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Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis is an

antibody-related autoimmune encephalitis. It is characterized by the existence

of antibodies against NMDAR, mainly against the GluN1 subunit, in cerebrospinal

fluid (CSF). Recent research suggests that anti-NMDAR antibodies may reduce

NMDAR levels in this disorder, compromising synaptic activity in the hippocampus.

Although anti-NMDAR antibodies are used as diagnostic indicators, the origin of

antibodies in the central nervous system (CNS) is unclear. The blood–brain barrier

(BBB), which separates the brain from the peripheral circulatory system, is crucial

for antibodies and immune cells to enter or exit the CNS. The findings of cytokines

in this disorder support the involvement of the BBB. Here, we aim to review the

function of NMDARs and the relationship between anti-NMDAR antibodies

and anti-NMDAR encephalitis. We summarize the present knowledge of the

composition of the BBB, especially by emphasizing the role of BBB components.

Finally, we further provide a discussion on the impact of BBB dysfunction in

anti-NMDAR encephalitis.
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1 Introduction

Anti-NMDAR encephalitis is the most common antibody-related autoimmune disease,

accounting for approximately 81% of autoimmune encephalitis cases (1). It was first

described in 2007 by Dalmau (2). According to a survey, anti-NMDAR encephalitis is

more common in young patients than any specific viral etiology (3). Most young and

female patients are affected (4). This disease usually presents with acute behavioral changes,

psychiatric symptoms, seizures, and memory deficits (5). The reduction in NMDAR surface

density and synaptic localization by anti-NMDAR antibodies is thought to be the main

mechanism of the disease (6). It also involves B cells in the CNS, which can produce

antibodies intrathecally. In a normal state, a low level of circulating B cells passes across

the BBB (7). However, in anti-NMDAR encephalitis, there is a significant increase in B cells.

It is well known that the brain is devoid of autoimmune cells and antibodies due to the

BBB. Impaired BBB may play an important role in this disease. Several CNS diseases involve

BBB dysfunction, including neurodegenerative disorders (8), encephalitis (9), epilepsy (10),

and multiple sclerosis (11). However, less attention has been given to the role of BBB in

anti-NMDAR encephalitis.

Frontiers inNeurology 01 frontiersin.org

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2023.1283511
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2023.1283511&domain=pdf&date_stamp=2023-12-08
mailto:29902142@qq.com
https://doi.org/10.3389/fneur.2023.1283511
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fneur.2023.1283511/full
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Gong et al. 10.3389/fneur.2023.1283511

In this review, we introduce the NMDA receptor and

anti-NMDAR encephalitis. We then outline the structural and

physiological roles of the BBB, including a set of BBB elements. The

role of the BBB in therapy is also mentioned. Finally, we examine

the role of the BBB in anti-NMDAR encephalitis. We hope to

provide a novel perspective for understanding the pathogenesis of

this disease.

2 Anti-NMDAR encephalitis and
NMDA receptors

2.1 NMDA receptors

NMDAR, as a heterotetrametric transmembrane ion channel, is

a subtype of glutamate receptor. It is formed by the combination of

two necessary GluN1 subunits and two other subunits, including

GluN2 or GluN3 subunits. It is widely expressed in various

CNS cells (12), including neurons, endothelial cells, microglia,

oligodendrocytes, and astrocytes. Here, we focus on its function in

neurons and endothelial cells (the function of endothelial cells is

described in part 3.1). In the CNS, NMDARs are predominantly

expressed by neurons and are mainly distributed in the prefrontal

cortex, hippocampus, amygdala, and hypothalamus (13). It widely

exists in CNS neurons and is involved in a series of neural activities.

As glutamate receptors, NMDARs can regulate the survival of

neurons and the development of dendrites and axons. NMDARs

are also involved in synaptic transmission and plasticity, as well as

higher nervous activity such as learning, memory, and emotion (14,

15). However, excessive NMDAR activity leads to excitotoxicity and

promotes cell death (16). Glutamate and glycine (or d-serine) are

NMDAR agonists. NMDARs may also be blocked by magnesium.

Activated NMDARs play an important role in regulating long-term

potentiation (LTP) and long-term depression (LTD) of synaptic

transmission (17) by mediating Ca2+ permeability.

