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Cognitive and balance functions
of astronauts after spaceflight are
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individuals with bilateral
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Introduction: This study compares the balance control and cognitive responses
of subjects with bilateral vestibulopathy (BVP) to those of astronauts immediately
after they return from long-duration spaceflight on board the International Space
Station.

Methods: Twenty-eight astronauts and thirty subjects with BVP performed five
tests using the same procedures: sit-to-stand, walk-and-turn, tandem walk,
duration judgment, and reaction time.

Results: Compared to the astronauts’ preflight responses, the BVP subjects’
responses were impaired in all five tests. However, the BVP subjects’ performance
during the walk-and-turn and the tandem walk tests were comparable to the
astronauts’ performance on the day they returned from space. Moreover, the BVP
subjects’ time perception and reaction time were comparable to those of the
astronauts during spaceflight. The BVP subjects performed the sit-to-stand test
at a level that fell between the astronauts’ performance on the day of landing and
1 day later.

Discussion: These results indicate that the alterations in dynamic balance control,
time perception, and reaction time that astronauts experience after spaceflight
are likely driven by central vestibular adaptations. Vestibular and somatosensory
training in orbit and vestibular rehabilitation after spaceflight could be e�ective
countermeasures for mitigating these post-flight performance decrements.

KEYWORDS

bilateral vestibular loss, bilateral vestibular hypofunction, astronauts, vestibular tests, time

perception, reaction time, spaceflight

Introduction

After long-duration spaceflight, astronauts experience symptoms of vestibular

dysfunction that are similar to those faced by patients with certain types of vestibular

disorders, such as motion sickness (1, 2), dizziness or vertigo (3, 4), decreased ocular torsion

(5, 6), delayed target acquisition during gaze shift (7), decreased stability during standing and

walking (8, 9), inaccurate perceptions of self-orientation and motion (10, 11), and altered

cognitive processing (12, 13). In addition, these challenges can cause increased weighting of
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or reliance on visual inputs (14, 15). After a few days, these

functions return to baseline following a rapid exponential recovery

curve (16, 17).

There is, however, a fundamental difference between the

challenges to vestibular functioning caused by spaceflight and those

of pathologically induced vestibular dysfunction (18). In normal

conditions, the information from semicircular canals and otolith

organs is congruent and is integrated to shape the representation

of head movement and orientation in space. During exposure to

the microgravity environment of spaceflight, astronauts receive

normal information from their semicircular canals during head

movement, but their otoliths provide information during head

translation only (i.e., not during head tilt). After returning

from space, the mechanism for integrating canal and otolith

information must readapt to ground-based gravitoinertial force.

Until this readaptation is complete, the astronauts experience

spatial disorientation and postural incoordination (19). By contrast,

both canal information and otolith information are disrupted in

subjects with bilateral vestibulopathy (BVP) (20). This lack of

information is substituted by sensory information from the visual

and somatosensory systems and by compensation strategies (21).

This study compares the vestibular responses of astronauts

during readaptation to Earth’s gravitational force level after return

from long-duration spaceflight to those of subjects with BVP,

using the exact same test procedures. We hypothesized that the

difference in the performance of the astronauts immediately after

landing and the performance of BVP subjects would reveal the

role of the compensation strategies used by the BVP subjects

during rehabilitation.

Materials and methods

Astronaut subjects

Twenty-eight crewmembers (17 male members, 11 female

members; 47.5 ± 6.7 years, mean ± SD) who flew for periods of

6–11 months (188 ± 58 days) on board the International Space

Station participated in this study. Among them, 12 crewmembers

were participating in their first spaceflight mission, whereas 16

crewmembers had completed one or several previous spaceflight

missions of 6 months. All 28 crewmembers passed a United States

Air Force Class III medical examination and had no known history

of vestibular or oculomotor abnormalities.

The test procedures were approved by the European Space

Agency Medical Board and the NASA Johnson Space Center

Institutional Review Board and were performed in accordance with

the ethical standards laid down in the 1964 Declaration of Helsinki.

All subjects provided written informed consent before participating

in the study.

