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Myasthenia gravis is a prototypic neuroimmune disorder with autoantibodies 
targeting the acetylcholine receptor complex at the neuromuscular junction. 
Patients present with mainly ocular muscle weakness and tend to have a generalized 
muscle weakness later in the clinical course. The weakness can be severe and fatal 
when bulbar muscles are heavily involved. Acetylcholine receptor antibodies are 
present in the majority of patients and are of IgG1 and IgG3 subtypes which can 
activate the complement system. The complement involvement plays a major 
role in the neuromuscular junction damage and the supporting evidence in the 
literature is described in this article. Complement therapies were initially studied and 
approved for paroxysmal nocturnal hemoglobinuria and in the past decade, those 
have also been studied in myasthenia gravis. The currently available randomized 
control trial and real-world data on the efficacy and safety of the approved and 
investigational complement therapies are summarized in this review.
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1. Introduction

Myasthenia gravis (MG) is a neuroimmunological disorder where the autoantibodies target 
the nicotinic acetylcholine receptor (AChR) complex at the postsynaptic membrane of the 
neuromuscular junction (NMJ) of various skeletal muscles.

The incidence varies from 1.7–21.3 per million person-years for all myasthenia types and 
4.3 to 18 per million person-years for AChR MG and an estimated United Kingdom (UK) 
prevalence of 15 per 100,000 population (1, 2).

Clinical presentation arises from the fatigability of various skeletal muscles. At the onset, it 
is limited to extraocular muscles in about 85% of patients, giving rise to symptoms such as 
diplopia, blurred vision, and ptosis. The muscles involved will become generalized in about 80% 
of such patients, mainly within 2 years from onset (3). Neck, limb, bulbar, and respiratory 
muscles can be involved with various presentations such as head drop, dysarthria, dysphagia, 
dyspnoea, and limb weakness. About 40% of patients have severe muscle weakness involving 
the bulbar and respiratory muscles. One in five patients with severe muscle weakness require 
ventilator support with endotracheal intubation. With the lack of such ventilation assistance in 
the past, respiratory failure and pneumonia used to be the causes of almost 100% mortality in 
the earlier centuries. Despite the advances in ventilator support, mortality remains around 5% 
to 10% (3).

MG is a prototypic T-cell dependent B-cell mediated autoimmune disorder and anti-AChR 
antibody is elevated in 90% of patients with generalized MG and 50% with localized ocular MG 
(3). Muscle specific kinase (MuSK) antibody is found to be positive in about 70% of AChR 
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antibody-negative patients (4). In about 8% of double seronegative 
patients, low-density lipoprotein receptor-related protein 4 (LRP4) 
antibody is positive (5–7).

Among the different antibodies identified in myasthenia gravis, 
AChR antibody is of IgG1 and IgG3 subtype and can activate the 
complement system. In this article, we will only review AChR-MG 
with the focus on the role of the complement system in the 
pathogenesis and its therapeutic potential.

2. Role of complement in AChR-MG

2.1. Proposed pathogenic mechanisms of 
AChR antibody

AChR is of the larger ligand-gated ion channel gene superfamily 
and the best-known nicotinic AChR of the family. It is a 
transmembrane glycoprotein structure and composed of five 
homologous subunits α2βγδ as fetal AChR, and in the adult type, the 
γ subunit is replaced by the ε subunit.

The AChR is a very potent immunogen (8). The ability to induce 
experimental autoimmune MG in several animal models either 
actively by heterologous or homologous AChR or its parts or passively 
by polyclonal or monoclonal AChR antibodies has been shown in 
several studies (9, 10).

Over half of the autoantibodies were observed to bind to the α 
subunit of AChR, especially to the major immunogenic region (MIR) 
formed by overlapping epitopes in the Extracellular domain of the α 
subunit (α 67–76). Autoantibodies can bind all AChR subunits, 
including the γ subunit in fetal AChR. However, α subunit binding 
antibodies were found to be more pathogenic (8, 11, 12).

Three pathogenic mechanisms of AChR antibodies have been 
proposed in the literature and are schematically presented in Figure 1.

The first proposed mechanism is the direct AChR blockade, where 
anti-AChR binds to and directly inhibits AChR function. Various 
groups have explored this hypothesis using human, mice and rat cells, 
transfected cell lines and intact neuromuscular junctions however 
such studies failed to show a unanimous neurotransmission failure 
(13). At the physiological NMJ, AChRs are densely packed at around 
9,000 receptors per square micrometre (14) and perhaps the results 
may have been consistent if this had been taken into consideration. 
Cetin et al. (13) exploited this and demonstrated that by mimicking a 
physiological NMJ by clustering AChRs using rapsyn in CN21 cell 
line, AChR antibody sera from patients were able to rapidly and more 
potently block AChR currents than in the cell line with 
unclustered AChRs.

However, the magnitude of AChR antibody bound to AChR at the 
post-synaptic membrane was observed to be directly proportionate to 
the AChR index (residual AChR) and the mini-end plate potential in 
the muscle biopsies from myasthenic patients. This suggested that 
direct antibody blockade may not be the most important mechanism 
and the receptor depletion mechanisms may play a larger role for 
neurotransmission failure (15).

