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Background: Despite accumulating research on the molecular characteristics 
of meningiomas, no definitive molecularly targeted therapy for these tumors 
has been established to date. Molecular mechanisms underlying meningioma 
progression also remain unclear. Comprehensive genetic testing approaches can 
reveal actionable gene aberrations in meningiomas. However, there is still limited 
information on whether profiling the molecular status of subsequent recurrent 
meningiomas could influence the choice of molecular-targeted therapies.

Case presentation: We report a case of meningioma with malignant progression 
and multiple recurrences. We performed matched tumor pair analysis using the 
Todai OncoPanel to investigate the possibility of additional standard treatments. 
The loss of several chromosomal regions, including NF2 and CDKN2A, which 
is associated with aggressive meningiomas, was considered a significant driver 
event for malignant progression. Using additional matched tumor pair analysis, 
mutations in TRAF7, ARID1A, and ERBB3 were identified as subclonal driver events 
at the time of recurrence. No genetic aberrations were found for which evidence-
based targeted therapy was applicable. We  also reviewed previous reports of 
molecular therapies in meningioma to discuss issues with the current molecular 
testing approach.

Conclusion: Gene panel testing platforms such as the Todai OncoPanel represent 
a powerful approach to elucidate actionable genetic alterations in various types 
of tumors, although their use is still limited to the diagnosis and prediction of 
prognosis in meningiomas. To enable targeted molecular therapy informed 
by gene-panel testing, further studies including matched tumor pair analyses 

OPEN ACCESS

EDITED BY

Cesare Zoia,  
San Matteo Hospital Foundation (IRCCS), Italy

REVIEWED BY

Nasser Khaled Yaghi,  
Barrow Neurological Institute (BNI), 
United States  
Giorgio Mantovani,  
University of Ferrara, Italy

*CORRESPONDENCE

Satoru Miyawaki  
 smiya-nsu@m.u-tokyo.ac.jp

RECEIVED 31 July 2023
ACCEPTED 18 October 2023
PUBLISHED 23 November 2023

CITATION

Ohara K, Miyawaki S, Nakatomi H, Okano A, 
Teranishi Y, Shinya Y, Ishigami D, Hongo H, 
Takayanagi S, Tanaka S, Shinozaki-Ushiku A, 
Kohsaka S, Kage H, Oda K, Miyagawa K, 
Aburatani H, Mano H, Tatsuno K and 
Saito N (2023) Case report and literature 
review: exploration of molecular therapeutic 
targets in recurrent malignant meningioma 
through comprehensive genetic analysis with 
Todai OncoPanel.
Front. Neurol. 14:1270046.
doi: 10.3389/fneur.2023.1270046

COPYRIGHT

© 2023 Ohara, Miyawaki, Nakatomi, Okano, 
Teranishi, Shinya, Ishigami, Hongo, Takayanagi, 
Tanaka, Shinozaki-Ushiku, Kohsaka, Kage, Oda, 
Miyagawa, Aburatani, Mano, Tatsuno and Saito. 
This is an open-access article distributed under 
the terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic practice. 
No use, distribution or reproduction is 
permitted which does not comply with these 
terms.

TYPE Case Report
PUBLISHED 23 November 2023
DOI 10.3389/fneur.2023.1270046

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2023.1270046﻿&domain=pdf&date_stamp=2023-11-23
https://www.frontiersin.org/articles/10.3389/fneur.2023.1270046/full
https://www.frontiersin.org/articles/10.3389/fneur.2023.1270046/full
https://www.frontiersin.org/articles/10.3389/fneur.2023.1270046/full
https://www.frontiersin.org/articles/10.3389/fneur.2023.1270046/full
https://www.frontiersin.org/articles/10.3389/fneur.2023.1270046/full
https://www.frontiersin.org/articles/10.3389/fneur.2023.1270046/full
mailto:smiya-nsu@m.u-tokyo.ac.jp
https://doi.org/10.3389/fneur.2023.1270046
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2023.1270046


Ohara et al. 10.3389/fneur.2023.1270046

Frontiers in Neurology 02 frontiersin.org

are required to understand the molecular characteristics of meningiomas and 
develop treatments based on genetic abnormalities.