BVP subjects

Thirty BVP subjects (13 male subjects, 17 female subjects;

60.6 ± 13.0 years) were tested in the COMETE Laboratory at the

University of Caen. The test procedures were approved by the

French Ethical Committee (Comité de Protection des Personnes

de la Région Ouest I, no: ID-RCB 2022-AO1513-40). Subjects

TABLE 1 Number and percentage of subjects who tested positive for the

neuro-otological tests used to diagnose bilateral vestibulopathy (BVP).

Diagnostics tests Criteria N %

Right caloric nystagmus < 6◦/s 29 96.7

Left caloric nystagmus < 6◦/s 29 96.7

Right vHIT gain (three canals) < 0.6 26 86.7

Left vHIT gain (three canals) < 0.6 27 90.0

Right oVEMP < 100 uV 23 76.7

Left oVEMP < 100 uV 22 73.3

Right cVEMP < 100 uV 14 46.7

Left cVEMP < 100 uV 14 46.7

Positional vertigo Present 0 0.0

Cerebellar ataxia Present 0 0.0

Oscillopsia Present 4 13.3.

Migraines Present 5 16.7

vHIT, video head impulse test; oVEMP, ocular vestibular-evoked myogenic potential; cVEMP,

cervical vestibular-evoked myogenic potential. According to the consensus document on the

diagnostic criteria of the Classification Committee of the Barany Society (Strupp et al., 2017),

BVP subjects must have bilaterally reduced angular VOR function documented by vHIT (gain

< 0.6) and/or caloric (peak slow phase velocity < 6◦/s) tests. All 30 subjects included in this

study met these criteria.

were recruited by the Association Française de Vestibulopathie

Bilatérale (www.afvbi.info).

Subjects had experienced BVP for 8 ± 2 years with no

hearing loss or associated neurological symptoms. Before inclusion

in the study, the subjects’ BVP diagnoses were confirmed

based on the absence of normal responses to a battery of

neuro-otological tests performed in the Center d’Explorations

Fonctionnelles Oto-Neurologiques (Paris) (20, 22). The function

of the lateral semicircular canals was evaluated by measuring

caloric nystagmus during a bithermal caloric irrigation of the right

and left ears at both 44◦C and 30◦C. Twenty-nine subjects had

a caloric nystagmus velocity of <6◦/s (Table 1). The vestibulo-

ocular reflex gain for each of the six canals was also evaluated

during a video head impulse test with a video camera system.

Most of the subjects (86.7–90%) had a deficit in this high-

frequency test, with no compensatory eye movements and multiple

catch-up saccades (Table 1). Utricular function was evaluated

with ocular vestibular evoked myogenic potential (oVEMP), and

saccular function was evaluated with cervical vestibular evoked

myogenic potential (cVEMP). Twenty-three BVP subjects had

altered utricular responses (oVEMP amplitude <100 microV).

However, 16 subjects showed cVEMP responses, thus indicating

that their saccular function was still operational. None of the BVP

subjects had positional vertigo or showed signs of cerebellar ataxia,

four subjects complained of oscillopsia, and five subjects reported

having frequent migraines (Table 1).

Experimental protocol

Five tests were administered: sit-to-stand, walk-and-turn,

tandem walk, duration judgment, and reaction time. Due to time

constraints, not all subjects of both groups performed all tests.

Table 2 shows the number of subjects in each group who performed
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TABLE 2 Number of subjects that performed each test.

Test Astronauts Timepoints BVP
subjects

Sit-to-stand 25 Preflight, landing day 30

Walk-and-

turn

13 Preflight, landing day 30

Tandem walk 25 Preflight, landing day 30

Duration

judgment

10 Preflight, inflight, 1 day

after landing

30

Reaction time 10 Preflight, inflight, 1 day

after landing

30

each test. The astronauts performed the tests ∼3 months before

launch (Astro Pre), monthly during the spaceflight (duration

judgment and reaction time test only) (12, 19), and ∼2 h after

they returned to Earth (R + 0) and 24 h later (R + 1). Tests were

performed on R + 0 and R + 1 because previous studies have

shown significant changes in spatial orientation, eye movements,

postural control, and gait during this period compared to preflight

(23). In addition, post-flight testing timepoints are limited by

operational constraints.

During the sit-to-stand and walk-and-turn tests, the subjects

wore a triaxial inertial measurement unit (IMU) (Opal V2 or

Emerald, APDM Inc., Portland, OR, USA, for astronauts; X-Sens

DOT; Xsens Technologies BV, Enschede, The Netherlands, for BVP

subjects) attached to their trunk with an elastic band.