The AChR population at the post synaptic membrane is rather 
dynamic due to internalization and either recycling or degradation 
and replacement with new receptors (16). Engel at al demonstrated 
that this process was accelerated in EAMG rats compared with healthy 
control ones however this was also compensated by increased 

synthesis and release of AChR in mild or subclinical EAMG rats (15). 
Heinemann et al. (17) demonstrated similar findings in rat diaphragm 
using anti-AChR rat sera in rat diaphragm and Dranchman et al. (18) 
by patient-derived immunoglobulins in rat muscle cell cultures. This 
antigenic modulation by anti-AChR antibody seems to be mediated 
by its receptor cross-linking ability (19, 20).

In most severely affected EAMG mice, junctional folds were 
however destroyed and shedding of labelled AChR into the synaptic 
space was seen and Engel et al. inferred that this cannot by explained 
purely by an increased AChR internalization mechanism (15).

In the muscle biopsies of myasthenic patients, similar 
ultrastructural changes were also observed such as widening of 
primary synaptic clefts with significant debris of junctional folds in 
the synaptic clefts, simplification of junctional folds (by shallowing 
and widening or reduction in the number of secondary synaptic 
clefts), remodeling of the endplate and moving away of the nerve 
terminal from the destroyed endplate to an adjacent region where a 
new endplate region was formed (illustrated in Figure 1) (15, 21, 22). 
Such NMJ loss suggested complement involvement in the pathogenesis 
of myasthenia gravis.

2.2. Complement in myasthenia gravis

Complement system is part of innate immune response and 
central functions include inducing acute inflammation, killing 
microbes by opsonization for phagocytosis and osmotic/colloidal lysis 
and removing apoptotic host cells. It can help solubilize or remove 
antigen-antibody complexes from circulation. It is also involved in 
adaptive immune response by helping regulate T and B cell activation 
(23–25).

It is an integrated system of nearly 50 proteins present abundantly 
in blood but not in normal extravascular tissues. Complement is 
activated on cell surfaces of mainly microbes and damaged host cells 
and autoimmunity is suppressed by complement regulators present at 
the intact cell surfaces (see below for a further review in relation to 
MG pathogenesis). It operates in a cascade via a series of proteolytic 
cleavages after activation. IgM and IgG are major immunoglobulins 
that can activate the complement cascade via the classical pathway. 
IgG can diffuse into normal extravascular tissues. In contrast IgM can 
only enter those with increased vascular permeability induced by 
tissue inflammation.

There are three pathways to activate the complement cascade 
however only the classical pathway is the most relevant in this review, 
and it will be described.

2.2.1. The classical pathway
Multivalent C1q can either be activated by direct binding to 

microbes or by antigen antibody complexes and subsequent 
enzymatically active C1r and C1s are generated. C1s cleaves C4 to 
C4a and C4b. C1r, C1s and C4b in combination cleaves C2 to C2a 
and C2b. C4b2a complex (C3 convertase) cleaves C3 to C3a and 
C3b. C3C4b2a3b forms C5 convertase and initiates terminal 
complement pathway by cleaving C5 into C5a and C5b. C3a, C4a 
and 5a are anaphylatoxins, which are proinflammatory and 
responsible for increased vascular permeability, smooth muscle 
contraction and leucocyte recruitment. C5b subsequently exposes 
a binding site for C6 and C5bC6 reversibly binds to the cell surface 
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and forms the foundation for membrane attack complex (MAC). 
C7 binds to C5bC6 to form C5bC6C7, which subsequently induces 

transmembrane insertion of C8α and C8β, forming unstable pores. 
C9 binds to C8α and attracts polymerization of multiple C9 

FIGURE 1

Pathogenic mechanisms of AChR antibody in myasthenia gravis: (1) direct AChR blockade, (2) antigenic modulation and increased AChR internalization, 
and (3) complement activation leading to complement mediated NMJ destruction (widening of primary synaptic cleft (space between motor nerve 
terminal and muscle end plate), destruction of junctional folds with simplification of secondary clefts (fewer and wider clefts), increased AChR, AChR 
IgG and complement bound junctional fold debris in the primary synaptic cleft) and remodeling of nearby motor end plate region (motor nerve 
terminal moving away from the damaged muscle end plate area with formation of a new end plate in a nearby region). Image created with the help of 
©BioRender.com.
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molecules to stabilize the pores with a maximum diameter of 
10 nm. This C5bC6C7C8C9 forms MAC, which lyses the cell via 
several mechanisms (25). The classical pathway is illustrated in 
Figure  2 alongside the approved and investigational 
therapeutic targets.

2.2.2. Telltale of NMJ destruction by the 
complement system

The possibility of the complement system involvement in the 
pathogenesis of myasthenia was first considered in 1960s when sera 
from myasthenic patients were able to cause cytolytic destruction of 
frog sartorius muscle fibers correlating with serum complement levels 
outside a normal range in most patients (26).

