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Objective: This study compared 2 representative cases with ruptured 
aneurysms to explore the role of hemodynamic and morphological 
parameters in evaluating the rupture risk of intracranial aneurysms (IAs).

Methods: CTA and 3-dimensional rotational angiography (3DRA) of 3 IAs in 
2 patients were retrospectively analyzed in this study. Hemodynamics and 
morphological parameters were compared between a ruptured IA and an 
unruptured IA in case1, and between before and after aneurysm rupture in 
case 2.

Results: In case 1, the ruptured aneurysm had larger morphological 
parameters including size ratio (SR), aspect ratio (AR), aneurysm vessel angle 
(θF), Aneurysm inclination angle (θA), Undulation index (UI), Ellipticity index 
(EI), and Non-sphericity Index (NSI) than the unruptured aneurysm. And 
oscillatory shear index (OSI) is also larger. Higher rupture resemblance score 
(RRS) was shown in the ruptured aneurysm. In case 2, the aneurysm had 
one daughter sac after 2  years. Partial morphological and hemodynamic 
parameters including SR, AR, θF, θA, UI, EI, NSI, OSI, and relative residence time 
(RRT) increased, and normalized wall shear stress (NWSS) was significantly 
reduced. RRS increased during this period.

Conclusion: SR and OSI may have predictive values for the risk of intracranial 
aneurysm rupture. It is possible that WSS Changes before and after IA 
rupture, yet the influence of high or low WSS on growth and rupture of IA 
remains unclear. RRS is promising to be used in the clinical assessment of 
the rupture risk of IAs and to guide the formulation of treatment plans.
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1 Introduction

Although the incidence of intracranial aneurysms (IAs) is less than 10% of the total 
population, ruptured IAs are characterized by high morbidity and mortality (1–3). With 
the development of imaging technology, the detection rate of unruptured IAs is getting 
higher, especially for small aneurysms, which increases pressure to diagnosis and 
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treatment (4). On one hand, small IAs have a lower risk of rupture (5). 
But if they do rupture, it can cause significant harm and pose a risk to 
the patient’s life. On the other hand, surgical treatment for small IAs 
may result in potential complications, such as intraoperative and 
postoperative bleeding, vasospasm, cerebral infarction, and so on (6). 
Therefore, before formulating a treatment plan for an aneurysm, 
doctors must balance the rupture risk of the aneurysm and the risk of 
surgical complications (Figure 1).

At present, the treatment standard of IAs is still stratified 
according to the aneurysm size. For unruptured IAs, the clinical 
standard of surgical intervention is the aneurysm ≥7 mm in diameter 
(7). However, partial unruptured IAs less than 7 mm were found by 
imaging in clinic, and some of them still ruptured during the 
follow-up, causing a series of neurological damage and complications, 
even endangering the patient’s life (8, 9). In addition, although the risk 
of rupture of small IAs is currently low, our previous research (10) has 
shown that the proportion of ruptured small aneurysms is increasing 
every year. Therefore, the size of an aneurysm may be only one of the 
factors leading to its rupture, and the impact of hemodynamics cannot 
be ignored. When small aneurysms are detected, whether they will 
grow, change and rupture puzzles neurosurgeons and affects surgical 
decisions. Therefore, the size of aneurysm cannot completely guide 
clinicians to make surgical decisions on unruptured IA. Neurosurgeons 
need a more reliable evaluation method to guide the formulation of 
the treatment plan for unruptured small IAs.

The morphological and hemodynamic analysis of unruptured IAs 
provides great hope for the risk stratification of aneurysm rupture. The 
evaluation of the morphology and hemodynamics of IAs is mostly 
based on the establishment of the computational fluid dynamics 
(CFD) model of IAs, which aims to evaluate the morphological and 

hemodynamic factors of aneurysms that may cause growth, change 
and rupture of IAs (11, 12). In the past 10 years, CFD has been a 
potential research tool for studying many aspects of IAs, the most 
important of which is to analyze and study the growth and rupture 
mechanism of IAs and their relationship with vascular hemodynamics 
(12–16). Since this model is currently unable to fully simulate the 
actual situation of blood, it is still a long way from practical 
clinical applications.

Therefore, there are still many different arguments about clinical 
effectiveness and practicability of hemodynamics in assessing the risk 
of aneurysm rupture (17, 18). This study aims to verify the 
effectiveness of CFD by analyzing two ruptured aneurysms in 
follow-up observation.