It is believed that the functions of NMDARs mainly involve

two kinds of diseases. Excitation is the first concern. It is associated

with a series of diseases, such as stroke and epilepsy. Stimulation

by glutamate of NMDARs can result in the death of neurons

in these disorders. The other is NMDAR hypofunction, which

may induce the elimination of synaptic activity mediated by

NMDARs, resulting in memory, cognition, and behavioral defects.

It is associated with schizophrenia and anti-NMDAR encephalitis

(18, 19). The extracellular N-terminal domain of the NR1 subunit is

the main targeting epitope (2). NMDAR hypofunction may induce

a selective and reversible decrease in NMDAR quantity on the cell

surface, mainly in the hippocampus (6, 19).

2.2 Anti-NMDAR encephalitis and
anti-NMDAR antibodies

2.2.1 Essential clinical characteristics of
anti-NMDAR encephalitis

Anti-NMDAR encephalitis, characterized by CSF anti-

NMDAR antibodies, is an antibody-related autoimmune

encephalitis. Compared to other patients, anti-NMDAR

encephalitis patients have a longer intensive care unit length

of stay and a greater percentage of mental symptoms, motor

disorders, and autonomic dysfunction (20). Following its initial

reported in 2007, the number of diagnosed cases is increasing (2),

and it is receiving increasing attention.

In general, anti-NMDAR encephalitis often affects young

individuals and women. It also occurs in children and

elderly individuals. This disease is commonly associated with

ovarian teratoma and herpes simplex encephalitis. However, the

mechanism is not very clear. The main symptoms of this disorder

are mental symptoms, accompanied by memory impairment,

autonomic nervous symptoms, seizures, and respiratory failure in

over half of the patients. At the onset, psychiatric or behavioral

symptoms are the most common, making it difficult to distinguish

between anti-NMDAR encephalitis and primary psychosis (21).

Sometimes, anti-NMDAR encephalitis is accompanied by other

immune diseases, such as progressive systemic sclerosis (22)

and myelin oligodendrocyte glycoprotein antibody-associated

encephalitis (23).

Human autoimmunity plays an important role in this disorder.

T lymphocytes and B lymphocytes have been found in brain

samples from patients with anti-NMDAR encephalitis (24). Single-

cell sequencing confirmed the activation and differentiation of

B lymphocytes and the amplification of plasma cells in anti-

NMDAR encephalitis (25). Mild perivascular lymphocytic cuffing,

microglial activation, and a decrease in NMDAR density have been

observed in the hippocampus during a brain biopsy or autopsy (2,

24). Compared to non-inflammatory neurological disease patients,

the proportion of CD19+ B lymphocytes in the CSF of anti-

NMDAR encephalitis patients is higher (26). Both oligoclonal

bands and the production of many intrathecal immunoglobulins

are characteristics of anti-NMDAR encephalitis (27–29). Obvious

microglial proliferation and IgG deposition were detected in a

series of brain regions, including the hippocampus and forebrain,

accompanied by rare inflammatory infiltration (24, 30). Rituximab

may relieve anti-NMDAR encephalitis in patients who fail to

respond to first-line treatment (31). This provides evidence that B

cells may be crucial for anti-NMDAR encephalitis development.

2.2.2 Anti-NMDAR antibodies and their role in
anti-NMDAR encephalitis

Antibodies against NMDAR play an important role in

anti-NMDAR encephalitis. They are very common in the

blood and CSF of patients with this disorder and are rarely

present in other diseases. Studies have shown that anti-

NMDAR antibodies from patients can selectively mediate the

internalization of surface NMDARs, leading to a decrease

in the surface density of synaptic NMDAR clusters and a

reduction in glutamate synaptic function (6, 32). Initially,

antibodies were detected in young women with teratomas.

Ectopic neurons in teratomas are thought to be immune

triggers and sources of autoantigens (2). Recent research shows

that NMDAR antibodies may be produced from the tertiary

lymphatic structure of tumors and traditional secondary lymphatic

organs (33).

The anti-NMDAR antibody level is associated with the severity

of disease symptoms, outcomes, and prognosis. Compared to
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patients without anti-NMDAR antibodies, patients with antibodies

present with more aggression, exaltation, and disinhibition (20).