Studies have demonstrated that antibodies binding AChR leads to 
complement deposition at the NMJ (27, 28). In the muscle biopsies of 
patients with myasthenia, IgG and C3 deposition were localized at the 
identical sites such as the post-synaptic membrane, synaptic cleft 
debris and on disintegrating junctional folds suggesting that the 
complement pathway had been activated by anti-AChR and it had 
been completed to C3 phase (15). C9 is one of the major components 
in assembling the final and stable membrane attack complex, which is 
responsible for destruction of neuromuscular junction in case of 
myasthenia gravis. As definitive evidence of destruction of NMJ by the 
complement system, Engel et al. (15) demonstrated that deposition of 
C9 was seen at the MG end plate regions however the most intense 
depositions were observed in association with the most abnormal 
looking and destroyed neuromuscular junctions. Such findings were 
also reflected in EAMG models (29).

In myasthenic patients with high AChR antibody concentrations, 
the evidence of consumption of complement was also observed and 
C3 levels were inversely correlated with clinical severity in AChR-MG 
patients (30, 31). The electrophysiological tests often correlate with in 
vitro serum complement-fixing ability of clustered AChR ab (32).

The essential role that the complement plays in the pathogenesis 
of AChR-MG was also supported by prevention of murine EAMG 
either by depleting the complement with cobra venom factor or by 
knocking out C3, C4, C5 or C6 (33–36). In all of these studies, despite 
visualization of antibodies attached to AChR at NMJ, neither 
complement deposition nor NMJ destruction were observed.

2.2.3. How anti-AChR IgG could trigger 
complement cascade

In the classical pathway, IgM, a natural pentamer in blood, when 
bound to an antigen, can strongly active the complement cascade. 
However, it is not relevant to AChR-MG as the most specific antibody 
is IgG. Unlike the pentameric IgM, IgGs in oligomers, can bind C1q 
with a sufficient avidity to activate the complement system (37, 38). 
Among IgG subclasses, IgG 1 and 3 are known to be the strongest 
complement activators.

Six IgG monomers can form a hexamer via Fc:Fc interactions and 
are able to bind and activate C1q and subsequently the downstream 
complete cascade (39–41). For lateral recruitment model on a sparsely 
antigenic surface, IgG must be  monovalent to be  able to form 
hexamers as bivalent binding seems to suppress oligomerization by 
lateral collision, however with vertical recruitment from the solution, 
IgGs can be bivalent (41). For high density antigenic expression like 

FIGURE 2

Classical complement pathway in myasthenia gravis and the approved and investigational therapeutic targets in the complement system Image 
created with the help of ©BioRender.com.
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nicotinic NMJ AChRs, the former model is not important (41). This 
has been illustrated in a few studies but not in myasthenia. Such Fc:Fc 
interactions can be  modified by Fc mutations or Fc domain 
deglycosylation (39, 40).

AChR antibodies are of bivalent IgG1 and 3 subtype and can 
cross-link the receptors with antibodies against the major 
immunogenic region being the most potent (11). It can be deducted 
that densely populated AChRs with an estimated distance of a mere 
10 nm between them favour a very close clustering of Anti-AChR 
monomers, formation of hexamers via the vertical pathway mentioned 
above and thereby a multivalent binding of C1q multivalent head. 
However, the direct visualizable evidence of how the complement 
cascade is triggered by AChR IgGs in AChR-MG is yet to 
be investigated.

2.2.4. Complement regulators
Complement regulators are present at host cell surfaces to prevent 

autologous destruction by the complement system (42). Decay 
accelerating factor 1 (DAF1) or CD55 inhibits C3 and C5 convertases 
and accelerates their decay (43). Membrane cofactor protein (CD46) 
is a cofactor of cleavage of C3b and C4b, which form C3/4 convertases 
(44). Complement receptor 1 accelerates the decay of C3/5 convertases 
and degradation of C3b/4b (45). Membrane attack complex inhibitory 
protein (MAC-IP) or CD59 inhibits the formation of membrane 
attack complex (46, 47).

Mice that are deficient in DAF1 alone or both DAF1 and CD59 
were observed to be  much susceptible to EAMG with significant 
receptor loss, muscle weakness and NMJ damage, with the double 
knockout mice showing a significantly worse EAMG even leading to 
crisis (48, 49).

Complement regulator activities (mRNA and protein expression) 
were observed to be  lower at extraocular muscles (EOM) than 
diaphragm at baseline or after EAMG induction in mice. This supports 
increased predilection of EOM involvement in AChR-MG 
patients (50).

2.2.5. Complement system as therapeutic targets

2.2.5.1. High dose intravenous immunoglobulin
Among the established immunomodulatory therapies for MG, 

intravenous immunoglobulin (IVIg) appears to inhibit the 
complement system by neutralization of C3a and C5a and at high 
concentrations, by inhibiting the uptake of C3b and C5b onto the cell 
surface and subsequent complement mediated tissue damage (51, 52).

2.2.5.2. FDA approved anti-C5 therapies

2.2.5.2.1. Eculizumab
Eculizumab is a recombinant humanized monoclonal antibody 

against C5. It binds to C5 and prevents its breakdown to C5a and C5b, 
thereby reducing inflammatory cells recruitment and membrane 
attack complex formation. United  States Food and Drug 
Administration (U.S. FDA) first approved its use in paroxysmal 
nocturnal hemoglobinuria (PNH) in 2007 and atypical haemolytic 
uremic syndrome (aHUS) in 2011, where uncontrolled complement 
activation is largely responsible for the pathogeneses.

