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Stroke is one of the most common cerebrovascular diseases, which is the cause 
of long-term mental illness and physical disability, Post-stroke depression 
(PSD) is the most common neuropsychiatric complication after stroke, and its 
mechanisms are characterized by complexity, plurality, and diversity, which 
seriously affects the quality of survival and prognosis of patients. Studies have 
focused on and recognized neurotransmitter-based mechanisms and selective 
serotonin-reuptake inhibitors (SSRIs) can be used to treat PSD. Neuroinflammation, 
neuroendocrinology, neurotrophic factors, and the site of the stroke lesion may 
affect neurotransmitters. Thus the mechanisms of PSD have been increasingly 
studied. Pharmacological treatment mainly includes SSRIs, noradrenergic and 
specific serotonergic antidepressant (NaSSA), anti-inflammatory drugs, vitamin 
D, ect, which have been confirmed to have better efficacy by clinical studies. 
Currently, there is an increasing number of studies related to the mechanisms 
of PSD. However, the mechanisms and pharmacologic treatment of PSD is still 
unclear. In the future, in-depth research on the mechanisms and treatment of 
PSD is needed to provide a reference for the prevention and treatment of clinical 
PSD.
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1. Introduction

A significant proportion of older adults will suffer from one or more age-related diseases, 
including two significant conditions that can cause high morbidity and disability, with high 
economic burden consequences: stroke (1) and depression (2). Stroke is divided into ischemic 
stroke and hemorrhagic stroke. The latter includes intracerebral hemorrhage (ICH) and 
subarachnoid hemorrhage (SAH). Depression is one of the most common symptoms of mental 
disorders after stroke, with a predicted prevalence of 18 to 33% (3–5). Depression will become 
the leading cause of global burden by 2030, so attention should be paid to treating depression 
(6, 7). PSD is mainly manifested as a lack of energy, apathy, sleep disorders, reduced interest, 
passivity, pessimism, and even suicide, and PSD quickly leads to stroke recurrence. Because 
many stroke patients have cognitive and language disorders, PSD is not easy to find but seriously 
hinders the rehabilitation of patients. PSD is a crucial risk factor for long-term adverse physical 
and mental health outcomes after stroke (8), and PSD can lead to lower quality of life and higher 
mortality (9). Several stroke-related psycho-social factors worsen, at best, the PSD symptoms 
by negatively impacting the patient’s daily life (10–12). Much literature has focused on the 
mechanism of post-ischemic depression, and its mechanisms has become a research hotspot in 
recent years. Given this, it is necessary to understand the mechanisms and drug treatment of 
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PSD, which can provide a reference for the prevention and treatment 
of clinical PSD.