2 Methods

2.1 Ethics approval and consent to 
participate

This study involving human participants were obtained consent 
from the patients and reviewed and approved by the Ethics Committee 
of the First Affiliated Hospital of Chongqing Medical University. The 
committee’s reference number: K2023-033.

2.2 Patient information

Case 1, an adult patient in 60 s, was admitted to the hospital due 
to bilateral posterior communicating artery aneurysm (PcoAA) found 

FIGURE 1

Schematic diagram of the morphological parameters of the aneurysm. Hmax, maximum aneurysm height; H, the vertical height of the aneurysm; Dmiddle, 
maximum cross-section diameter parallel to aneurysm neck plane; Dneck, diameter of the aneurysm neck plane; Dvessel, the diameter of the vessel of the 
parent artery; SR, size ratio; AR, aspect ratio; V, aneurysm volume; Vch, the volume of the convex hull of an aneurysm; S, the surface area of the 
aneurysm sac; Sch, the surface area the convex hull; θF, Aneurysm vessel angle; θA, Aneurysm inclination angle; UI, Undulation index; EI, Ellipticity index; 
NSI, non-sphericity index.
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by head and neck CTA examination during physical examination. The 
left aneurysm was about 5.3 * 6.6 mm in size, and the right aneurysm 
was about 7.6 * 7.5 mm in size. It is planned to improve the head 
whole-brain angiography. During hospitalization, the aneurysm 
ruptured with a subarachnoid hemorrhage. According to the head CT 
(Figure  2) of the patient when the aneurysm ruptured, the right 
PcoAA was considered to be the responsible aneurysm.

Case 2, an adult patient in 70 s. Head and neck CTA examination 
revealed a left PcoAA in 2019, about 3.0 * 5.0 mm in size. The patient 
chose conservative treatment. In 2021, the patient was admitted to the 
hospital due to a sudden explosive headache, and the head CT 
(Figure 2) showed subarachnoid hemorrhage. According to the CT 
results, the left PcoAA was judged to be the responsible aneurysm, 
with a size of 5.0 * 5.3 mm.

2.3 Acquisition of morphological and 
hemodynamic parameters

The calculation of the morphological and hemodynamic 
parameters of each aneurysm’ 3DRA is described according to the 
description of Xiang et  al. (19). Briefly, DICOM images were 
segmented in the region of interest, including aneurysm sac and 
adjacent parent vessels. Then eight morphological parameters (20, 
21) were measured and calculated using AneuFlowTM (ArteryFlow, 
Hangzhou) (22), including Hmax, SR, AR, θF, θA, EI, NSI, UI. As for 
CFD models, finite volume meshes with 0.5–1 million elements were 
imported into the CFD solver to calculate time-resolved 3D velocity 
and pressure fields. Three pulsatile cycles were simulated, and the last 
cycle being taken as output to ensure that numerical stability. WSS 
and streamlines profiles were time-average over the third pulsatile 
cycle of flow simulation. The average values of NWSS of aneurysm 
sac, OSI, and RRT were calculated based on previous research (19). 

We scored the rupture risk of IAs, including RRSM, RRSH, and RRSC 
according to the RRS predictive regression model established by 
Xiang et al. (23).

3 Results: case-by-case description

Morphological and hemodynamic analysis of the bilateral 
aneurysms of case 1 was conducted (Table 1). For morphological 
parameters, Hmax, H, Dmiddle, Dneck, volume, and surface area of the 
ruptured aneurysm were larger than those of the unruptured 
aneurysm, while the Dvessel was smaller. Therefore, the AR and SR of 
the ruptured aneurysm were larger than those of the unruptured 
aneurysm, and the SR of the ruptured aneurysm was 2.505, greater 
than the threshold value 1.75 reported previously (19). Both θF and θA 
of the ruptured aneurysm were larger, but not exceeding the threshold 
value (21). UI, NSI, and EI of the ruptured aneurysm were larger as 
well. In terms of hemodynamics, OSI of the ruptured aneurysm was 
larger, but NWSS and RRT of the unruptured aneurysm were larger 
(Figure 3). OSI had more significant difference. RRSM, RRSH, and 
RRSC of the ruptured aneurysm were all greater than 30%, while only 
the RRSH of the unruptured aneurysm was greater than 30%.