KEYWORDS

malignant meningioma, malignant progression, Todai OncoPanel, comprehensive 
genomic analysis, actionable gene aberration

1 Introduction

The treatment of malignant meningioma remains challenging due 
to the absence of alternatives other than maximum surgical removal 
and radiation therapy (1). With recent advances in next-generation 
sequencing, several molecular approaches have been developed to 
understand the molecular characteristics of meningiomas. In addition 
to the well-known deletion of chromosome 22 and mutation of NF2 
(2–5), other driver gene mutations in TRAF7, KLF4, AKT1, SMO, and 
POLR2A have also been identified (6–10). Furthermore, DNA 
methylation and gene expression profiles have been studied in 
meningioma (11–14). Several molecularly targeted therapies for 
meningiomas have been attempted based on alterations identified in 
specific genes or their associated signaling pathways. Although some 
therapies are potentially effective (15–20), a definitive treatment has 
not yet been established. As reports analyzing acquired molecular 
aberrations with recurrent paired specimens have been limited (21, 
22), molecular mechanisms underlying meningioma progression are 
still unclear.

Fortunately, large-scale genomic sequencing has identified 
numerous actionable gene aberrations in various tumor types (23–26). 
We  have clinically applied the Todai OncoPanel (TOP) for the 
detection of cancer-related genes at our institution (26). This panel is 
characterized by a twin-panel system incorporating DNA and RNA 
that is effective in detecting fusion transcripts (26–28). However, the 
clinical utility of these panel tests for central nervous system tumors 
remains limited (29).

Here, we report a case of refractory malignant meningioma that 
was evaluated by comprehensive molecular testing to explore the 
potential indications for new targeted therapies. We focus on whether 
changes in the molecular profiles of matched recurrent meningiomas 
could influence the choice of molecular-targeted therapies. To better 
understand therapeutic approaches in meningiomas, this study 
reviewed the relevant literature or ongoing clinical trials based on 
potential therapeutic targets. We also discuss its usefulness and future 
issues associated with clinical panel sequencing in 
meningioma treatment.

2 Case description

A 55-year-old man had undergone initial tumor resection for a 
parasagittal meningioma, defined as World Health Organization 
(WHO) grade 1, at another hospital (Figure 1A). He had no significant 

medical history or family history of meningioma. After gamma knife 
radiosurgery for recurrence at the age of 61 years, a second resection 
had been performed at 65 years of age due to progressive tumor 
growth with histological transformation to a WHO grade 2 atypical 
meningioma (Figure 1B). At 68 years of age, he had been treated again 
with stereotactic radiosurgery for local recurrence. Due to tumor 
regrowth, he was referred to our hospital for a third surgery at 71 years 
of age (Figure 1C). On preoperative physical examination, he showed 
mild paralysis of the right lower limb. Manual muscle testing (MMT) 
of the right lower limb showed grade 4. His postoperative course was 
uneventful. The pathological specimen of the tumor indicated a 
diagnosis of malignant progression to anaplastic meningioma, WHO 
grade 3, with overt anaplasia and a high Ki-67 index (Figures 1D,E). 
Postoperative adjuvant radiation therapy was administered at a dose 
of 54 Gy. Two years later, a fourth surgical resection was required with 
progressive gait disturbance, and the patient was again diagnosed with 
an anaplastic meningioma (Figures  1F–H). After the surgery, his 
paralysis of the right lower limb worsened to MMT grade 3. With 
rehabilitation, his paralysis improved MMT grade4. He was able to 
walk with a cane and lead a largely independent life. Another recurrent 
lesion progressed toward the eloquent motor area at the posterior 
aspect of the tumor removal cavity (Figure  1I); however, surgical 
resection of the lesion was associated with a high risk of postoperative 
paralysis, and additional radiotherapy was ineffective. Considering 
that standard therapies were not viable, the patient wanted to explore 
the possibility of targeted molecular therapy. After thoroughly 
explaining that discovering a new treatment for meningioma with our 
panel analysis has yet to be  established, he  requested our genetic 
testing. Therefore, we  performed comprehensive panel testing to 
elucidate whether this refractory meningioma possesses actionable 
gene aberrations suitable for targeted molecular therapies.