2. Stroke lesion site and PSD

Soares proposed a neuroanatomical model of mood disorders 
in 1997, i.e., the pathway of emotion regulation includes the frontal 
lobe, the basal ganglia, the amygdala-hippocampus complex, the 
thalamus, and the connecting fibers between them (13). The frontal-
subcortical neural pathway regulates sleep, mood, neuroendocrine, 
motor and cognitive behaviors, etc. The basal ganglia is an essential 
pathway for the axons of 5-HT and DA neurons, and the above ways 
and lesions block the axonal transmission of neurotransmitters to 
the cortex. Hence, lesions of the above areas are prone to depression. 
The central monoaminergic nuclei are located in the brainstem, and 
they fire ascending projections distributed throughout the brain, 
including the cerebral cortex and limbic system. It is thought that 
ischemic damage to these nuclei or their projections may result in 
decreased monoamine levels in a) the left frontal cortex, leading to 
depressed mood and cognitive deficits; b) the reward system, 
leading to a lack of pleasure; and c) the basal ganglia, which directly 
and indirectly regulate mood, cognition, reward, and fatigue (14, 
15). The occurrence of stroke in specific regions such as the 
prefrontal cortex, limbic area, and basal ganglia can disrupt key 
pathways of mood-related neurotransmitters, leading to depressive 
disorders (16, 17). Studies have shown that PSD is strongly 
associated with the site of stroke lesions, but different studies have 
different results. Terroni et al. (18) further affirmed that the limbic-
cortical-striatal-pallidal-thalamic neural pathway is closely 
associated with PSD based on previous imaging studies. In the 
1980s, Robinson et al. suggested that injury to the anterior part of 
the left hemisphere is more likely than other body parts to lead to 
depression and PSD (19, 20). Injury to the left cerebral hemisphere 
is associated with depression, especially damage to the left frontal 
cortex and the left basal ganglia has a higher incidence of 
depression, and 5-HT and NE in the left cerebral hemisphere are 
more likely to be  depleted than those in the right cerebral 
hemisphere, and damage to NE and 5-HTergic neuronal pathways 
in the above regions, which decreases the content of NE and 5-HT 
and thus leads to PSD (21–23). However, one study did not support 
the hypothesis that left hemisphere lesions are associated with an 
increased risk of PSD, and there was a significant correlation 
between right hemisphere stroke and the risk of depression after 
subacute stroke (1–6 months) (24). A significant association 
between damage to the subcortical circuit in the frontal lobe and 
PSD has been found (25). In addition, Hong et al. (26) collected 23 
patients with PSD diagnosed with frontal subcortical onset. The 
gray matter volume of the left middle frontal gyrus was significantly 
reduced in the PSD patients compared with the non-PSD group. 
The lesion site was located in the left inferior frontal gyrus in about 
14 PSD patients, and the lesion site was found in the dorsolateral 
prefrontal cortex in about 9 PSD patients. Leukoaraiosis also called 
white matter lesions (WMLs) and white matter hyperintensities 
(WMHs). Multiple studies have shown that deep leukorariosis with 
PSD (27). Determining the extent of pre-existing white matter 
abnormalities can properly guide decision making in acute stroke 
settings, as a greater degree of such lesioning is usually coupled with 

neuropsychiatric aftermaths, such as PSD (28). Although there is 
no uniform conclusion on whether lesion site is associated with 
PSD, most researchers still believe there is a relationship between 
lesion site and the occurrence of PSD.

3. Neurotransmitter hypothesis

Monoamine neurotransmitters mainly include norepinephrine 
(NE), 5-hydroxytryptamine (5-HT), and dopamine (DA), and most 
of their receptors belong to the G-protein-coupled receptor. NE, 5-HT, 
and DA transmit messages between nerve cells or neurons and effector 
cells, integrating the overall coordination of body functions. If these 
neurotransmitters are defective, the normal functioning of the 
nervous system is compromised, leading to depression (29, 30). 
Ischemic injury interferes with upward projections from the midbrain 
and brainstem, reducing the bioavailability of 5-HT, DA, and NE (31). 
Many neurophysiological studies found an early involvement of the 
central serotonergic tone since the very acute phase of stroke and in 
all stroke patients as a group, regardless the degree of disability and 
the site of the lesion (32–34). In the presence of the SLC6A4 linked 
promoter region (5-HTTLPR) s/s genotype promoter methylation 
status was independently associated with PSD both at 2 weeks and 
more prominently at 1 year after stroke, and was significantly 
associated with the worsening of depressive symptoms over 1 year 
(35). Previous studies have demonstrated that 5-hydroxytryptamine 
transporter length polymorphism (5-HTTLPR) predicts stress and 
depression (36). Wang et al. (37) successfully prepared a PSD model 
and found that depressive symptoms in rats could be blocked by the 
SSRIs citalopram or the 5-HT1A receptor blocker WAY-100635, and 
detected an increase in newborn neurons in the hippocampal DG 
region, suggesting that SSRIs act by promoting neural regeneration in 
the hippocampal DG region. Mak et al. conducted a meta-analysis and 
found that the 5-HTTLPR LL, LS, and LS genotypes, and the L allele 
had a positive effect on PSD recovery, but the SS gene in 5-HTTLPR 
may be  a risk factor for PSD (38, 39). Therefore, monoamine 
neurotransmitters and genes are one of the mechanisms most closely 
associated with PSD.