Sit-to-stand

Subjects were requested to rise as quickly as possible from

a seated position without using their hands and to maintain a

quiet stance for 10 s. The time elapsed between the command to

stand and the achievement of a stable posture was used as the

measure of performance. The IMU data were used to determine

when stable posture was achieved. The start and end of the stand

were determined using the absolute angular velocity of the trunk

pitch (19).

Walk-and-turn

Following the sit-to-stand test above, subjects were asked to

walk as quickly and safely as possible straight ahead toward a cone

(4m distance), walk around the cone, return, and sit in a chair. On

the way to and from the cone, subjects stepped over a 30-cm high

obstacle. This test was performed twice. The IMU data were used to

calculate the time required to complete the obstacle course and the

peak yaw angular velocity of the trunk while walking around the

cone (19).

Tandem walk

Subjects were instructed to walk 10 heel-to-toe steps with their

arms folded across their chests and their eyes closed (two trials) or

open (two trials). Each trial was recorded by video. Three reviewers

independently examined the videos to determine the number of

correct steps during each trial. A “misstep” was defined as any of

the following: (a) the subject’s stepping foot crossing over the plant

foot; (b) the subject stepping to the side before completing the step;

(c) the subject’s stepping foot swinging in a wide, arcing path before

stepping down; (d) a step duration >3 s; or (e) a gap larger than

10 cm between the heel of the front foot and toe of the back foot

when the step was completed (8). The video order was randomized

to minimize reviewer bias based on their awareness of the session.

After all the reviewers had completed their assessments, the median

value was used to determine the percentage of correct steps for each

trial. A higher percentage of correct steps directly relates to better

performance (19).

Duration judgment

Subjects wore a head-mounted display (Oculus Rift, Oculus

VR, Menlo Park, CA) and used a finger trackball connected to a

laptop to report when 1min had passed. Subjects wore earphones

to listen to the instructions and to mask external noises. Using

the finger mouse, they pressed a “go” button and waited for 1min

before pressing on a ‘stop’ button. Only the “go” and “stop” buttons

were displayed during the test. Subjects were not allowed to count

the seconds passing by Navarro Morales et al. (12).

Reaction time

Wearing the same head-mounted display used in the duration

judgment test, subjects were required to press the fingermouse with

their right hand as fast as possible in response to a stimulus (a blue

square) that appeared for 50ms in the center of the visual display

at random intervals ranging from 1 to 3 s. The subjects performed

30 trials during each testing session, and the timings of the intervals

were all different (24).

Statistical analysis

The data were tested for normality with the Shapiro–Wilk test

and for equality of variance with the Levene test. Most datasets did

not meet the assumptions for parametric analysis, so a permutation

test with 5000 repetitions was used. The statistical analysis was

conducted in R Core Team (25) using the MKinfer package for

permutation analysis (26). The p-value was adjusted for multiple

comparisons with the false discovery rate (FDR) method. The

significance threshold was set at a p-value of 0.05.

Results

There were no statistical differences between the measures

collected with the BVP subjects with and without saccular function,

so the data of both groups were pooled together. The results

obtained with astronauts have been reported in three previous

studies (12, 19, 24). These results are summarized in this section

and in the figures.
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The time required for astronauts to settle during the sit-to-

stand test increased significantly on R + 0 (5.0 ± 2.2 s, mean ±

SD) compared to values before flight (2.0 ± 0.5 s) and returned

to baseline on R + 1 (2.7 ± 1.0 s). The time required for the

BVP subjects to settle (3.4 ± 1.0 s) was significantly (a) longer

than the astronauts’ performance before flight, (b) shorter than

the astronauts’ performance on R + 0, and (c) longer than the

astronauts’ performance on R+ 1 (Figure 1).