It was then studied in 2 neurological conditions such as 
myasthenia gravis and aquaporin-4 (Aqp-4) antibody positive 

neuromyelitis optica spectrum disorder (NMOSD), where 
complement involvement is seen but less well-delineated. Phase 3 
randomized controlled trial (RCT) data for Aqp-4-positive NMOSD 
(PREVENT, prevention of relapses in neuromyelitis optica; 
NCT01892345) showed a remarkable 94% relative risk reduction of 
relapses (53) however the benefits were less clear in the RCT 
data for MG.

It is the first complement therapy investigated in MG. Fourteen 
patients with severe refractory generalized MG (gMG) were 
studied for 16 weeks with a crossover in a phase 2 randomized, 
double blind placebo-controlled trial. A clinically meaningful 
response was produced with 86% achieving primary end point of 
three-point reduction in QMG score and a significant overall QMG 
score reduction between treatment and placebo group 
(p = 0.0144) (54).

Encouraging results from phase 2 RCT led to a multinational, 
randomized, placebo-controlled, double-blind phase 3 study 
(REGAIN, safety and efficacy of eculizumab in AChR positive 
refractory generalized myasthenia gravis; NCT01997229) in a similar 
population as the phase 2 study (55). One hundred twenty-five AChR-
antibody positive refractory severe generalized MG patients from 
North America, Latin America, Europe and Asia were enrolled into 
the study. Eligibility criteria were myasthenia gravis-activities of daily 
living (MG-ADL) score of 6 or more, myasthenia gravis foundation of 
America (MGFA) class II–IV disease, vaccination against Neisseria 
meningitides, and previous treatment with at least two 
immunosuppressive therapies (IST) or one immunosuppressive 
therapy and chronic IVIg or plasma exchange (PLEX) for 12 months 
without symptom control. Exclusion criteria were history of thymoma 
or thymic neoplasms, thymectomy within 12 months before screening, 
or use of IVIg or PLEX within 4 weeks before randomization, or 
rituximab within 6 months before screening. Patients had either 
intravenous (IV) eculizumab or placebo 900 mg on day 1, weeks 1, 2 
and 3 and 1,200 mg in week 4 for induction phase, and thereafter 
maintenance dose of 1,200 mg every 2 weeks up to 26 weeks.

Primary endpoint was the change in MG-ADL score from baseline 
to week 26 using worst-rank ANCOVA (analysis of covariance) and 
REGAIN failed to reach a statistical significance (p = 0.0698). It was 
likely attributed by the use of worst-rank analysis that assigned 
patients who discontinued eculizumab regardless of the reason to the 
lowest ranks. Three out of seven patients who discontinued 
eculizumab due to adverse events rather than worsening of myasthenia 
were given the lowest ranks despite a clinically meaningful benefit. 
However, pre-specified secondary efficacy endpoints showed 
statistically significant benefits. The changes in quantitative 
myasthenia gravis (QMG) and myasthenia gravis quality of life 
15-item scale (MGQoL-15) scores using worst-rank ANCOVA from 
the baseline met statistical significances at p = 0.0129 and p = 0.0281 
but the changes in myasthenia gravis composite (MGC) scores did 
not. Prespecified responder analyses of MG-ADL and QMG showed 
that eculizumab group had a higher proportion of patients with a 
clinically meaningful improvement than the placebo group. In 
prespecified sensitivity analysis of all 4 scores (MG-ADL, QMG, 
MGQoL-15 and MGC), treatment group had significantly lower 
scores than the placebo group, which were sustained throughout from 
week 1 to 26. Hence the authors inferred that the use of derived rank 
rather than the actual change in the scores affected the primary end 
point outcome negatively and all the evidence from both primary and 

https://doi.org/10.3389/fneur.2023.1277596
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


San and Jacob 10.3389/fneur.2023.1277596

Frontiers in Neurology 06 frontiersin.org

secondary endpoint analyses should be  considered in the 
interpretation of REGAIN trial outcome (55).

The commonest adverse events identified were headache, upper 
respiratory infection and nasopharyngitis which were of mild to 
moderate severity. The commonest serious adverse events were 
infections. There were no statistically significant differences between 
the treatment and placebo groups in terms of the adverse events. 
Complement system plays a major role in killing Neisseria meningitidis 
and hence meningococcemia is one serious risk considered with 
eculizumab, although no patients in REGAIN developed 
Meningococcal infection. Fewer patients in the eculizumab group 
experienced exacerbations and needed rescue therapy (55).

One hundred seventeen patients from the double-blind phase of 
REGAIN 56 from the blinded eculizumab group (eculizumab/
eculizumab) and 61 from the blinded placebo group (placebo/
eculizumab) were enrolled into the open label extension (OLE) phase 
for a maximum of 4 years. After a blinded induction phase (active 
drug provided as 1,200 mg every 2 weeks for previous eculizumab 
group and 900 mg on day 1 and weekly for 3 weeks for the previous 
placebo group), all patients were administered 1,200 mg every 2 weeks. 
Compared with the pre-REGAIN baseline, overall myasthenic 
exacerbations were reduced by 75.2% and the rate of MG related 
hospitalizations by over 80%. In the eculizumab/eculizumab group, 
the improvement in all 4 scores were sustained throughout the OLE. A 
rapid and significant improvement in all 4 scores was also observed in 
the placebo/eculizumab group from REGAIN: over 50% of 
improvement was seen in the first 3 months and the improvements 
were sustained for 30 months (56).