3.1. Amino acid neurotransmitters and PSD

After a stroke, acute ischemia/hypoxia occurs in brain tissue, 
leading to ion transporter dysfunction and ion homeostasis 
disturbances, which in turn leads to impaired glutamate release 
and reuptake and intracellular calcium overload, which further 
contributes to the rapid rise in cerebrospinal fluid glutamate 
levels. These cascading reactions ultimately lead to neuronal death 
(40, 41). In addition, excessive glutamate release may lead to 
synaptic excitotoxicity by exacerbating oxidative stress and 
inflammation. In contrast, inflammatory mediators may interfere 
extracellular glutamate levels by decreasing the glutamate 
scavenging capacity of microglia and astrocytes (42, 43). Many 
studies have reported higher levels of glutamate and its metabolites 
in both the blood and cerebrospinal fluid of patients with PSD, 
especially in the frontal cortex (44, 45). The above experiments 
suggest that amino acid neurotransmitters are equally involved in 
developing PSD.
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4. Neuroinflammation

In addition to classical neurotransmitters, astrocytes and 
microglia in the central nervous system induce cytokine production, 
including interleukin (IL), tumor necrosis factor (TNF), and 
interferon (IFN). When the body undergoes an inflammatory 
response induces the expression of relevant inflammatory cytokines, 
and an increase in inflammatory cytokines leads to a decrease in the 
amount of 5-HT or even depletion. Serum inflammatory cytokine 
levels are elevated in patients with depression, and antidepressant 
drugs, such as SSRIs, can decrease the pro-inflammatory cytokines 
IL-6, IL-1β, TNF-α, and IFN-γ, or increase the anti-inflammatory 
cytokines, such as IL-10, IL-4, IL-13 (46, 47). Inflammation triggers 
depression by affecting the normal secretion and synthesis of 
monoamine neurotransmitters, neuronal regeneration, and 
stimulation of glial cell activation in various ways. Spalletta et al. 
investigated and put forward the “cytokine hypothesis,” in which 
pro-inflammatory cytokines interact with 5-HT, leading to the 
amplification of inflammatory processes and activation of 
indoleamine-2,3-dioxygenase (IDO) in the limbic region (48). 
Activation of IDO in the limbic region converts tryptophan to 
kynurenine, leading to depletion of 5-HT in the paralimbic 
structures, and the resulting physiological dysfunction may lead to 
PSD. Elevated levels of inflammatory mediators are thought to 
be  associated with PSD, and increases in pro-inflammatory 
cytokines IL-1, IL-2, IL-6, IL-17, IL-1β, and TNF-α are strongly 
associated with PSD (49–51). In another study, a total of 151 
patients with acute ischemic stroke were screened at baseline and 
completed a 1-month follow-up, serum IL-10 levels were measured 
within 24 h of admission, and depressive symptoms were assessed 
using the 17-item Hamilton Depression Scale (HAMD-17), with 
PSD defined as a HAMD score of ≥7. It was found that serum levels 
of IL-10 were significantly lower in patients with PSD than those in 
the non-PSD group (52). Alleles associated with reduced anti-
inflammatory cytokine function, such as IL-4 + 33C/C and IL-10-
1082A/A genotypes, were also associated with PSD (53). In 
addition, microglia can be distinguished into two phenotypes, the 
deleterious pro-inflammatory M1 type and the anti-inflammatory 
M2 type, which represent the dual role of microglia. M1 microglia 
promote the release of a range of pro-inflammatory cytokines such 
as TNF-α, IL-1-β, IL-6, and nitric oxide (NO), as well as protein 
hydrolyzing enzymes, such as matrix metalloproteinase-9 (MMP-9) 
and MMP-2, which ultimately exacerbate neuronal injury and 
inhibit neurogenesis in the hippocampus. M2-type microglia 
express the protective cytokines CD206, IL-10, and scavenger 
receptors, which have a role in inhibiting inflammation and 
promoting tissue repair.