During walk-and-turn tests, the time required for the

astronauts to complete the obstacle course was significantly longer

on R+ 0 (27.8± 12.0 s) than before flight (9.2± 1.6 s) and returned

to baseline on R + 1 (13.6 ± 4.6 s). Similarly, the turn rate around

the cone at themid-course was significantly slower on R+ 0 (60.5±

37.8 deg/s) and R + 1 (102.5 ± 29.7 deg/s) than it was before flight

(131.2± 21.7 deg/s). The BVP subjects took longer to complete the

obstacle course (16.1 ± 7.3 s) than the astronauts did before flight,

but their speed was no different than the astronauts’ speed on R+ 1

(Figure 2). Moreover, the BVP subjects’ trunk turn rate was slower

(73.4 ± 17.6 deg/s) than the astronauts’ rate before flight and on R

+ 1 but not significantly different from the astronauts’ rate on R +

0 (Figure 3).

During the tandem walk tests with their eyes open, the

percentage of correct steps in the astronauts was 98.4± 7.6 % before

flight, 40.8 ± 30.0 % on R + 0, and 86.8 ± 20.1 % on R + 1. With

their eyes closed, their percentage of correct steps was 76.1 ± 15.6

% before flight, 10.8 ± 11.8 % on R + 0, and 27.7 ± 19.3 % on

R + 1. The BVP subjects achieved significantly less correct steps

than the astronauts did before flight and on R + 1 both with their

eyes open (44.8± 29.6 %) (Figure 4) and eyes closed (9.1± 20.7 %)

(Figure 5). In both conditions, their performance was no different

than the astronauts’ performance on R+ 0.

Before flight, the astronauts thought that 1min had elapsed

after 74.5 ± 17.9 s. The astronauts’ perceived duration of 1min

decreased during flight (59.6 ± 4.8 s) and returned to baseline by

R + 1 (66.8 ± 18.1 s). The BVP subjects perceived the duration

of 1min as 54.4 ± 17.0 s, which was significantly less than the

astronauts’ perceived duration before flight, but no different than

the astronauts’ performance during flight or on R+ 1 (Figure 6).

The astronauts took more time to react to the presentation of a

visual target during flight (346± 16ms) than they did before flight

(307 ± 18ms), and their performance returned to baseline by R +

1 (310± 20ms). The BVP subjects took significantly longer to react

(348± 70ms) to the target than the astronauts did before flight and

on R+ 1. However, the BVP subjects’ reaction time was no different

than the astronauts’ performance during flight (Figure 7).

No significant differences were detected in responses of

any of the tests for the astronauts participating in their first

spaceflight mission and those astronauts who had flown a space

mission previously.

Discussion

Compared to the astronauts’ responses before flight, the BVP

subjects showed an impairment in all five tests. However, the

BVP subjects’ performance of the walk-and-turn and the tandem

walk tests was comparable to that of the astronauts on R + 0.

Moreover, the BVP subjects’ time perception and reaction time

were comparable to that of the astronauts during flight. The BVP

subjects performed the sit-to-stand test at a level that fell between

the astronauts’ performance at R+ 0 and R+ 1.

One limitation of this study is that the astronauts reported

in this study were not tested with the basic vestibular testing

methods (i.e., caloric irrigation, vHIT, and vestibular evoked

myogenic potential) after spaceflight as in the BVP subjects.

Another limitation is that the BVP subjects did not experience

nausea, but the astronauts showed motion sickness symptoms,

especially on R+ 0 (27). However, previous studies have shown that

the vertical and roll VOR gain during head oscillations (28) and the

ocular counter-rolling during head tilt (29) or centrifugation (5, 30)

were decreased in astronauts immediately after landing. Although

there is no report of VEMP after spaceflight in astronauts, cVEMP

amplitude was found to be greater in microgravity during parabolic

flight than in normal gravity (31).

Information from the vestibular (mainly otolith),

proprioceptive, and somatosensory systems helps control

movement of the body and the head when rising from a sitting

position and when walking. We hypothesized that the impairment

in astronauts’ performance during these activities on R + 0

would be due to the malfunctioning of their otolith system

due to adaptation to microgravity (5, 19). Indeed, it has been

proposed that during adaptation to microgravity, otolith inputs

are re-interpreted from head tilts to head translations. Therefore,

when astronauts return to Earth, a head tilt relative to gravity

would initially continue to be interpreted as head translation (32).

This re-interpretation of otolith input impairs the performance of

functional tasks that require accurate otolith cues. In agreement

with this hypothesis, we observed that the performance of

astronauts on R+ 0 was comparable to that of the BVP subjects for

most of the tests.