The safety profile from REGAIN OLE also matched with the 
current safety profile for generalized MG and post marketing safety 
profile of eculizumab in PNH and aHUS (56).

A retrospective analysis by Howard et  al. (57) looked at the 
responder subgroup from RCT and OLE phases of REGAIN. Early 
and late responders were defined by clinically meaningful 
improvements in MG-ADL reduction by ≥3 points from the baseline 
or QMG reduction by ≥5 points from the baseline before week 12 or 
after week 12. 67.3% and 56.1% from eculizumab group of RCT phase 
were identified as early responders by MG-ADL and QMG 
improvements, respectively, but with longer duration of the treatment, 
more responders were increasingly identified. The response to 
eculizumab treatment was sustained until the end of the OLE as 
indicated by 84.7% and 71.4% responder proportion in MG-ADL 
and QMG.

Another post-hoc analysis of REGAIN looked at the proportion 
of patients who attained minimal symptom expression (MSE) as 
defined by MG-ADL scores 0–1 or MGQoL-15 scores 0–3. A 
significantly higher number of patients in the eculizumab group 
achieved MSE at week 26 of REGAIN than in the placebo group 
[MG-ADL: 21.4% vs. 1.7%; 95% confidence interval (CI) 8.5, 31.0; 
p = 0.0007; MGQoL-15: 16.1% vs. 1.7%; 95% CI 4.3, 24.6; p = 0.0069] 
(58). At week 130 of OLE phase, the proportion of patients with MSE 
in placebo/eculizumab group significantly increased (MG-ADL: 1.7 
to 27.8%; MG-QoL15: 1.7 to 19.4%) and in eculizumab/eculizumab 
group, MSE was maintained at similar proportions to the RCT 
phase (58).

The response of immunosuppressive therapies in myasthenic 
patients are assessed with MGFA post intervention status (MGFA-PIS) 
and the consensus therapeutic efficacy goal is aimed at MGFA-PIS 

minimal manifestations (MM), which is defined as having no 
symptoms of functional limitations but with some weakness on 
examination or better. At week 26 of REGAIN RCT phase, a higher 
proportion of eculizumab group achieved better MGFA-PIS than the 
placebo group [improved (60.7% vs. 41.7%) or MM (25.0% vs. 13.3%); 
common OR: 2.3; 95% CI: 1.1–4.5]. In the OLE at week 130, 88% 
achieved improved status and 57.3%, MM status (59).

A small number of patients needed regular IVIg use for at least 
12 months (17 patients) or rituximab (14 patients) prior to REGAIN 
and constituted the extreme spectrum of refractory MG, not dissimilar 
to real-world clinical practice (60, 61). A sufficient washout period of 
at least 4 weeks for IVIg and 6 months for rituximab was given before 
enrollment into REGAIN, to minimize bias.

IVIg subgroup had a higher exacerbation rate at pre-REGAIN 
baseline than the overall REGAIN cohort (150.0 versus 102.4 
exacerbations/100 patient-years). At week 26 of REAGIN RCT phase, 
eculizumab treated group attained a clinically meaningful response 
(reduction of MG-ADL scores ≥3 points and QMG scores ≥5 points) 
in 75% compared with only one-fifth (in terms of QMG) to one-third 
(in terms of MG-ADL) improvement in the placebo group. Such 
improvements were also sustained in eculizumab/eculizumab group 
at 71% at the interim analysis at week 52 during OLE phase. Placebo/
eculizumab group showed a rapid and sustained improvement at OLE 
phase. Compared with pre-REGAIN baseline, at 18 months, overall 
hospitalization rate was reduced by 68% however it was not statistically 
significant due to a small sample size of this subgroup. This data 
supported durable benefits of eculizumab in this sub-cohort (60).

In the rituximab subgroup in REGAIN, a significantly higher 
proportion had an exposure to ≥4 ISTs, which could reflect a super-
refractory nature of this sub-cohort with the possibility of an increased 
cumulative risk from several ISTs. However, the safety profile and the 
efficacy of eculizumab use in this subgroup were comparable to the 
non-rituximab group (61).

A rapid and significant clinical improvement with the use of 
eculizumab was also reported in a case series of ventilator-dependent 
AChR-MG patients, who had been refractory to 3 or 4 
immunotherapies. Two patients achieved MGFA-PIS MM within 4 to 
6 weeks from the initiation of eculizumab with a sustained 
improvement. The third patient had a slow and partial but sustained 
improvement, and he was able to remain on intermittent non-invasive 
ventilation at week 40 of eculizumab therapy (62). Severe bulbar 
weakness in a refractory myasthenic crisis rapidly improved as early 
as 1 week with a complete resolution of bulbar symptoms within 
10 weeks of eculizumab initiation (63).