NLRP3 inflammatory vesicle is a multiprotein complex of the 
natural immune system and an upstream regulator of IL-1β. Activation 
of NLRP3 inflammatory vesicle activates cysteine aspartate lyase-1 via 
NF-κB and MAPK pathways, induces IL-1β and IL-18 production, 
and thus promotes inflammatory responses (54, 55). It has been found 
that lack of NLRP3 attenuates LPS-induced depressive-like symptoms 
and increases IDO gene expression while inhibiting microglia 
activation, suggesting that IDO may be a downstream mediator of 
NLRP3 inflammatory vesicles in inflammation-mediated depressive-
like behavior (56). Therefore, Li et al. proposed lowering NLRP3 levels 
as a treatment for PSD.

Serum growth differentiation factor-15 is a transforming growth 
factor-β (TGF-β)-related cytokine (57). High levels of serum growth 
differentiation factor-15 are significantly associated with poor clinical 
outcomes in acute ischemic stroke, suggesting that serum growth 
differentiation factor-15 levels can predict the prognosis of ischemic 
stroke patients (58). High serum growth differentiation factor-15 
levels may be associated with an increased risk of suicidal thoughts 
in depressed patients (59). Many recent studies have pointed out that 
serum growth differentiation factor-15 levels are nearly one-fold 
higher in patients with PSD than in patients without depression, and 
the sensitivity and specificity for predicting PSD were most 
heightened when the level was 1,660 ng/L (60, 61). MMP-9 is a crucial 
determinant of extracellular matrix degradation, which is involved in 
inflammatory response and neuronal plasticity, and it plays a role in 
the development of brain injury and depression. Elevated serum 
MMP-9 levels during the acute phase of ischemic stroke were found 
to be closely associated with the development of depression 3 months 
later (62). Hypersensitive C-reactive protein (Hs-CRP) is closely 
related to neurological injury in the acute phase of stroke. It can 
be used as a serum inflammatory indicator reflecting the intensity of 
inflammation in the body (63). Hs-CRP can be used as a diagnostic 
marker for depression, especially for male patients with depression 
(64). Some studies have found that elevated serum CRP levels on 
admission are associated with an increased risk of PSD (65). 
Homocysteine (Hcy) can be used as a biomarker of stroke, and along 
with abnormally elevated Hcy levels, methylation metabolism is 
blocked, and NE and 5-HT levels are reduced, thus leading to 
depression (66, 67). And it has been found that high levels of Hs-CRP 
and higher Hcy in ischemic stroke patients may also be associated 
with PSD (68, 69).

In addition to the well-recognized microglia, other inflammatory 
markers have attracted widespread attention. A meta-analysis 
examined whether neutrophil-tolymphocyte ratio (NLR) platelet-
lympho-cyte ratio (PLR) and monocyte-to-lymphocyte (MLR) were 
associated with depression and found that NLR levels were 
significantly higher in depressed patients than in healthy controls 
(70). Two hundred and ninety-nine consecutive ischemic stroke 
patients were enrolled and followed up for 1 month; 26.1% of patients 
were diagnosed with PSD at 1 month, and patients with PSD had 
significantly higher NLR levels on admission compared with 
non-PSD patients and normal controls, with an NLR ≥3.701 
independently associated with the development of PSD (71). A recent 
meta-analysis showed that higher inflammation ratios, especially 
NLR, were significantly associated with the risk of developing 
depression and that compared to non-PSD patients, PSD patients had 
a significantly higher NLR and MLR values were higher in PSD 
patients (72). Higher platelet count is a predictor of inflammation, 
and platelet activation and increased platelet counts play an important 
role in depression, as well as being one of the risk factors for the 
increased prevalence of cerebrovascular disease, and patients with 
major depression with psychotic features have a higher PLR than 
other patients (73). Elevated PLR on admission is an important and 
independent marker for predicting the development of PSD, and 
whether it changes over time remains to be thoroughly investigated 
(74). Sarejloo et al. (75) found that the NLR was higher in patients 
with PSD than in non-depressed patients with stroke, and the PLR 
was significantly higher in patients with PSD than in non-depressed 
patients with stroke.
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5. Neuroendocrine

The HPA axis is the neuroendocrine system that regulates mood; 
first, when the hypothalamus receives signals from the hippocampus 
or other tissues, the paraventricular nucleus of the hypothalamus 
releases corticotropin-releasing hormone (CRH), which induces 
adrenal cortical hormone (ACTH) and glucocorticoid (GCs).

