenotyping, and 
tracking. Given the differing cell types and differential functions of 
the hippocampal subfields, and differential patterns of decline in early 
AD, LO-TLE, and normal aging, some have proposed a functional 
map of the hippocampus, along the transverse (subfield-level) and 
longitudinal (anterior–posterior) axes (Figures 3, 4) (29). Combining 
these behavioral insights with automated segmentation of 
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hippocampal subfields allows more precise functional-anatomical 
correlations (88). For example, CA3 is thought to be responsible for 
pattern integration (29), while dentate gyrus performs pattern 
separation (i.e., distinction between similar features or events). Some 
studies demonstrate decreased pattern separation in older individuals 
related to DG dysfunction with aging (30).

Future assessments could embrace more complex, naturalistic 
memory paradigms and computational analysis to make scoring more 
objective, sensitive, and quantifiable. Moreover, ideal testing could 
disambiguate language from memory function. Here, we highlight 
two promising directions in cognitive testing.

5.1 Eye tracking

Eye tracking, or the measurement of saccades, fixations, and 
pupillometry with high spatiotemporal precision, is an ideal method to 
readout brain-behavior relationships (57, 89). While rodents use mainly 
olfaction and locomotion to explore their environment, humans and 
other primates primarily depend on vision to extract and remember 
information about the world. Eye movements shape what is encoded 
– by chunking a continuous visual stream of information to deliver to 
widespread brain regions, including the hippocampus. Eye movement 
can track hippocampal activity at the millisecond time scale, as 
demonstrated by recent studies combining oculomotor measurements 
and hippocampal depth recordings in surgical epilepsy patients (90).

When scanning the environment, eye movements rapidly switch 
between saccades and fixations. Saccades are sudden, ballistic eye 
movements between objects or features in the environment, while 
fixations are prolonged gaze on attended objects. Eye movements are 
not random but influenced by visual properties of the object (e.g., 
color, contrast) and past experience (i.e., episodic and semantic 
memories). For example, monkeys, human infants, and healthy 
adults prefer looking at novel vs. familiar objects (91–94). More gaze 
fixations occur within new vs. repeated viewing (Figure 5A) or within 
manipulated sections of the scene (Figure 5B), even if the subject is 
unaware of the manipulation (95–97). In contrast, patients with 
hippocampal damage have impaired novelty preference, manifest as 
equal time spent looking at new and old objects (98–100).

Besides novelty detection, eye movements reveal relational 
memory between objects (99, 101–103) and temporal sequences 
(104). Finally, eye tracking could provide a means to disambiguate 
language from memory testing. The strong preference for novelty 
manifested through gaze preference has been proposed to be a useful 
means of tracking memory changes in the preclinical and clinical AD 
populations (92, 105).

5.2 Spontaneous recall and natural 
language processing

While memory impairment is characteristic of AD 
presentation, patients may also present with subtle language 
decline. Word-finding difficulties and a restricted lexicon result 
in “empty speech” or verbose but incoherent speech (106–109).

Machine and deep learning methods applied to patient 
spontaneous speech have been applied to help in diagnosis of 
psychosis (107) and schizophrenia, and could be useful for AD 

diagnosis can aid in AD diagnosis (109–111). Several studies have 
leveraged publicly available speech samples. The DementiaBank 
corpus of speech samples was collected between 1983 and 1988 from 
healthy and cognitively impaired patients at the University of 
Pittsburgh (111). Clinical information including MMSE, 
neuropsychological and physical assessment, and clinical records were 
used to classify patients as possible or probable AD (167 participants). 
Control subjects (n  = 167) were also included. The Cookie Theft 
picture description task from the Boston Diagnostic Aphasia 
Examination was used to elicit spontaneous speech, then transcribed 
at the word level, segmented into utterances, and annotated with 
pauses, paraphasias, and unintelligible words. Several of the studies 
using automatic, natural language processing-based features extracted 
from DementiaBank samples are summarized in Table 2.

AD patients typically demonstrate slowed speech rate, word 
finding, and word retrieval difficulty (111, 112). One study using 
natural language processing (NLP) analyzed speech samples of 99 
patients with probable AD to 99 healthy controls (108). Low-level 
features such as simpler syntactic structure (i.e., arrangement of words 
and phrases to create meaningful sentences) and decreased use of 
lexical components [i.e., autonomous units of language, such as words, 
prefixes (pre-, post-), suffixes (-s, -ing)] could differentiate AD patients 
from healthy controls (108). Another study found that linguistic 
features of descriptive speech (Cookie Theft task) in AD patients 
showed acoustic differences and semantic, syntactic, and informational 

FIGURE 5

(A) Representative scan path showing that a macaque spends more 
time looking at the image during the first viewing (yellow) compared 
to second viewing (blue). Circles represent fixations; lines represent 
saccades. Adapted from Jutras et al. (89). (B) Macaques fixate more 
frequently on a manipulated (novel) scene area (inside black square). 
From Smith et al. (90).
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differences, compared to healthy elderly (113). NLP methods applied 
to natural speech demonstrate that syntactic complexity combined 
with traditional neuropsychological test scores can differentiate 
between healthy elderly and MCI with high accuracy (>80%) (117).