In case 2, a daughter sac in the aneurysm was appeared in 2021 
(Figure 4). Morphological and hemodynamic analysis was conducted 
on aneurysms for two stages (Table  2). As for morphological 
parameters, Hmax, H, Dmiddle, Dneck, volume, and surface area increased, 
while the diameter of parent artery decreased. Therefore, the AR and 
SR increased. Both θF and θA exceed the threshold value and UI, NSI, 
and EI increased in 2021. For hemodynamics, OSI and RRT increased, 
while NWSS was smaller. OSI was 0.0049 in 2019, which exceeded the 
threshold. RRSH and RRSC were greater than 30% in 2021, while 
RRSM was less than 30%. All three RRS values were less than 30% 
in 2019.

FIGURE 2

Head CT images of case 1 and case 2 with ruptured aneurysm and subarachnoid hemorrhage. 2.1: case 1; 2.2: case 2.
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4 Discussions

4.1 SR, AR, θF, θA, UI, EI, and NSI

At present, there have been many studies about the morphological 
changes of IAs after rupture (16, 24–27), and morphological 
parameters have also been enriched with the deepening of research. 

Based on previous research, the 3 IAs mentioned above were analyzed 
by AR, SR, θF, θA, UI, EI, NSI, and other morphological parameters.

Among the above analysis parameters, SR was previously 
considered most related to aneurysm rupture because it simultaneously 
focuses on the relationship between aneurysm size and the diameter 
of the parent artery. Kashiwazaki et al. (24) and Tremmel et al. (28) 
proposed that SR can highly predict the rupture state of small 
aneurysms (<5 mm). Our analysis shows that SR of the ruptured 
aneurysm was far greater than that of the unruptured aneurysm in 
Case 1. It even exceeds the threshold value of rupture risk. Besides, 
Dhar et al. (20) proposed that aneurysms are at risk of rupture when 
SR is greater than 2.05, by an analysis of SR of ruptured and 
unruptured aneurysms. This is similar to the analysis results of Case 
1. The uniqueness of this case is in the fact that it involves a pair of 
mirrored aneurysms. The CT findings and CTA results alone are 
insufficient to fully determine the responsible aneurysm for 
SHA. Nevertheless, the assessment of the SR value can aid in 
identifying the responsible aneurysm and formulating an optimal 
surgical treatment plan.

However, although the SR of the aneurysm in case 2 increased by 
about one time during 2 years, it did not exceed the threshold value of 
rupture risk after the rupture. But it is worth noting that SR changes 
significantly. According to these analysis results, we  are currently 
unsure of the accuracy and effectiveness of SR in predicting the risk 
of aneurysm rupture. Although no research currently focuses on the 
impact of the dynamic changes of SR on aneurysm rupture, we suggest 
that clinicians should be aware that an increasing trend of SR during 
follow-up may indicate that the aneurysm is developing 
toward rupture.

It seems inaccurate to assess the rupture risk of aneurysms only 
from SR of aneurysms. Some studies (29, 30) consider that AR is 
another parameter to predict the risk of aneurysm rupture. Weir et al. 
(29) shows that 88% of ruptured aneurysms had an AR > 1.6, while 
56% of unruptured aneurysms had an AR ≤ 1.6. However, all IAs’ AR 
did not exceed the threshold value in our study. Although our research 
results differ from previous studies because we analyzed only three 
aneurysms in two cases, our results cannot deny the predictive value 
of AR for the risk of IA rupture. Besides, Yin et al. (31) believe that 

TABLE 1 Morphological and hemodynamics parameters of the aneurysms 
in case 1.

Parameters
Position

Threshold
Left Right

Morphology 

parameters of 

aneurysms

Hmax (mm) 5.311 7.578 /

H (mm) 5.138 6.865 /

Dmiddle (mm) 6.649 9.143 /

Dneck (mm) 6.589 7.446 /

Dvessel (mm) 3.76 3.025 /

V (mm3) 140.293 333.099 /

S (mm2) 108.671 206.884 /

θF (deg) 111.71 132.38 >118.25

θA (deg) 82.4 89.36 >96.1

AR (H/Dneck) 0.78 0.922 >1.6

SR (Hmax/Dvessel) 1.413 2.505 >1.75

UI 0.017 0.044 >0.09

EI 0.044 0.097 >0.13

NSI 0.046 0.108 >0.16

Hemodynamic 

parameters of 

aneurysms

NWSS 0.504 0.549 <0.39

OSI 0.0073 0.0215 >0.0036

RRT 0.405 0.387 >2.7

Rupture 

Resemblance 

Scores

RRSM 14.99% 40.55% >30%

RRSH 37.58% 86.77% >30%

RRSC 21.50% 81.20% >30%

FIGURE 3

Hemodynamic results of bilateral posterior communicating aneurysms of case 1. The small image shows the aneurysm from the back view. 3.1–3.5: 
left aneurysm; 3.6–3.10: right aneurysm.