Adrenocorticotropic Hormone (ACTH) stimulates the synthesis 
and secretion of GCs in the zona fasciculate by binding to its primary 
target. As downstream effectors of the HPA axis, GCs enter the 
circulation and readily cross the blood–brain barrier to regulate 
physiological changes via intracellular receptors throughout the body. 
Elevated cortisol concentrations in plasma, urine, and cerebrospinal 
fluid have been reported in depressed patients, accompanied by 
downregulation of peripheral 5-HT, hyperactivation of the HPA axis, 
and upregulation of ACTH (76, 77). Compounds with GC receptor 
antagonist activity and 5-HT1A receptor agonist activity may be better 
drugs for treating depression (78, 79). HPA dysfunction is present in 
40% of stroke patients, triggering depression, poor prognosis, and 
increased death are associated (80). Excess cortisol may also 
be associated with monoamine dysfunction, and in a recent clinical 
study, Reimold et al. investigated the correlation between cortisol 
response and thalamic 5-HT transporter levels using positron 
emission tomography and found that decreased levels of thalamic 
5-HT transporters were significantly correlated with elevated cortisol 
response (81).

6. Neurotrophic factor

Brain Derived Neurotrophic Factor (BDNF) has a variety of 
biological functions; through the activation of tropomyosin receptor 
kinase B (TrkB) receptor and p75NTR receptors, TrkB and p75NTR 
pathway activation lead to opposed effects, BDNF requires signaling 
through TrkB in neuronal growth and maturation. In contrast, the 
p75NTR pathway triggers apoptosis and inhibits synapse formation. 
Activation of the TrkB and p75NTR pathways leads to opposed effects, 
with BDNF required to signaling through TrkB in neuronal growth and 
maturation. In contrast, the p75NTR pathway triggers apoptosis and 
inhibits synapse formation, and BDNF is involved in the physiological 
and pathological processes of depression and ischemic stroke (82, 83). 
Yang et al. established a PSD model by oxygen–glucose deprivation and 
corticosterone treatment of neuronal cells. proBDNF protein levels 
were significantly elevated in the cortex and hippocampus of rats in the 
PSD group compared to the control group, suggesting that proBDNF 
plays a role in PSD pathophysiology (84). In addition, a PSD-like cell 
model was re-established by recombination of the p75 neurotrophin 
receptor (p75NTR) or silencing of the c-Jun amino-terminal kinase 
(JNK) to re-establish a PSD-like cell model and found that p75NTR 
and silencing of JNK (siJNK) inhibited PSD-induced proBDNF 
up-regulation and increased apoptosis (84). In the same cohort, higher 
BDNF methylation status and BDNF val66met polymorphism were 
independently associated with the prevalence of PSD (85).

Glial Cell Line-derived Neurotrophic Factor (GDNF) is widely 
distributed in the hypothalamus and other brain parts. The role of 
GDNF in the brain is essential in the survival, differentiation, and 
regeneration of neurons in the ischemic hemiparetic zone. GDNF can 
protect 5-HT and DA neurons from oxidative stress and 

neuroinflammatory damage and has neurotrophic effects on brain 
tissue (86). Lower levels of GDNF may be  involved in the 
pathophysiological processes of depression, and GDNF levels increase 
after antidepressant treatment (87). Some scholars have found that 
GDNF and mRNA are closely related to PSD, and GDNF can be used 
as a biomarker for the differential diagnosis of major depression and 
PSD (88). It further suggests that GDNF may act on neurotransmitters 
and thus participate in the development of PSD.