Although there was no significant difference between severe

patients and non-severe patients (P = 0.062), the strong positive

rate of severe patients was higher than that of non-severe patients

(48.7% vs. 29.2%) (34). There is also a certain correlation between

antibody levels and symptoms. Patients with higher antibody titers

were found to more commonly present a psychiatric symptom as

the primary symptom and to display more severe clinical features

than those with lower antibody titers. EEG background activity

and symptoms were linked to CSF antibody titers. Serum titers

decreased in patients with improved symptoms (19).

Currently, several anti-NMDAR encephalitis models are being

built, including models induced by the herpes simplex encephalitis

virus, selected peptides, patient CSF, and so on (35–37). All of

these findings support the importance of antibodies in this disorder.

Antibodies are so important for this disorder that they have been

included in the anti-NMDAR encephalitis diagnostic criteria (38).

Although the important role of anti-NMDAR antibodies in this

disease has been recognized, there is some controversy regarding

the involvement of these antibodies in anti-NMDAR encephalitis.

First, it has been proven that all natural anti-NMDAR1 antibodies

have pathogenic potential (39, 40). The seroprevalence of anti-

NMDAR antibodies was found to be similar between schizophrenic

patients and healthy individuals (41). Second, the antibody titer is

related to the severity, but alleviation of the disease may not be

completely related to the decrease in titer. Studies have found that

intrathecal synthesis can still exist for several years after symptoms

recover (42). Although the CNS is an immune-privileged organ,

peripheral diseases are known to affect the CNS. Some underlying

tumors in the periphery may trigger several neurologic deficits,

such as paraneoplastic neurological syndrome (43). The first anti-

NMDAR encephalitis patient was diagnosed with ovarian teratoma

in 2007 (2). The presence of nervous tissues in ovarian teratomas

may play a role in the pathogenesis of anti-NMDAR encephalitis.

The resection of teratomas is beneficial for the relief of symptoms

in patients (44). The controversy surrounding the role of anti-

NMDAR antibodies and the impact of the peripheral immune

system on anti-NMDAR encephalitis is a topic that requires further

investigation. Maybe, there is another mechanism that plays a role

in this disease.

3 Structural, physiological, and
pathological roles of the BBB

The brain is separated from the circulatory system mainly by

the BBB. It can regulate molecular transport between the CNS

and blood, which is necessary to maintain homeostasis of the

brain. The BBB is composed of brain microvascular endothelial

cells, astrocytes, pericytes (PCs) and basement membrane (45)

(Figure 1). Substances pass through the BBB in the following ways:

(1) paracellular transport via damaged tight junction proteins

(TJs) between endothelial cells and (2) transcellular transport

via endocytosis vesicles or transport proteins (46). Neurons and

microglia have the potential to influence the function of the BBB.

Together with the elements of the BBB, they form the neurovascular

unit (NVU), which plays a crucial role in maintaining the normal

function of the CNS.

3.1 Endothelial cells

Endothelial cells (ECs) are the core components of the BBB

and have always been a research hotspot for the BBB. Neurons,

astrocytes, microglia, and pericytes influence BBB integrity by

regulating the ECs. ECs lack endothelial fenestrations and have

relatively few caveolar vesicles (47–49). They protect the brain

by restricting paracellular and transcellular transport. Cytoplasmic

proteins and transmembrane proteins, which are the focus of

BBB research, determine the function and structural stability of

TJs (50–53).

3.1.1 Paracellular transport
TJs include claudin-5, occludin, and junction adhesion

molecules, which promote the maintenance of cell polarity.

Occludin, claudin-5, and ZO-1 are the main structural barrier

proteins and are considered sensitive indicators of normal and

disrupted BBB function (54).

3.1.1.1 Claudin-5

Many elements of the claudin family with a molecular mass of

20–27 kDa are assumed to contribute to BBB integrity. Claudin-

5 is the most enriched isoform in the claudin family (55). It

is always expressed in ECs that form capillaries, which is the

main components of TJs and is essential for maintaining BBB

integrity (56, 57). Claudin-5 exclusively limits the paracellular

permeability of molecules larger than the size-selective threshold

(<800 Da) across the BBB (56). The in vitro and in vivo data

indicate that the decrease in claudin-5 may cause BBB disruption

(58). Claudin-5 knockout and redistribution from the membrane

to the cytoplasm can lead to increased BBB permeability (56,

59). The expression and regulation of claudin-5 are influenced

by multiple factors. Several factors, such as vascular endothelial

(VE)-cadherin, glucocorticoids, glial cell line-derived neurotrophic

factor (GDNF), and estrogen, can upregulate claudin-5 expression

(60–63). Vascular endothelial growth factor (VEGF) (64) and

transforming growth factor-b (TGF-b) (65) downregulate the

expression of claudin-5, resulting in a decrease in BBB integrity.