Todai OncoPanel analysis

We conducted comprehensive panel sequencing using TOP after 
obtaining the appropriate informed consent from the patient. The 
study was performed in accordance with the principles of the 
Declaration of Helsinki and was approved by the ethics committee of 
the University of Tokyo. The method of analysis has been reported 
previously (26). Briefly, this unique custom-made panel includes DNA 
and RNA components. The TOP DNA panel targets 464 genes to 
detect single-nucleotide variants (SNVs), small insertions/deletions, 
and copy number variations (CNVs). The TOP RNA panel detects 463 
fusion genes using the junction capture method. In addition, various 
probes detect single nucleotide polymorphisms. By comparing tumor 
and normal reads, chromosomal gains and losses are visualized as a 
chromosomal copy number graph (Supplementary Tables 1, 2). The 

Abbreviations: CNV, Copy number variation; SNV, Single nucleotide variant; TOP, 

Todai OncoPanel; VAF, Variant allele frequency; WHO, World Health Organization.
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tumor resected in the fourth surgery (Tumor S4) was mainly used to 
detect actionable gene aberrations, whereas the tumor resected in the 
third surgery (Tumor S3) was used for comparisons with Tumor S4. 
The detected genetic and transcriptional alterations were reviewed and 
classified according to the level of evidence and potential treatments 
by an expert panel consisting of physicians, pathologists, genetic 
counselors, molecular biologists, and cancer genome researchers.

2.2 Genetic findings

Both tumors were sequenced at a high depth in the TOP DNA 
panel (mean depth: 1196.4× for Tumor S3 and 1390.5× for Tumor S4). 
No significant difference was found in tumor purity (53.0% for Tumor 
S3 and 55.0% for Tumor S4, respectively; data not shown). Also, tumor 
cell compositions were similar in both histopathological images. 
We  identified five non-synonymous mutations and one splice-site 
mutation in Tumor S4, with a detection threshold of variant allele 
frequency (VAF) > 5% (Table 1). The TRAF7 mutation c.1168G > A 

(p.Gly390Arg), a frequent mutational hotspot in meningiomas, was 
detected. ARID1A, a component of the SWI/SNF complex that acts as 
a driver in high-grade meningiomas, was also mutated. We also found 
multiple chromosomal copy number losses, including 1p/22q 
co-deletion (Figure 2A). A 1q gain, which is associated with poor 
outcomes in meningiomas, was also observed. In addition, 
we identified various genetic CNVs, including CDKN2A deletions 
(Supplementary Table  3). TOP RNA testing revealed no fusion 
transcripts. We could not identify actionable gene aberrations that 
could be potential targets of approved drugs or clinical trials in expert 
panel reviews.

Next, we compared the genomic abnormalities of Tumor S3 with 
Tumor S4 to explore the differences that emerged during tumor 
progression. Tumor S4 showed six non-synonymous mutations with 
a VAF > 5%, whereas these mutations were detected with VAF less 
than 5% in Tumor S3. One mutation that was not detected in Tumor 
S4 was detected in S3 with VAF > 5% (Table  1). Genetic CNVs, 
including those in CDKN2A, were partially shared throughout tumor 
progression without notable changes (Supplementary Table  3). 