https://doi.org/10.3389/fneur.2023.1277278
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Zhu et al. 10.3389/fneur.2023.1277278

Frontiers in Neurology 05 frontiersin.org

there is a U-shaped correlation between AR and the risk of aneurysm 
rupture, with a negative correlation range of 1.08 < AR ≤ 1.99 and a 
positive correlation range of 3.42 < AR ≤ 4.08. Further research with a 
larger sample size is needed to validate the ability of AI to assess the 
risk of aneurysm rupture. AR does only predict the rupture risk of IAs 
from the shape of the aneurysm itself, ignoring the impact of the 
parent artery on the aneurysm rupture. Further research with a larger 

sample size is needed to validate the ability of AR to assess the risk of 
aneurysm rupture.

The positional relationship between the parent artery and the 
aneurysm can often be reflected by θF and θA. The growth direction 
and the thin-wall regions of an aneurysm can be inferred by θF and θA, 
which affect the changes of aneurysms, and assess the risk of aneurysm 
rupture. At present, there are not many analytical studies on θF and θA, 
and different studies on the correlation between aneurysm rupture 
and θF and θA have not maintained a consistent view (21, 32, 33). 
According to the analysis of this study, after the rupture of the 
aneurysm in case 2, θF and θA were greater than the threshold value of 
the rupture risk. While in case 1, the ruptured aneurysm’s θA was less 
than the threshold value of the rupture risk. Our results are different 
from those of Zheng et al. (33) and Dhar et al. (20). The research 
results of Bahagoglu et  al. (21) inclined that θF is an important 
indicator to judge the rupture risk of an aneurysm, which is more 
consistent with our research results. θF and θA, as morphological 
parameters, have been studied relatively few so far. Their effects on the 
growth pattern and the role on the rupture risk prediction of IAs 
remain controversial and have great potential research value.

As we all know, EI, UI, and NSI are commonly used to describe 
the shape characteristics of IAs. The previous studies (19, 34) have 
shown that ruptured aneurysms have characteristics of high UI, EI, 
and NSI. The analysis results of the 3 aneurysms in this paper were 
very consistent with previous studies. The UI, EI, and NSI of ruptured 
and unruptured aneurysms were significantly different. Particularly in 
case 2, the UI, EI, and NSI of the aneurysm were significantly 
increased, and the UI even exceeded the threshold value of the rupture 
risk. Therefore, it is reasonable to assume that UI, NSI, and EI have a 
high predictive value for the rupture risk of IAs.

4.2 WSS, OSI, and RRT

In the last 10 years, an increasing number of studies have 
recognized that hemodynamic changes in aneurysms are greatly 
related to the rupture of IAs, and studies based on CFD analysis of 
aneurysm hemodynamics are also very extensive (13, 19, 20, 35–44). 

FIGURE 4

Hemodynamic results of left posterior communicating aneurysms in two stages of case 2. The small image shows the aneurysm from the back view. 
4.1–4.5: in 2019; 4.6–4.10: in 2021.

TABLE 2 Morphological and hemodynamics parameters of the aneurysm 
in two stages in case 2.

Parameters
Time (year)

Threshold
2019 2021

Morphology 

parameters of 

aneurysms

Hmax (mm) 2.968 4.905 /

H (mm) 2.145 4.032 /

Dmiddle (mm) 4.944 5.194 /

Dneck (mm) 4.981 5.246 /

Dvessel (mm) 4.295 3.727 /

V (mm3) 27.768 48.090 /

S (mm2) 35.333 58.129 /

θF (deg) / 153.45 >118.25

θA (deg) / 125.42 >96.1

AR (H/Dneck) 0.431 0.769 >1.6

SR (Hmax/Dvessel) 0.691 1.316 >1.75

UI 0.018 0.131 >0.09

EI 0.001 0.094 >0.13

NSI 0.004 0.127 >0.16

Hemodynamic 

parameters of 

aneurysms

NWSS 0.958 0.487 <0.39

OSI 0.0049 0.0157 >0.0036

RRT 0.312 0.808 >2.7

Rupture 

Resemblance 

Scores

RRSM 6.73% 13.52% >30%

RRSH 7.60% 74.2% >30%

RRSC 3.99% 42.35% >30%

https://doi.org/10.3389/fneur.2023.1277278
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Zhu et al. 10.3389/fneur.2023.1277278