Autophagymay alleviate hypoxia-induced BBB injury by regulating

claudin-5 redistribution in stroke (66). Other claudin elements,

such as claudin-1,3 and claudin-11, are also associated with the

BBB, although their levels are much lower than that of claudin-

5 (67).

3.1.1.2 Occludin

Occludin is the first confirmed TJ protein, with a molecular

weight of 65 kDa (53). The expression level of occludin in ECs

is higher than that in non-nerve tissues (68). Similar to claudin-

5, it regulates the BBB through the paracellular pathway (53).

However, it does not participate in the developmental regulation

of the BBB and only maintains its integrity (69). Previous studies

have shown that the downregulation of occludin can significantly

reduce transcutaneous/transendothelial resistance (TEER) and
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FIGURE 1

Structure of the BBB. The NVU is made up of neurons, astrocytes, microglia, pericytes, and endothelial cells. The TJs and AJs in the brain endothelial

cells limit the transportation of proteins and other nutrients. JAMs, Junctional Adhesion Molecules; PECAM, Platelet Endothelial Cell Adhesion

Molecule; VE-Cadherin, Vascular Endothelial Cadherin; ZO, Zonula Occludens. Created with BioRender.com.

increase paracellular diffusion (70). Compared to wild-type mice,

the permeability of the BBB significantly increases in occludin-

deficient mice after stroke (71). Many factors, such as matrix

metalloproteinase-9 (MMP-9), ubiquitination, phosphorylation,

tumor necrosis factor, IL-1β, and IFN-γ, participate in regulating

the expression of occludin (69). Various signaling pathways are

involved in the regulation of occludin, including the NF-κB,

MAPK, PKC, RhoK, and ERK1/2 (72, 73). Vascular endothelial

growth factor (VEGF) mediates MMP-9 activation to damage the

BBB, leading to a decrease in the expression of occludin (74,

75). Autophagy also participates in BBB disruption by regulating

occludin (70).

3.1.1.3 ZO-1

Zonula occludens proteins (ZO-1, ZO-2, and ZO-3) share

sequence similarities. ZO-1 and ZO-3 are cytoplasmic tight

junctional accessory proteins that provide structural support to

ECs (76) and are related to BBB dysfunction in many neurological

diseases, such as stroke, subarachnoid hemorrhage, and Parkinson’s

disease (77–82). ZO-1 redistribution and reduction, mediated by

autophagy and MMP-2/9, participate in BBB leakage in stroke.

Endophilin-1 participates in regulating BBB permeability by

controlling ZO-1 and occludin expression (83).

3.1.2 Transcellular transport
In addition to paracellular transport, intercellular transport

is another important way for substances to pass through the

BBB. This approach is influenced by specific transport proteins,

endocytosis, and diffusion movements in the endothelial cell

membrane (84). Endocytosis includes internalization, sorting,

and exocytosis. EC internalization may occur through vesicles,

grid protein-dependent endocytosis, or grid protein-independent

endocytosis pathways (85). Vesicles in brain endothelial cells

(BECs) play an important role in the endocytosis of the BBB,

although the number of vesicles in BECs is lower than that in

peripheral endothelial cells (86). The vesicles contain the vesicle

protein caveolin-1, which participates in the transcytosis of the

BBB. The upregulation of caveolin-1 and caveolin-2 expression was

found in BECs in the EAE model and stroke (87, 88).