FIGURE 1

Time course and clinical findings of the progressive meningioma. (A) The diagram shows the time course of treatment and tumor progression. 
Preoperative magnetic resonance imaging (MRI) using gadolinium-enhanced T1 imaging (Gd-T1WI) of the parasagittal sinus meningioma at the second 
(B) and third (C) surgeries. Pathological features of the tumor at the third surgery indicate overt anaplasia by malignant progression with hematoxylin 
and eosin (H&E) staining (D) and high mitotic features in Ki-67 staining (E) under ×400 magnification (scale bar  =  50  μm). Preoperative Gd-T1WI before 
the fourth tumor removal (F). H&E staining (G) and Ki67 staining (H) at the fourth surgery (original magnification, ×400; scale bar  =  50  μm). 
Postoperative follow-up imaging using Gd-T1WI shows tumor progression in the posterior cavity (I).
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Although the profile of the chromosomal CNVs of Tumor S3 was 
similar to that of Tumor S4, some chromosomal changes, such as the 
gain of 1q, 6p, and 14q and the loss of 4q and 10p, were additionally 
observed in Tumor S4 (Figure 2B), suggesting that Tumor S4 exhibits 
a pattern of branched clonal evolution from Tumor S3 (Figure 2C). 
Unfortunately, as no suitable molecularly targeted therapeutic agent 
exists for the patient’s course, conservative follow-up was continued 
despite the continuously growing tumor.

3 Literature review of molecular 
targeted therapies for meningiomas

A search strategy was conducted according to the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines (30). We  searched using the 
term:(“meningioma”[MeSH] AND “drug therapy”) to identify 
relevant articles in MEDLINE1 up to September 2023. We included 
articles that were original prospective phase II trials of molecular 
targeted therapies for meningiomas to demonstrate options for 
potentially applicable treatment in the future. To avoid missing 
relevant research efforts, we  also hand-searched other articles on 
Phase II trials. Next, we  searched for ongoing clinical trials for 
meningiomas on ClinicalTrials.gov to September 2023. We included 
ongoing phase II or III trials that focused only on meningioma.

4 Discussion

Here, we report a case of progressive meningioma that was evaluated 
by molecular profiling. Contrary to our expectations, no actionable 
genetic aberrations were detected. However, we obtained some implicative 
results via a genetic analysis of paired recurrent samples. In this 
progressive case, we identified the TRAF7 mutation, which is typically 
found in benign meningiomas. Although this mutation was detected in 
both S3 and S4, the VAF of S3 was markedly low without differences in 
tumor purity. Tumor heterogeneity may have influenced the results, but 
this mutation may have been acquired as a subclonal driver event. TRAF7 
mutations are often associated with mutations in other genes, such as 

1 www.pubmed.gov

AKT1, KLF4, and PIK3CA (8, 9), and rarely with NF2 alterations, 
suggesting that TRAF7 mutation may not represent the earliest driver 
event, as in this case. Regarding the significance of the “add-on” TRAF7 
mutations, the accumulation of matched-pair analysis using recurrent 
specimens may help confirm this hypothesis.

Considering that the TOP test targeted sufficiently large genetic 
regions, we  also identified NF2 inactivation and chromosomal 
abnormalities, such as the loss of 1p, 6q, 10p, and 18q and deletion of 
CDKN2A, which indicated tumor aggressiveness in the present case 
(21, 31, 32). Interestingly, the 1q gain, which is harbored in the most 
aggressive types of meningioma, was acquired in Tumor S4 (33). 
High-grade meningiomas frequently exhibit NF2 alterations (6, 8, 9). 
Furthermore, the number of genetic and chromosomal CNVs 
indicates the risk of recurrence and aggressiveness in malignant 
meningiomas and even a subset of benign WHO grade 1 tumors (22, 
34). Although a variety of driver genetic events can be detected in a 
single genetic panel test in meningiomas (29, 35, 36), CNV analysis 
is also required to predict meningioma aggressiveness. Some reports 
have shown the usefulness of CNV analysis using DNA panel tests 
for meningiomas (29, 36). The behavior and recurrence risk of 
meningiomas are generally difficult to predict based on clinical 
features (e.g., the Simpson grading scale and WHO grading system) 
(37). Therefore, TOP analysis offers a significant advantage over other 
diagnostic tools by revealing the genetic profiles of meningiomas and 
identifying tumors associated with poor prognosis.