To our knowledge, there have been no automated analyses of speech 
from epilepsy patients to detect cognitive changes. Given the widespread 
cognitive effects that have been discovered in patients with TLE (55), 
especially arising from the dominant lobe (62), word finding and speech 
changes would be expected. One study combined a questionnaire survey 
with NLP analysis of patients’ descriptions of their most recent 
description of transient loss of consciousness could predict a seizure or 
non-epileptic event with 85.5% accuracy (n = 21 epilepsy patients, n = 24 
non-epileptic patients) (118).

Existing linguistic tools and insights into AD decline could 
be leveraged to quantify memory impairment. For example, the face-
name task is an ecologically valid behavioral task that correlates with 
degree of amyloid burden in anterior hippocampus and limbic 
regions in healthy elderly individuals (119). However, to our 
knowledge, there are no existing tools to assess memory impairment 
using automated methods, that are both sensitive and scalable.

6 Conclusion

Results of MRI, pathological, neurophysiological, and behavioral 
studies demonstrate significant overlap between AD and 
LOE. Understanding the pathophysiological profiles of each disease can 

aid clinical detection at early disease stages, or once a primary diagnosis 
is made, recognize the presentation of a second diagnosis. We highlight 
the cognitive differences between early AD and LOE, but emphasize the 
need for new testing approaches, including those utilizing eye tracking 
and natural language processing, to measure subtle changes in memory 
at the preclinical or early clinical stages.
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TABLE 2 Examples of automated speech analysis in Alzheimer’s disease.

Publication Patient groups Main finding Methods

Orimaye et al. 

(2017) (108)

Probable AD (n = 99)
 • Probable AD group had less use of syntactical components and 

greater use of lexical components in language compared to 

Healthy Controls (HCs).

 • Less use of n-grams (combinations or sequences of words that 

create a unit of meaning) in probable AD group than in HCs.

 • DementiaBank language transcript clinical 

dataset (111).

 • Automatic extraction of lexical, syntactic, and 

n-gram features of transcripts.

Healthy Controls 

(n = 99)

Yeung et al. (2021) 

(114)

Healthy controls 

(n = 10)  • Greater severity in word-finding difficulty and incoherence in 

MCI and AD compared to controls.

 • Automatically extracted features such as decreased word length 

and speech rate and increased pause frequency and length most 

strongly correlated with clinician ratings of WFD.

 • DementiaBank speech samples (111).

 • 5 clinicians blindly rated each speech sample on 

word finding difficulty, incoherence, perseveration, 

and speech errors, on a Likert scale from zero (nL) 

to 3 (severe impairment).

 • Automatic extraction of lexical, syntactic, semantic, 

and acoustic properties.

MCI (n = 10)

AD (n = 10)

Fraser et al. (JAD, 

2016) (115)

Healthy controls 

(n = 97)  • Built a model which discriminates between HCs and possible/

probable AD with 81% accuracy.

 • Semantic impairment, acoustic abnormality, syntactic 

impairment, and information impairment predict dementia 

diagnosis.

 • DementiaBank speech samples (111).

 • Considered 370 features including syntactic 

complexity, grammar, vocabulary richness, lexical 

content, repetitiveness, and acoustic.

Possible and Probable 

AD (n = 167)

Beltrami (Front. 

Aging Neurosci 

2018) (116)

Cognitively Impaired 

(n = 48: 32 MCI, 16 

early dementia)

 • Acoustic features most altered in the patients compared to 

controls (including speech rate and pauses, and 

spectral properties).

 • Lexical features differentiate early dementia patients (e.g., fewer 

content words and modifiers).

 • Syntactic features (e.g., sentence complexity, fewer embedded 

phrases) decreased in early dementia and MCI patients.

 • Prospective study of spontaneous speech during 

description of a picture, typical working day, and 

last remembered dream.

 • Automatic extraction of lexical, rhythmic, acoustic, 

and syntactic features of speech.

Healthy Controls 

(n = 48)
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