3.2 Other cell elements of the BBB

Although ECs are thought to be the primary element of

the BBB, they require contact with various NVU elements to

establish BBB characteristics (89). Pericytes are blood vessel wall

cells wrapped around the basement membrane of microvessels (see

Figure 1). PCs make close contact with ECs through “peg-and-

socket” junctions within a common basal lamina (90, 91). Pericytes

can regulate BBB permeability by controlling the expression of

TJs and adhesive junction proteins in the BBB and influencing

vesicles (92). Mice with low pericyte coverage around endothelial

cells have a disrupted BBB (93–95). PC dysfunction leads to a

decrease in TJs, increasing BBB permeability, and a loss of basement

Frontiers inNeurology 04 frontiersin.org

https://doi.org/10.3389/fneur.2023.1283511
http://BioRender.com
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Gong et al. 10.3389/fneur.2023.1283511

membrane proteins (92, 93, 96). In response to inflammatory

mediators, pericytes may secrete key molecules that influence the

BBB. Pericyte-derived vitronectin is an extracellular matrix (ECM)

protein. It regulates BBB integrity by binding to integrin a5 on

endothelial cells to inhibit endocytosis (97). The downregulation of

pericytes can lead to BBB dysfunction via transcellular transport,

leading to leakage of a large amount of polymer substances,

including IgG and albumin (90, 92).

The end feet of astrocytes ensheathe the microvasculature.

Astrocytes may secrete several factors that have dual effects on

maintaining BBB function. Various factors, including VEGF (98),

MMPs, nitric oxide (NO), glutamate, and endothelin-1, may

exacerbate the disruption of the BBB by regulating TJs. Other

factors secreted by astrocytes may decrease BBB permeability,

such as angiopoietin-1 (Ang-1), sonic hedgehog (Shh), GDNF,

transforming growth factor-β (TGF-β), retinoic acid (RA), insulin-

like growth factor-1, and apolipoprotein E (99, 100). Astrocyte-

secreted Shhs have been shown to protect the BBB (101), which

reinforce BBB junctional tightness by increasing TJ expression

in ECs (102) and delaying BBB breakdown under pathological

conditions. Induced by albumin extravasation, astrocytes also

release MMP to degrade the basement membrane, resulting in BBB

dysfunction (103).

Microglia are resident CNS macrophages (104). Microglia

are widely distributed in the brain tissue, including the basal

ganglia, hippocampus, substantia nigra, and olfactory brain (105).

They exist at vascular junctions and bridge endothelial tip cells,

monitoring BBB integrity and the inflow of agents into the brain

(106). It can synthesize many proinflammatory cytokines, directly

affecting the permeability of the BBB (107). Microglia also have

a dual effect on the BBB. M1-type microglia may damage BBB

function, while M2 anti-inflammatory microglia play a protective

role in the BBB (108, 109).

ECs may lose their BBB properties when cultured alone.

They may show enhanced TEER and begin to express many

TJs in coculture with astrocytes and pericytes (109). Endothelial

cells cocultured with resting microglia or astrocytes express more

occludin and ZO-1 (85). Endothelial TJs are also tighter in the

presence of pericytes. A recent study demonstrated that PCs

may transfer signals to ECs through ligand–receptor interactions,

which is an important mechanism for regulating BBB permeability

(97). Astrocytic end feet are important for the establishment and

maintenance of the BBB (91). They play an important role in

preventing excessive immune cells from entering the space around

blood vessels.

3.3 BBB and disease

The BBB exists widely in the brain and is involved in CNS

diseases, including epilepsy, cerebrovascular accidents, and mental

disorders. It provides immune preservation of the CNS. Any

damage to the BBB will result in adverse consequences, leading

to diseases, or aggravation of illness. The role of the BBB in

stroke has been widely researched. A large amount of evidence

suggests that inflammation after ischemia is associated with BBB

disruption, vascular edema, hemorrhagic transformation, and a

poorer neurological prognosis. Occludin is mediated by MMPs

(110), nitric oxide synthase (111), reactive oxygen species (112),

and rho kinase (113). VEGF may affect the permeability of the

BBB after cerebral ischemia and reperfusion. BBB dysfunction

is closely associated with the onset of Alzheimer’s disease (AD).

Glucose transporter1 (GLUT1) in the ECs of AD patients is lower

than in the control group (114). The deficiency of GLUT1 in AD

mice may lead to BBB dysfunction and a decrease in TJ protein

(115). Multiple sclerosis (MS) is a CNS disease associated with

immunity. BBB destruction and immune cell infiltration into the

CNS are characteristics of MS. Reduced or interrupted staining

of occludin, claudin-5, and VE cadherin has been observed in

the brain tissues of MS patients on autopsy (116–118). Brain

microvascular endothelial cell-like cells derived from MS showed

increased BBB permeability and decreased TJ integrity (119).