However, panel testing shows limitations in its therapeutic 
application. In multiple types of tumors, targeted gene panel testing 
cost-effectively clarifies the genetic background and identifies 
targetable gene aberrations. However, an unignorable discrepancy 
exists between the level of identified actionable gene aberrations and 
that of patients receiving accordingly targeted therapies. Actionable 
gene aberrations of various tumors are identified in 32.2%–59.4% of 
patients, whereas the level of patients who receive molecularly targeted 
therapy remains at approximately 10% (23–26). This discrepancy may 
be associated with the scarcity of established molecularly targeted 
therapies in comparison with the number of detectable genetic 
abnormalities. Even if a potentially effective therapeutic agent exists, 
the treatment cannot be administered without prior clinical validation. 
The presence of actionable gene mutations varies depending on the 
tumor type. Genomic panel testing is considered applicable for tumors 
for which molecularly targeted drugs are already available, whereas 
the applicability of molecularly targeted therapy is still limited in other 
tumors, including intracranial tumors.

TABLE 1 Tumor genetic variants identified using Todai OncoPanel.

Gene CytoBand Variant Amino acid Mutation type VAF

Tumor S4 Tumor S3

TRAF7 16p13.3 c.1168G > A p.G390R Missense 28.8% 1.3%

ARID1A 1p36.11 c.1048 T > G p.S350A Missense 5.6% 3.3%

ERBB3 12q13.2 c.2938-38G > T - Splice-site 22.8% 1.9%

ERBB3 12q13.2 c.2954G > A p.G985E Missense 24.6% 1.5%

ERBB3 12q13.2 c.3010G > A p.E1004K Missense 26.2% 1.6%

ERBB3 12q13.2 c.3016G > A p.E1006K Missense 27.2% 1.8%

ERCC2 19q13.32 c.1034del p.R345Lfs*14 Frameshift Undetected 9.2%

VAF, Variant allele frequency.
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For meningiomas, which lack established molecular therapies, 
gene panel testing for therapeutic purposes remains challenging 
without the development of novel therapeutic agents. To our 
knowledge, several prospective studies have demonstrated the effects 
of molecular targeted therapies for meningiomas (Table 2). In the 
previous study, targeted agents such as anti-angiogenic inhibitors, 
mTOR inhibitors, and EGFR inhibitors were investigated based on the 
activation of intracellular signaling pathways in meningiomas (15, 
17–20, 38, 39, 42). Also, other clinical trials based on potential targets 
in meningiomas are in progress. As major genetic drivers specific to 
meningiomas, NF2, AKT1, and SMO mutations could be targeted by 
FAK, AKT1, and SMO inhibitors, respectively (43, 44). As an 

immunotherapy, PD-1 inhibitor showed promising efficacy for 
immunosuppressive tumor microenvironment of high-grade 
meningiomas (40, 41). Previous large-scale studies have suggested the 
therapeutic potential of CDK inhibitors and histone deacetylase 
inhibitors in molecularly aggressive types of meningiomas (33, 45).

The prior studies suggest that those targeted therapies were 
expected to stabilize meningioma growth. However, as the results of 
these inhibitors are in Phase II trials, future investigations are still 
needed. Further, from a clinical perspective, the feasibility of these 
therapies is still limited because molecular testing for meningiomas is 
not part of routine practice. Even though well-recognized driver 
genetic events are not detected in some meningiomas (6–9), additional 

FIGURE 2

A paired analysis with Todai OncoPanel. Chromosomal copy number variations in anaplastic meningioma. The upper panel shows the total copy 
number, and the lower panel shows the allelic copy number ratio with B allele frequency at the fourth (A) and third surgeries (B). Implications for driver 
events along with tumor progression (C).
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TABLE 2 Review of molecular targeted therapy for meningiomas.