During the sit-to-stand test, however, the BVP subjects’

performance was better than that of the astronauts on R + 0.

Previous data have shown that postural equilibrium is altered

after spaceflight or head-down tilt bed rest (8). Head-down tilt

bed rest does not affect the information from the semicircular

canals and otoliths. However, even though gravity is present during

bed rest, the head-to-foot axial unloading reduces inputs to the

somatosensory receptors of the feet along with those distributed

throughout the body (33). The bed rest model can therefore be

used to study how the somatosensory system contributes to changes

in static balance. The BVP subjects in our study have presumably

learned to substitute somatosensory information for the missing

vestibular input, a mechanism that has been well demonstrated in

both animal models and vestibular patients (34).

Furthermore, because the cardiovascular system is also

challenged during the sit-to-stand test, the cardiovascular

deconditioning observed after spaceflight and bed rest could

also contribute to postural instability (8). It has been shown that

BVP subjects can use proprioceptor-cardiovascular reflexes as

a substitute for defective vestibulo-cardiovascular reflexes (35).

Therefore, we infer that the larger decrement in the astronauts’

postural stability on the landing day as compared to BVP subjects

reflects the astronauts’ combined changes in their vestibular,

cardiovascular, and somatosensory systems. Inflight proprioceptive

training has been proposed as a countermeasure for mitigating

disorders in postural equilibrium and gait after spaceflight (36).
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FIGURE 1

Time to settle during the sit-to-stand test. Black symbols are individual data. Red bar: mean for bilateral vestibulopathy (BVP) subjects; blue bar: mean
for astronauts before spaceflight (Astro Pre), on landing day (Astro R + 0), and 1 day after landing (Astro R + 1). *p < 0.05.

FIGURE 2

Time to complete the walk-and-turn test. Black symbols are individual data. Red bar: mean for bilateral vestibulopathy (BVP) subjects; blue bar: mean
for astronauts before spaceflight (Astro Pre), on the landing day (Astro R + 0), and 1 day after landing (Astro R + 1). *p < 0.05.

The tandem walk test was performed to assess changes in

dynamic balance control. An impairment in the ability to maintain

balance during tandem stance on rails has been observed in

astronauts after short-duration spaceflights and after the Apollo

missions to the Moon and in subjects after prolonged head-

down bed rest (37, 38). Similarly, tandem heel-to-toe walking is

significantly impaired after prolonged head-down bed rest and

after spaceflight (8, 19). Our results showing similar performance

decrements in astronauts on R + 0 and in BVP subjects (with both

the eyes open and the eyes closed) suggest that altered vestibular

inputs (the re-interpretation of otolith inputs due to spaceflight or

the loss of vestibular inputs due to BVP) are the primary cause

of the dysfunction in dynamic balance control. The limitations

of this study are, however, the age difference between groups

and the fact that the BVP subjects had received rehabilitation

therapy (22).
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FIGURE 3

Turn rate around a cone (180 deg) during the walk-and-turn test. Black symbols are individual data. Red bar: mean for bilateral vestibulopathy (BVP)
subjects; blue bar: mean for astronauts before spaceflight (Astro Pre), on the landing day (Astro R + 0), and 1 day after landing (Astro R + 1). *p < 0.05.

FIGURE 4

Percentage of correct steps during the tandem walk test with eyes open. Black symbols are individual data. Red bar: mean for bilateral vestibulopathy
(BVP) subjects; blue bar: mean for astronauts before spaceflight (Astro Pre), on the landing day (Astro R + 0), and 1 day after landing (Astro R + 1). *p
< 0.05.

We observed significant decrements in the time required to

complete the obstacle course during the walk-and-turn test in the

astronauts on landing day, which were comparable to those of BVP

subjects. These decrements are presumably due to a shortening of

step length, as has been reported by other studies of astronauts’

performance of treadmill walking after spaceflight (39). Another

factor that contributes to the longer time needed to complete

the walk-and-turn test is the reduction in the angular velocity

of the body during the turn around the cone. Previous studies

have observed that velocity while walking around the corners of

a triangular path was reduced in astronauts after returning from

short-duration spaceflight (40).