Immune cell migration across the endothelial barrier is generally

mediated by the coordinated binding of adhesion molecules and

the interaction of chemokines/chemokine receptors, as well as the

action of MMPs and their tissue inhibitors (TIMPs) (120). ECs alter

their immune phenotype by upregulating intercellular adhesion

molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-

1), and atypical chemokine receptor 1 (ACKR1), allowing more

immune cells to infiltrate the CNS (121–124). T cells infiltrate

the CNS mainly by transcellular transport (125). B-cell migration

across ECs is faster than that of T cells. It may be regulated

by the adhesion molecules VLA-4 and ICAM-1, the chemokines

monocyte chemoattractant protein-1 and IL-8, and TIMP-1 (126).

The BBB exists widely in the brain and is involved in

neural microenvironmental homeostasis. It provides immune

preservation of the CNS. On the other hand, it is the main

obstacle to the treatment of most CNS diseases (127). Only a few

CNS disorders may be treated by small-molecule drugs, which

cross the BBB (128). The human immunodeficiency virus in the

periphery may be significantly reduced by antiretroviral therapy

(129). However, owing to the presence of the BBB, antiretroviral

drugs cannot be used in the brain (130). How to overcome the

BBB is a challenge in the therapeutic development of CNS diseases

(131). New strategies and medicines are currently being developed

to resolve this problem.

4 BBB, NMDARs, and anti-NMDAR
encephalitis

4.1 NMDARs and BBB

NMDARs may be activated to induce a breakdown of the

BBB (132). Overactivation of NMDARs can alter the expression

of TJs, affecting BBB permeability (133). Circulating tPA can

activate endothelial NMDARs and increase BBB permeability via

the Rho signaling pathway (133, 134). In addition, the activation

of NMDARs can disrupt the BBB by activating the MEK1/2-

ERK1/2 signaling pathway and upregulating MMP2/9 expression

(135, 136).

In addition to affecting paracellular pathways, NMDARs can

also affect the BBB via transcellular transport. Treatment with

NMDA can increase intercellular movement. Many bioactive

molecules, including transferrin, glucose, and immunoglobulin,
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FIGURE 2

NMDAR-ab in the blood is discovered in anti-NMDAR encephalitis patients, healthy individuals, and patients with schizophrenia. However, the

symptoms observed in those patients and healthy individuals are not similar to anti-NMDAR encephalitis. The symptoms may be caused by CSF

antibodies, which come from blood. The impaired BBB allows the antibodies and B cells in serum to enter the brain, leading to the appearance of

symptoms. Created with BioRender.com.

enter the brain through the BBB. It may be achieved via clathrin

and caveolin, which are inhibited by anti-NMDAR antibodies.

NMDAR-deficient ECs result in decreased neuronal density and

brain vasculature (137).

There is evidence indicating the existence of NMDAR in

astrocytes (138). The expression of NMDARs in astrocytes

may be upregulated in transient ischemic astrocytes (139).

Activated astrocytic NMDARs may mediate ion currents and

intracellular Ca2+ waves (140) and contribute to glial postsynaptic

currents (141). Some studies have shown that activated NMDARs

in astrocytes also stimulate the secretion of proinflammatory

cytokines (142, 143).

The expression of NMDARs was also observed in

oligodendrocytes and microglia. These cells are involved

in the development of myelin, the regulation of glucose

transporters, and glucose trafficking (144). NMDAR currents

in oligodendrocytes exist in multiple brain regions and at various

developmental stages, which are involved in excitotoxicity

mechanisms (145, 146). The role of glucose transporters has

been confirmed in anti-NMDAR encephalitis (147). Excessive

activation of oligodendrocyte NMDARs may trigger excitotoxic

cell death via Ca2+ overload and energy metabolism dysfunction

(148). Microglial NMDAR may combine with NMDA, inducing

microglial activation in hypertrophic and amoeboid states and the

release of proinflammatory factors.

4.2 The BBB in anti-NMDAR encephalitis

The role of antibodies in anti-NMDAR encephalitis is well

known. However, whether CNS NMDARs or circulating NMDARs

participate in the disease is unknown. Several studies reported

that the seropositive prevalence of anti-NMDAR1 antibodies is

similar in both healthy individuals and psychotic patients (149,

150). All naturally occurring NMDAR1 antibodies have pathogenic

potential (39). However, not all patients and healthy individuals

with NMDAR antibodies show symptoms. The antibodies cause

behavioral phenotypes only when they enter the CNS (see Figure 2).