Previous studies of molecular targeted therapy for meningiomas

References n WHO 
grade 

(n)

Intervention Drug 
class

Molecular 
target

Phase Radiographic 
response

6  M-PFS

Wen et al. (15) 23

1 (13)

Imatinib
PDGFR 

inhibitor
PDGFR 2 SD: 47.4% 29.40%2 (5)

3 (5)

Norden et al. (19) 25

1 (8)

Gefitinib/erlotinib EGFR inhibitor EGFR 2 SD: 32% 28%2 (9)

3 (8)

Reardon et al. (38) 21

1 (8) Imatinib
PDGFR 

inhibitor
PDGFR 2 SD: 66.7% 61.90%2 (9) Hydroxyurea

3 (4)

Raizer et al. (18) 25

1 (2)

Vatalanib
VEGFR 

inhibitor
VEGFR 2 SD: 68.2% 54.40%2 (14)

3 (8)

Kaley et al. (17) 36

1 (4)

Sunitinib

Tyrosine 

kinase 

inhibitor

VEGFR, PDGFR, 

KIT
2

CR/PR: 5.6%

SD: 69.4%
42%2 (30)

3 (6)

Shih et al. (39) 17

1 (4) Everolimus
mTOR 

inhibitor
mTOR

2 SD: 88% 69%
2 (7) Bevacizumab

VEGF 

inhibitor
VEGF

3 (5)

Graillon et al. (20) 20

1 (2) Everolimus
mTOR 

inhibitor
mTOR 2 N/A 55%2 (10) Octreotide

3 (8)

Brastianos et al. (40) 25
2 (22)

Pembrolizumab PD-1 inhibitor PD-1 2 SD: 72% 48%
3 (3)

Bi et al. (41) 25
2 (18)

Nivolumab PD-1 inhibitor PD-1 2
PR: 4%

42.40%
3 (7) SD: 60%

Kumthekar et al. 

(42)
42

1 (10)

Bevacizumab

VEGF binding 

monoclonal 

antibody

VEGF 2

PR:2% Grade1:90%

2 (21) SD:86% Grade2/3:66%

3 (11)

Brastianos et al. (43) 36

1 (12)

GSK2256098 FAK inhibitor NF2 2

PR: 2.8%

50%2 (18)

3 (6) SD: 66.7%

Ongoing clinical trials of molecular targeted therapy for meningiomas

NCT 
number

n WHO 
grade(n)

Intervention Drug class Molecular target Phase Primary 
outcome

3071874 25 2, 3 Vistusertib mTOR inhibitor mTOR 2 PFS

5425004 24 2, 3 Cabozantinib VEGF inhibitor VEGF 2 PFS

5130866 89 - AR-42 (OSU-HDAC42)
Histone deacetylase 

inhibitor
NF2 2, 3 PFS

2523014 124 -

Vismodeg SMO inhibitor SMO

2 PFSCapivasertib AKT inhibitor AKT1

Abemaciclib CDK inhibitor CDKN2A loss, CDK gain

SD, stable disease; CR, complete response; PR, partial response; 6 M-PFS, 6-month progression-free survival; PFS, progression-free survival.
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hidden molecular targets could be detected by further analysis of the 
increased number of these “apparently driver-negative” meningiomas.

Currently, genomic surveys with customized gene panel testing 
mainly contribute to personalized medicine by elucidating the genomic 
profile and allowing clinicians to select high-risk cases for closer 
follow-up. The number of analyzed cases needs to be  increased to 
demonstrate the usefulness of TOP testing for meningiomas as a useful 
tool in future molecular therapy. At the same time, further molecular 
understanding of meningiomas and the development of therapeutic 
agents are required. Meningiomas show complicated diversity in their 
molecular landscapes, which can be identified by the integrated analysis 
of DNA methylation or gene expression profiles (11–14, 33, 45, 46). The 
correlation between molecular characteristics and specific genomic events 
requires elucidation. Combined panel testing such as TOP may yield 
comprehensive genetic profiles, including gene expression profiles, in the 
future. Also, matched tumor pair analysis may provide more detailed 
knowledge of molecular profiles.

In conclusion, gene panel analysis, including TOP, effectively 
elucidates various genetic alterations in meningiomas. However, panel 
testing is limited to diagnostic and prognostic prediction. The 
establishment of definitive treatments for meningiomas is essential for 
molecularly targeted therapy informed by genetic panel testing.
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