The benefits and tolerability of eculizumab from REGAIN was 
also reflected in the evidence from real-world studies (64, 65). Fifteen 
treatment-refractory AChR-MG patients treated with eculizumab in 
a real-world study showed that a clinically meaningful reduction of 
mean MG-ADL score was seen as early as 3 months with further 
reduction at 6 and 12 months. Mean exacerbations per patient per year 
was reduced by 2.33 from the baseline. Burden from concomitant use 
of ISTs was also reduced with use of eculizumab: mean prednisolone 
dose was reduced by 23.33 mg/day and all 6 patients on IVIg were able 
to wean off from IVIg successfully. Nine out of fifteen patients also 
discontinued pyridostigmine at 12 months of eculizumab therapy (65).

Rituximab is a monoclonal anti-CD20 B-cell depletion therapy, 
and it is considered in a multi-IST refractory AChR-MG in a case-
by-case basis as the response rates were not as consistent as in 
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anti-MuSK MG. Nelke et al. (65) compared the responses in 57 MG 
patients treated with rituximab with those in 20 with eculizumab in 
a real-world retrospective 24 months observational study. A better 
treatment outcome was associated with eculizumab than with 
rituximab in terms of QMG score reduction from the baseline and 
MGFA-PIS MM state were more frequently achieved by the 
eculizumab cohort, although the risk of myasthenic crisis did not 
differ in both groups.

Successful uses of eculizumab in seronegative, paediatric and 
thymoma associated MG patients have also been reported (66–69).

REGAIN (RCT, OLE and various post-hoc subgroup analyses), 
real-world data and case reports mentioned above have consistently 
shown the rapid and sustained clinical improvement by eculizumab 
but its role as a first-line agent and duration of therapy are yet to 
be investigated with further studies. Eculizumab is currently approved 
for use in generalized AChR-MG (USA, 2017), refractory AChR-MG 
(EU) and AChR-MG unresponsive to IVIg/PLEX (Japan). Currently, 
it remains one of the most expensive medicines in the world and an 
estimated annual cost of over half a million U.S. dollars has thus been 
a major hindrance for a wider use (70).

2.2.5.2.2. Ravulizumab
Ravulizumab is another recombinant human monoclonal 

antibody against C5 with a similar mechanism of action to eculizumab 
but with a longer half-life hence intravenous infusion are less frequent 
for maintenance (8 weekly as opposed to 2 weekly for eculizumab).

In phase 3 CHAMPION-MG randomized, placebo-controlled 
study (NCT03920293), 175 patients with AChR antibody positive 
gMG were randomly assigned 1:1 to receive ravulizumab versus 
placebo. A single loading dose on day one was administered at weight-
dependent dosage of 2,400 mg for ≥40 to <60 kg, 2,700 mg for ≥60 to 
<100 kg and 3,000 mg for ≥100 kg, followed by maintenance doses of 
3,000 mg, 3,300 mg and 3,600 mg respectively, every 8 weeks starting 
from day 15. The primary endpoint of significant mean change in 
MG-ADL in treatment vs. placebo groups was achieved (−3.1 vs. −1.4; 
p < 0.001) (71). A significantly higher proportion in the treatment 
group than in the placebo group was observed to attain a clinically 
meaningful response as defined by reduction of QMG scores by ≥5 
points (30.0% vs. 11.3%, p = 0.005) (71). A rapid improvement was 
seen within 1 week of treatment initiation in ravulizumab group (71). 
Adverse events rates were comparable between the two groups. The 
open label extension phase of this study up to 60 weeks showed a 
sustained improvement (72). U.S. FDA approved Ravulizumab for use 
in MG in April 2022.

2.2.5.3. Other anti-C5 therapies, which have just finished 
phase 3 clinical trial or on ongoing phase 3 trial

2.2.5.3.1. Zilucoplan
Zilucoplan, a subcutaneously (SC) administered small macrocyclic 

peptide is another terminal complement inhibitor acting via two 
mechanisms. Its binding to C5 prevents its cleavage and the binding 
to the existing C5b prevents C5b’s attachment to C6. The advantages 
of zilucoplan are (1) patients can self-administer and thus it can 
be more convenient, (2) a good NMJ penetration is more likely due to 
its small size and (3) as it is not an antibody like eculizumab or 
ravulizumab, it can be co-administered either with IVIg or neonatal 
Fc receptor (FcRN) inhibitors (73).

Safety and efficacy of zilucoplan in patients with generalized 
myasthenia gravis (RAISE; NCT04115293) is a multinational 
randomized placebo-controlled phase 3 trial. One hundred seventy-
four patients with anti-AChR positive gMG were assigned 1:1 to 
treatment and placebo groups and participants self-administered 
either zilucoplan 0.3 mg/kg or matched placebo once daily for 
12 weeks. Primary efficacy endpoint was met with a significant 
improvement in the change of MG-ADL scores from the baseline to 
week 12 in zilucoplan group compared with the placebo group [least 
squares mean change −4·39 (95% CI −5·28 to −3·50) vs. −2·30 (−3·17 
to −1·43); least squares mean difference −2·09 (−3·24 to −0·95); 
p = 0·0004] (74). Treatment emergent adverse events (TEAEs) were 
comparable in both groups and the commonest TEAE was injection 
site bruising (74). An OLE phase is currently ongoing.