IGF-1 has received much attention for its influence on recovery 
after stroke (89). Ketamine, an n-methyl-d-aspartate receptor 
antagonist, exerts antidepressant effects, and ketamine also induces 
sustained massive release of IGF-1 in the prefrontal cortex of male 
mice (90). A clinical trial by Wei Zhang et al. suggested that low serum 
IGF-1 levels on admission may be involved in developing PSD (91). 
Recent studies suggest that carriers of the T allele at the rs9282715 
locus of the IGF-1R gene may be susceptible to PSD (92).

7. Pharmacological treatment of 
post-stroke depression

Antidepressant medicines can effectively improve patients’ nxiety, 
depression, and somatization symptoms, the first choice for PSD 
treatment. The principle of medication is to use the smallest effective 
dose possible to minimize the adverse effects and improve adherence 
to the treatment. In the early days, antidepressants such as TCAs, 
tetracyclines, and monoamine oxidase inhibitors were the mainstay, 
but these antidepressants had more side effects. SSRIs gradually 
replaced them with fewer adverse effects and better-tolerated drugs 
such as NaSSA.

7.1. SSRIs

SSRIs, a new class of antidepressant drugs used in clinical 
applications, began in the 1980s. SSRIs are mainly fluoxetine, 
paroxetine, sertraline, citalopram, and escitalopram, which can 
selectively inhibit the presynaptic membrane to the reuptake of 5-HT 
(93). Studies have demonstrated the efficacy, acceptability, and 
tolerability of antidepressant medication in patients with PSD (94). 
There have been small-sample controlled clinical studies showing that 
fluoxetine (95, 96) and citalopram (96) are effective in the treatment 
of PSD. Fluoxetine treatment promotes microglial apoptosis (97). 
Early use of SSRIs such as escitalopram may be a treatment for PSD 
(98, 99). Zhang et al. (100) retrieved Meta-analyzes up to December 
2021. They found that antidepressant co-adjuvant therapy may 
enhance the efficacy of antidepressant medications, with acupuncture 
combined with fluoxetine being more efficacious in treating PSD at 
week 4. In contrast, rTMS combined with paroxetine was more 
productive in treating PSD at week 8 and was more efficacious. It has 
been suggested that SSRI treatment may be  beneficial in stroke 
patients to prevent the development of PSD, but treating all stroke 
patients with SSRI has not proved effective so far. Large, prospective 
and long-term studies are needed to clarify the possible impact of 
SSRIs on emotions, cognitive functions, bone fractures and 
coagulation, as well to detect other possible still neglected side effects 
(101). Thus, assessing the central serotonergic tone in acute stroke 
patients through auditory evoked potentials may also help to predict 
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the responsiveness to the SSRI treatment and individuate the subgroup 
of PSD patients who may benefit from SSRI treatment (102–104).

7.2. NaSSA

The representative drug of NaSSA is mirtazapine, which increases 
the release of 5-HT by directly inhibiting the α2 receptors at the 
endings of 5-HT neurons and also stimulates the α2 receptors on the 
cytosolic bodies of 5-HT neurons by increasing the NE content to 
increase the release of 5-HT further. Li et  al. the eighth week of 
administration of the drug, Mirtazapine may be the best choice for 
treating PSD patients compared to other antidepressants (105). A 
study found that ischemic stroke patients who received 30 mg of 
mirtazapine or no antidepressant treatment starting on day 1 after 
stroke developed PSD in 40% of the untreated group. In contrast, PSD 
occurred in only 5.7% of the patients in the group treated with 
mirtazapine, with 16 patients experiencing PSD, of which 15 resolved 
after initiating mirtazapine treatment (106).