Frontiers in Neurology 06 frontiersin.org

WSS is one of the most studied hemodynamic parameters in recent 
years. But different studies hold different views on the specific role of 
WSS in predicting the rupture risk of IAs, so many scholars still doubt 
the effectiveness of WSS in predicting the rupture risk of IAs. There 
are two claims regarding the effect of WSS on aneurysm growth and 
rupture. (1) High WSS (35–37) is closely associated with aneurysm 
rupture because high WSS on the aneurysmal wall stimulates 
abnormal remodeling of endothelial cells, leading to aneurysm growth 
and ultimately aneurysm rupture. (2) Low WSS (13, 19, 37–41) is 
related with aneurysm rupture because low WSS on the aneurysm wall 
disrupts the aneurysmal rupture by provoking an inflammatory 
response that prompts endothelial cell degeneration. They speculated 
that high WSS and low WSS may, respectively, play different 
mechanisms in different stages of aneurysm initiation and progression. 
In order to make the comparison more referential, we use the NWSS 
value obtained by normalizing WSS via the parent artery. From the 
results of the aneurysm analysis of the two cases in this study, it can 
be  seen that the ruptured aneurysm of case 1 had slightly higher 
NWSS than the unruptured aneurysm before rupture. Unfortunately, 
we did not have the image of this case after the rupture to conduct 
hemodynamic analysis. However, in case 2, NWSS was significantly 
lower after the aneurysm rupture. It is evident that the rupture of the 
aneurysms in these two cases seems to be influenced by high and low 
NWWS, respectively. in our opinion, limited by case screening and 
image acquisition, investigators focusing more on the appearance of 
reduced WSS after aneurysm rupture, but ignoring the dynamic 
changes of WSS throughout the growth of aneurysms.

Other hemodynamic parameters, such as OSI and RRT, have been 
proposed based on WSS studies, and have received attention because 
of their predictive value of aneurysm rupture risk. OSI in particular, 
demonstrated by numerous studies (25, 42–45), has been identified as 
helpful in predicting the risk of aneurysm rupture. Lu et  al. (42) 
studied 9 pairs of mirrored aneurysms, and they suggested that the 
mean OSI in the ruptured group was 4 times that in the unruptured 
group. Their findings are very consistent with the results of aneurysm 
analysis in this study. Therefore, we believe that OSI may be effective 
and accurate in predicting the risk of aneurysm rupture. At present, 
the research on RRT is limited. Riccardello et  al. proposed that 
ruptured aneurysms have prolonged RRT compared with unruptured 
aneurysms (41). Lu et  al. also proposed that prolonged RRT is 
associated with intracranial vascular atherosclerosis and that 
structural remodeling of the vessel wall is one of the causes of ruptured 
aneurysms (14). The prolongation of RRT is mostly accompanied by 
low WSS and high OSI in aneurysms, which predicts a disturbed 
blood flow status and leads to a long residence of blood flow. Blood 
flow with such characteristic may trigger a series of inflammatory 
reactions responsible for a series of changes in endothelial cells. All of 
the above claims are currently at the hypothesis stage, and further 
research and exploration are still needed regarding the specific effect 
of RRT on the aneurysm.

4.3 RRS

A logistic regression model can be  developed based on the 
differences of morphologic and hemodynamic parameters including 
SR, WSS, and OSI between ruptured and unruptured IAs (46). The 
model has also been used to predict the rupture probability of 

unruptured aneurysms, thus measuring their similarity to ruptured 
aneurysms. This probability of rupture is also known as the RRS, 
which proposed by Xiang et al. (23). The three scoring modalities, 
RRSM, RRSH, and RRSC, were established based on different 
parameter combination. All three prediction models had high 
sensitivity and specificity, especially the RRSH had the highest 
sensitivity and specificity. Our results also well printed the conclusion 
of the study by Xiang et al. (23). Therefore, we believe that the rupture 
of IAs depends more on hemodynamic changes, which may also 
be one of the reasons why many IAs are small in size but still rupture 
in clinic practice. Although the RRSM is less sensitive than the RRSH, 
it still exhibits good predictive value for aneurysm rupture, which may 
contribute to the utilization of SR rather than size as a key factor. This 
also exemplifies the potential value of SR for rupture risk assessment 
of IAs. Therefore, it is an important issue for neurosurgeons to 
consider whether the guiding criteria of rupture risk assessment and 
surgical intervention of unruptured IAs should be  shifted from 
aneurysm size to more comprehensive morphological and 
hemodynamic analysis.