2.2.5.3.2. Pozelimab and/or cemdisiran
Pozelimab is a fully humanized IgG4 monoclonal antibody 

targeting C5 and cemdisiran is a small interfering ribonucleic acid 
(siRNA) which interferes with mRNA for C5 and decreases its hepatic 
synthesis and hence the circulating level of C5. With a loading dose of 
15 mg/kg IV followed by four SC doses of 400 mg once weekly, 
pozelimab was able to inhibit complement activation in healthy 
volunteers (75). Co-administration of pozelimab with cemdisiran 
allowed lower and less frequent doses as compared to individual 
agents given separately in animal studies (76). A phase 3 randomized 
controlled trial of the combination (intravenous pozelimab loading 
followed by 4 weekly subcutaneous injections along with cemdisiran 
subcutaneous 4 weekly) versus placebo in generalized MG is ongoing 
(NCT05070858).

2.2.5.4. Future investigational complement inhibition 
therapies

Currently, several newer therapies are being investigated at 
different phases of clinical trials for MG and other complement 
mediated disorders. These include ANX005 (anti-C1q), sutimlimab 
(anti-C1s), cinryze, berinert and ruconest (C1-esterase inhibitors), 
compstatins (a group of cyclic peptides, which bind and interfere with 
the function of C3), tesidolumab, crovalimab, zimura, gefurulimab 
and nomacopan (all target C5), SKY59 (anti-C5 as well as FcRn 
inhibitor), avacopan (anti-C5aR1) and danicopan (anti-factor D) (77, 
78). Avacopan and danicopan are orally administered. A summary of 
the main complement therapies in MG is given in Table 1.

2.2.6. Safety of complement therapies
Eculizumab is the first U.S. FDA approved complement therapy 

for its use in PNH since 2007 and has been in the market for the 
longest duration among all complement therapies. It is generally well 
tolerated with the commonest side effects being headache, upper 
respiratory tract infections and nasopharyngitis. Membrane Attack 
Complex is primarily responsible for killing gram negative bacteria 
especially Neisseria species and the use of eculizumab is associated 
with 1,000 to 2,000 times increased risk of meningococcal disease 
(79). Thus U.S. FDA approved prescribing information includes a 
boxed warning with regards to an increased risk of meningococcal 
infection in patients on eculizumab (79). Meningococcal vaccinations 
are recommended at least 2 weeks before eculizumab is initiated. The 
Advisory Committee on Immunization Practices (ACIP) recommends 
that eculizumab recipients receive both quadrivalent meningococcal 
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conjugate (MenACWY) and serogroup B (MenB) meningococcal 
vaccines (80). Despite prior meningococcal vaccination, there have 
been reports of invasive and even fatal meningococcal diseases in 
patients on eculizumab therapy (81–83). Thus anti-microbial 
prophylaxis is also recommended by clinicians and public health 
agencies while the patient is on eculizumab therapy and for 3 months 
after discontinuation (81). However, neither vaccination nor anti-
microbial prophylaxis cannot eliminate the risk of severe 
meningococcal infections and in addition, patients may not show 
typical meningitis features. Thus, it is essential that health care 
providers and patients have a high index of suspicion for 
meningococcal infection. Fluoroquinolones and macrolides can block 
neuromuscular transmission and clinicians should avoid them to 
minimize the risk of myasthenic exacerbations.

Data on less than 300 pregnancy outcomes showed no increased 
risk of foetal malformation or foetal-neonatal toxicity. However, as a 
human IgG, it may cross the placenta and appear in foetal circulation. 
The level of eculizumab in the breast milk is undetectable or negligible. 
However, due to the limited data, European medicines agency 
recommended an individual risk benefit analysis before eculizumab 
is used during pregnancy or lactation (84). If complement therapy is 
used in children in the future, ACIP guidelines recommended 
additional vaccinations against Streptococcus pneumoniae and 

Haemophilus infleunzae type B (84). Clinically significant neutralizing 
antibodies have not been reported so far.

2.2.7. Prediction of complement therapy 
responders

Unlike some conditions, validated biomarkers are currently 
unavailable for myasthenia gravis to assess the disease severity. Nature 
of the disease makes it difficult to develop such markers for 
myasthenia. Some investigational assays are also being developed to 
assess anti-AChR mediated complement activation. Obaid et al. (85) 
developed an assay where an HEK293T cell line with modified 
expression of the complement regulator genes was used to measure 
AChR autoantibody-mediated MAC formation through flow 
cytometry. Although it was rather specific, the sensitivity was not 
strong enough with 59.7% detection of MAC (83 out of 139 anti-
AChR positive patients) and mean fluorescence intensity of MAC and 
clinical severity also showed a modest positive association (85). Using 
humanized mouse anti-AChR antibody, mouse diaphragm and 
normal human serum, Plomp et al. (86) were able to visualize anti-
AChR driven NMJ-restricted complement damage, complement 
deposition at NMJ, which correlated with electrophysiological findings.

RCT data showed that not every patient who received complement 
therapy achieved the desirable response and hence the biomarkers 

TABLE 1 Complement therapies: U.S. FDA approved or on ongoing clinical trials for myasthenia gravi.