In a previous study, we showed that healthy subjects, including

astronauts before flight, estimated the duration of 1min to be

74.1 ± 19.5 s (12). The estimates of the BVP subjects (55.4 s)

were comparable to those of astronauts during their flight (59.6 s).
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FIGURE 5

Percentage of correct steps during the tandem walk test with eyes closed. Black symbols are individual data. Red bar: mean for bilateral
vestibulopathy (BVP) subjects; blue bar: mean for astronauts before spaceflight (Astro Pre), on the landing day (Astro R + 0), and 1 day after landing
(Astro R + 1). *p < 0.05.

FIGURE 6

Perceived duration of 1min. Black symbols are individual data. Red bar: mean for bilateral vestibulopathy (BVP) subjects; blue bar: mean for
astronauts before spaceflight (Astro Pre), during spaceflight (Astro In), and 1 day after landing (Astro R + 1). *p < 0.05.

The relative underproduction of a 1-min time period by the

BVP subjects and astronauts refers to a relative overestimation

of duration. In other words, these subjects feel that 1-min passes

more quickly than clock time, i.e., time seems to go faster.

We hypothesized that the change in time perception by the

astronauts while in space could be due to reduced vestibular

stimulations and slower motions (12), which is also the case in

BVP subjects.

Altered time perception has been demonstrated in patients

with schizophrenia (41), depression (42, 43), traumatic brain

injury (44), attention-deficit/hyperactivity disorder (AHDH) (45),

autism (46), Huntington’s disease (47), multiple sclerosis (48),

and Alzheimer’s disease (49). However, this is the first time that

an altered time perception has been characterized in vestibular

patients. Evidence exists that vestibular stimulation alters time

perception. For example, it has been shown that whole-body passive
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FIGURE 7

Reaction time to a visual target. Black symbols are individual data. Red bar: mean for bilateral vestibulopathy (BVP) subjects; blue bar: mean for
astronauts before spaceflight (Astro Pre), during spaceflight (Astro In), and 1 day after landing (Astro R + 1). *p < 0.05.

rotations affect the timing of sensory input (50) and the timing

of motor responses as assessed with a paced finger-tapping task

(51, 52). Moreover, growing, but still scarce, evidence exists of links

between spatial processing and time perception (53).

A longer reaction time than healthy individuals has previously

been observed in vestibular patients (54–56) and astronauts

during spaceflight (24, 57–60), which confirms that the altered

inputs from the otolith during exposure to microgravity could

be responsible for the increase in reaction time seen in

the astronauts.

Prior to the first human spaceflight, NASA and the U.S.

Naval School of Aviation Medicine tested the response of 11

deaf men from Gallaudet University to various motion stressors

(parabolic flight, human disorientation device, slow rotating room,

and ships) to identify the role of the vestibular system in motion

sickness. All these subjects had become deaf early in their lives

due to spinal meningitis, which damaged the inner ear. The key

findings from this research identified that subjects with non-

functioning vestibular end organs showed no signs of motion

sickness in rotating environments (61) or in severe storms at

sea (62) and had a negligible change in performance associated

with the slow rotation of a room (63). These observations are

at the origin of the sensory mismatch hypothesis, the most

widely accepted theory on motion sickness (64). Today, the

space agencies are preparing human missions to the Moon and

Mars. Once again, studies of vestibular patients help to elucidate

the role of the vestibular system during the critical phases of

these missions. Since the performance of the BVP subjects and

astronauts is similar, BVP subjects could be used as test subjects

in designing and testing the sort of tasks that astronauts might

have to perform (or avoid) immediately upon being exposed

to gravity.

The tests used in this study were selected to simulate functional

tasks that a crewmember may be required to perform when

they return to Earth or when they land on another planet,

such as emergency capsule egress (65). These tests challenged

balance control and cognition, i.e., functions that are vital for

the performance of critical operational tasks immediately after

landing on a planetary surface. The aerobic and resistance

exercises performed on board the International Space Station

do not fully protect against multisystem deconditioning (66).

In addition, the results of NASA’s field test study indicate that

up to 15% of astronauts are not able to perform mission-

critical tasks shortly after returning from spaceflight (17, 67).

Therefore, a sensorimotor countermeasure that provides

vestibular and somatosensory training may be required to

ensure a safe level of balance control during the first hours

after landing.
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