5 Limitations

There are also many shortcomings in our study. First, the number 
of cases in our study was small and not fully comprehensive. We were 
only able to verify whether there was consistent with previous findings 
based on the available results and to propose corresponding 
hypotheses. Second, this study only involved the morphological and 
hemodynamic analysis of posterior communicating artery aneurysms, 
and whether IAs in other locations also have corresponding 
characteristics cannot be  determined. Finally, our hemodynamic 
analysis model adopts some assumptions and cannot fully reflect the 
real situation, which might be one reason for the discrepancy between 
our analysis results with those of other investigators.

6 Conclusion

Based on the morphological and hemodynamic analysis of IAs, 
SR, and OSI may have predictive values for the risk of IA rupture. It is 
possible that WSS changes before and after IA rupture, yet the 
influence of high or low WSS on growth and rupture of IA remains 
unclear. Moreover, RRS is promising to be  used in the clinical 
assessment of the rupture risk of IAs and to guide the formulation of 
treatment plans.
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Glossary

Hmax Maximum aneurysm height. Maximum distance from the neck center to the sac surface of the aneurysm.

H The vertical height of the aneurysm. The maximum vertical distance from the neck plane to the top of the sac of the aneurysm.

Dmiddle Maximum cross-section diameter parallel to aneurysm neck plane.

Dneck Diameter of the aneurysm neck plane.

Dvessel The diameter of the vessel of the parent artery.

V Aneurysm volume.

Vch The volume of the convex hull of an aneurysm. The convex hull is the smallest convex body that completely surrounds the aneurysm.

S The surface area of the aneurysm sac.

Sch The surface area the convex hull. Aneurysm vessel angle (θF), angle between the centerline of the inlet of the parent artery and the 

maximum height of the aneurysm (inflow direction side). Aneurysm inclination angle (θA), the angle between the line of maximum 

height and the plane of the neck of the aneurysm (inflow direction side).

SR Size ratio (Hmax/Dvessel). The ratio of the maximum height of an aneurysm to the diameter of the parent artery.

AR Aspect ratio (H/Dneck). Ratio of maximum vertical height to aneurysm neck diameter.

UI Undulation index. UI = 1 − V/Vch. The difference between the volume of the aneurysmal bulge and the volume of the aneurysm divided 

by the volume of the aneurysmal bulge quantifies the concavity of the aneurysmal surface.

EI Ellipticity index. EI = 1 − (18π)1/3 Vch2/3 Sch. Quantifying the deviation of aneurysm convex hull shape from the perfect hemisphere.

NSI Non-sphericity Index. NSI = 1 − (18π)1/3 V2/3 S. Quantifying the degree of deviation of aneurysm shape from the perfect hemisphere.

WSS

Wall shear stress. Friction generated by the flow of blood along the aneurysm wall. WSS
T

wss dt
T

i= ∫
1

0

, (wssi is the instantaneous shear 

stress vector and T is the duration of the cycle).

NWSS Normalized wall shear stress.

OSI Oscillatory shear index. Dimensionless measurements of the alignment between instantaneous vectors of wall shear stress and time-

averaged vectors of wall shear stress were taken to quantify changes in the direction of wall shear stress during cardiac cycles. 

OSI
wss dt

wss dt

T
i

T
i

= −



















∫

∫

1

2
1

0

0

, (wssi is the instantaneous WSS vector and T is the duration of the cycle).

RRT

Relative residence time. Residence time of elements in the blood near the vessel wall. RRT OSI WSS
T

wss dtT
i

=
− ×( )×

=

∫

1

1 2

1

1

0

.

RRSM Rupture resemblance score based on morphological parameters of the aneurysm.

RRSH Rupture resemblance score based on hemodynamic parameters of the aneurysm.

RRSC Rupture resemblance score based on both morphological and hemodynamic parameters of the aneurysm.
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