7.3. Anti-inflammatory drugs

Anti-inflammatory drugs can increase the concentration of 
monoaminergic neurotransmitters in the synaptic gap of the neurons 
involved in the brain in a short period. It has been found that the use of 
acetylsalicylic acid (ASA), nonsteroidal anti-inflammatory drugs 
(NSAIDs), or statins in stroke patients reduced the risk of early-onset 
depression, but a higher risk for late depression (107). Minocycline is 
widely recognized as a novel agent capable of inhibiting microglial 
activation (108), It also exerts anti-inflammatory properties (109). A 
systematic review revealed that minocycline increases the viability of 
neurons and decreases the infarct volume following cerebral ischemia, 
the mechanisms included anti-inflammatory, antioxidant, as well as anti-
apoptotic effects (110). Bassett et  al. (111) studies have found that 
minocycline reverses the pathogenic phagocytic potential of neurotoxic 
M1 microglia, and reduces the negative phenotypes associated with 
reduced neurogenesis caused by mice exposure to chronic mild stress 
(CMS) induced depressive-like behavior. Camargos et al. (112) used the 
clamping of the common carotid arteries bilaterally in C57BL/6 mice to 
prepare a cerebral ischemia–reperfusion injury model, and minocycline 
improved depression-like behavior in cerebral ischemia mice.

7.4. Vitamin D

Vitamin D is the only neurosteroid hormone that may regulate 
5-HT synthesis via tryptophan hydroxylase 2 (113). Vitamin D may 
affect the synthesis of neurotransmitters, such as serotonin and 
dopamine, and is also involved in changes in brain morphology (114, 
115). Pertile et al. (114) study continues to establish vitamin D as an 
important differentiation agent for developing dopamine neurons, and 
now for the first time shows chronic exposure to the active vitamin D 
hormone increases the capacity of developing neurons to release 
dopamine. According to previous research, vitamin D deficiency may 
be  a risk factor for depression (116, 117). A prospective study 
encompassed 58,646 healthy Japanese adults (23,099 men and 35,547 
women) aged of 40 to 79 years in whom dietary vitamin D intake was 
determined via a self-administered food frequency questionnaire. The 

median follow-up period was 19.3 years (1989–2009), and dietary 
vitamin D intake appeared to be negatively correlated with mortality 
from stroke (118). A Meta-analysis conducted by Zhou et al. (119) 
found that lower vitamin D levels were associated with an increased 
risk of ischemic stroke. Berghout et al. (120) conducted a prospective 
study measuring serum 25-hydroxyvitamin D concentrations in 9,680 
participants (56.8% female) aged ≥45 years from 1997 to 2008, and 
lower serum 25-hydroxyvitamin D concentrations were not associated 
with a higher risk of stroke. It was not associated with a higher risk of 
stroke, and only severe vitamin D deficiency was associated with 
incident stroke. Gu et al. found a higher prevalence of vitamin D 
deficiency and insufficiency in patients with acute stroke. Low serum 
vitamin D levels were associated with the development of PSD (121, 
122). Another study found that 55 (29.1%) patients with acute 
ischemic stroke were diagnosed with PSD at 1 month, and lower 
serum vitamin D within 24 h of admission was associated with PSD 
development and predicted PSD at 1 month (123). The stimulatory 
effects of vitamin D3 on the BDNF signaling pathway and 
neuroplasticity may play a role in the recovery of neurological 
function and the amelioration of PSD (124).

8. Summary

Multiple mechanisms are interrelated and interact in 
PSD. Monoamine neurotransmitters are the most important 
pathogenetic mechanism in PSD, and inflammatory cytokines and 
microglia can cause a decrease in 5-HT in the brain; altered ratios of 
monocytes, neutrophils, and lymphocytes can be used as a predictive 
biomarker for PSD, and there is a correlation between higher 
proinflammatory factors, NLRP3, TGF-β, Hs-CRP, Hcy with PSD, and 
the PSD interconnection between neurotrophic factor, neuroendocrine 
abnormalities, and The interconnections between stroke lesion sites 
and neurotransmitters involve multiple systems in the body thereby 
inducing PSD. Currently, PSD is mainly treated with SSRIs, NASSA, 
anti-inflammatory drugs, and medications such as vitamin D. In the 
future, many studies are needed to find more critical mechanisms for 
clinical reference, with the aim of early prediction of PSD and 
intervention to reduce the morbidity and mortality of PSD.
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