The antibody in CSF was more important than the serum-

derived antibody. The titer change in CSF was more closely

related to relapses, outcomes, and patient condition than in

serum (151, 152).

The antibody in CSF was more important than the serum-

derived antibody. Where does the anti-NMDAR antibody in the

CNS come from? Antibodies in serummay enter the brain through

the damaged BBB (see Figure 2) (39, 41, 150). Clonally expanded

plasma cells in the CNS have been suggested as another source

of CSF NMDAR antibodies (153). Interestingly, these B cells are

reported to originate from peripheral lymphoid organs (33, 37).

BBB impairment is important for the entry of autoimmune cells

into the brain. As a barrier to isolating brain tissue and the

peripheral circulatory system, the BBB plays a significant role.
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The clinical symptoms of anti-NMDAR encephalitis indicate

that BBB impairment is a crucial step in the onset of the disease.

The CSF albumin/serum albumin (QAlb) is one of the indicators

of BBB damage. Yu et al. observed BBB dysfunction based on

the results of QAlb in anti-NMDAR encephalitis (154). Some

chemical agents related to BBB damage and CNS inflammation

are observed in the CSF and serum in anti-NMDAR encephalitis

(155, 156). Due to the impaired BBB, anti-NMDAR antibodies may

transfer from pregnant C57BL/6J mice to fetuses, causing severe

but reversible synaptic and neurodevelopmental alterations (157).

A study showed that compared to wild-type mice, apoE-/- mice

with a disrupted BBB respond to intravenous NMDAR antibodies,

showing symptoms (150, 158). It was confirmed that BBB damage

was present in anti-NMDAR encephalitis mice (159).

The integrity of the BBB is related not only to the occurrence

of anti-NMDAR encephalitis but also to the prognosis and severity

of symptoms. According to previous reports, BBB dysfunction

is associated with prognosis and mRS scores after 2 months of

follow-up (154). The symptoms of anti-NMDAR encephalitis are

associated with BBB dysfunction (41). Gong et al. reported that

PI3K inhibition can improve neurological behavior by alleviating

BBB and neuron injury (159). Interestingly, circulating antibodies,

passing through the intact BBB at a low rate and titer, cannot cause

obvious symptoms. The antibodies may combine tightly with the

brain tissue, preventing discharge into the CSF (160). However,

many antibodies enter the brain through a damaged BBB, causing

clinical symptoms in anti-NMDAR encephalitis.

Although the BBB plays an important role in anti-NMDAR

encephalitis, the mechanism is unclear. There are also other

antibodies present in the cerebrospinal fluid of patients with

anti-NMDAR encephalitis (161). These antibodies can react with

different types of blood vessels. In vitro and in vivo experiments

have confirmed the presence of the vascular targeting antibody

mAb011-138 in the CSF of patients with NMDAR encephalitis. It

can react with small blood vessels and increase BBB permeability

by downregulating occludin (162).

5 Conclusion

Although anti-NMDAR encephalitis is a rare disorder, it

causes a series of serious symptoms and is easily misdiagnosed

as psychosis. It often affects young individuals and has attracted

increasing attention. Anti-NMDAR antibodies, especially those

in the CSF, play a key role in this disorder. The presence and

concentration of antibodies in CSF may influence the onset

and severity of this disorder. The BBB is an important physical

and metabolic barrier that controls the entry of agents into the

brain. BBB dysfunction is not only associated with the entry

of serum antibodies and immune cells but is also linked to

the symptoms caused by antibodies. BBB breakdown has been

thought to be an important event in anti-NMDAR encephalitis.

However, the mechanism is unclear, and only a few studies on

BBB disruption in anti-NMDAR encephalitis have been reported.

The association between the elements of the BBB and NMDARs,

including astrocytes, microglia, pericytes, and endothelial cells, is

still unclear. The BBB has also been linked to the treatment of

many CNS diseases. NMDARs are involved in BBB dysfunction

in other disorders. It is still unknown whether anti-NMDAR

antibodies affect the BBB in anti-NMDAR encephalitis. The repair

of the BBB or the production of new medicines across the BBB

for anti-NMDAR encephalitis is also important. Future studies

investigating anti-NMDAR encephalitis should consider the factors

that affect BBB integrity.
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