Drug Specific targets in the 
complement system

Studied group Regimen RCT evidence

Eculizumab Recombinant humanized IgG2/4 

monoclonal antibody against C5

AChR+ gMG IV; induction of 900 mg 

weekly for 4 weeks followed by 

1,200 mg maintenance every 

2 weeks

Phase 3 RCT results: QMG: eculizumab 

vs. placebo = 54.7 vs. 70.7 (p = 0.0129); 

MG-QoL-15: eculizumab vs. 

placebo = 55.5 vs. 69.7 (p = 0.0281) 

(REGAIN, NCT01997229) U.S. FDA 

approved for treatment of adults with 

AChR+ gMG

Ravulizumab Long-acting recombinant 

humanized monoclonal antibody 

against C5

AChR+ gMG IV; weight-based dose. A 

single loading dose of 2,400–

3,000 mg followed by 

maintenance doses of 3,000–

3,600 mg every 8 weeks

Phase 3 RCT results: MG-ADL from 

baseline in treatment vs. placebo = −3.1 

vs. −1.4 (p < 0.001) (CHAMPION MG, 

NCT03920293) U.S. FDA approved for 

treatment of adults with AChR+ gMG

Zilucoplan Macrocyclic peptide binding C5 and 

C5b

AChR+ gMG SC; once daily dose of 0.3 mg/

kg

Phase 3 study showed positive results. 

MG-ADL from baseline in treatment vs. 

placebo = least squares mean change 

−4·39 (95% CI −5·28 to −3·50) vs. −2·30 

(−3·17 to −1·43); least squares mean 

difference −2·09 (−3·24 to −0·95) 

(p = 0·0004) (RAISE, NCT04115293)

Pozelimab Fully humanized IgG4 monoclonal 

antibody inhibiting C5 complement

AChR+ or LRP4+ gMG SC; alone or in combination 

with cemdisiran

Phase 3 study is ongoing 

(NCT05070858)

Cemdisiran siRNA suppressing hepatic C5 

synthesis

AChR+ or LRP4+ gMG SC; alone or in combination 

with pozelimab

Phase 3 study is ongoing 

(NCT05070858)

Gefurulimab (ALXN1720) Anti-C5 humanized bi-specific 

VHH antibody (nanobody)

AChR+ gMG SC; weight-based dose once 

weekly

Phase 3 study is ongoing 

(NCT05556096)

Danicopan (ALXN2050) Small molecule complement 

pathway factor D inhibitor

AChR + gMG Oral; 120 mg or 180 mg Phase 2 study is ongoing 

(NCT05218096)

AChR, acetylcholine receptor; MG, myasthenia gravis; MG-ADL, myasthenia gravis activities of daily living score; MGC, myasthenia gravis composite score; MG-QoL-15, myasthenia gravis 
quality of life 15-item scale; gMG, generalized myasthenia gravis; LRP-4, low-density lipoprotein receptor related protein 4.
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either to predict or monitor the treatment response are much needed 
for a personalized medicine approach for cost effectiveness and 
minimization of unnecessary drug exposure and the related side 
effects in patients. Serological analysis of complement components 
and activation products such as C3a, C5a and soluble C5b9 and in 
vitro complement function assay such as haemolytic assays CH50 for 
classical pathway could reveal evidence of complement consumption, 
abnormal activation of the complement system and patient specific 
complement activation status and can be  useful to monitor 
complement function during disease exacerbation (87). C3 levels were 
reported to be inversely correlated with disease severity in terms of 
QMG in AChR-MG patients (31). Combinations of drug levels, C5 
function and complement haemolytic CH50 can be  potential 
therapeutic monitoring assays for eculizumab in PNH and aHUS. In 
an aHUS study, a composite marker C3:CH50 changes significantly 
during induction and maintenance phases of eculizumab and 
correlates with disease markers (88) CH50 assay has been adopted in 
generalized myasthenia gravis studies. A case report described that 
eculizumab administration in an AChR gMG patient was able to 
decrease CH50 levels in line with a clinical improvement (89). CH50 
assay was also used to define zilucoplan dose for optimal complement 
inhibition in a phase 2 trial (90). In vitro complement activity assays 
such as CH50 are haemolytic assays and the optimal assay for 
myasthenia gravis should be  looking at the in-vitro direct 
neuromuscular junction damage by the complement. In fact, Fichtner 
et al. (91) showed that there was no correlation between CH50 and 
AChR antibody levels or disease severity in AChR antibody-positive 
patients. Hence, MG researchers have yet to fully explore and develop 
in vitro complement functional assays specific to MG.

Complotypes are genetic variants affecting complement activity 
and hence responsible for complement mediated diseases, differences 
between disease severities between individuals and treatment response 
(92). A few rare variants have been identified in PNH patients who did 
not respond to eculizumab. (Missense C5 heterozygous variants 
preventing its binding to eculizumab, HindIII polymorphism of the 
complement regulatory gene CR1) (92, 93).

3. Conclusion

We have described the available evidence of the complement system 
involvement in the pathogenesis of AChR-MG although the direct 
evidence of how complement system could be initiated specifically by 
anti-AChR IgGs is not available yet. We have summarized approved 
complement therapies backed with RCT, OLE and real-world experience 
data on efficacy and safety and briefly mentioned developing 

complement therapies in the pipeline. Biomarkers are still needed to 
be able to ultra-stratify MG patients into potential specific complement 
therapies responder group or groups so that a personalized approach 
could be provided to the patients in future.
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