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Background: Alzheimer’s disease (AD) and amnestic mild cognitive impairment

(aMCI) are characterized by abnormal functional connectivity (FC) of default-

mode network (DMN), salience network (SN), and central executive network (CEN).

Static FC (sFC) and dynamic FC (dFC) combined with triple network model can

better study the dynamic and static changes of brain networks, and improve its

potential diagnostic value in the diagnosis of AD spectrum disorders.

Methods: Di�erences in sFC values and dFC variability patterns among the three

brain networks of the three groups (53 AD patients, 40 aMCI patients, and 40 NCs)

were computed by ANOVA using Gaussian Random Field theory (GRF) correction.

The correlation between FC values (sFC values and dFC variability) in the three

networks and cognitive scores (MMSE and MoCA) in AD and aMCI groups was

analyzed separately.

Results: Within the DMN network, there were significant di�erences of sFC values

in right/left medial superior frontal gyrus and dFC variability in left opercular

part inferior frontal gyrus and right dorsolateral superior frontal gyrus among the

three groups. Within the CEN network, there were significant di�erences of sFC

values in left superior parietal gyrus. Within the SN network, there were significant

di�erences of dFC variability in right Cerebelum_7b and left opercular part inferior

frontal gyrus. In addition, there was a significant negative correlation between FC

values (sFC values of CEN and dFC variability of SN) and MMSE and MoCA scores.

Conclusion: It suggests that sFC, dFC combined with triple network model can

be considered as potential biomarkers for AD and aMCI.

KEYWORDS

Alzheimer’s disease, amnestic mild cognitive impairment, functional connectivity,

dynamic FC, default-mode network

Introduction

The onset of Alzheimer’s disease (AD) causes cognitive decline, personality changes and

behavioral and psychological symptoms, seriously affects the quality of life, significantly

increases all-cause mortality, and is an important factor for mortality and disability in the

elderly, which has caused a huge economic burden. Amnestic mild cognitive impairment

Frontiers inNeurology 01 frontiersin.org

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2023.1284227
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2023.1284227&domain=pdf&date_stamp=2023-11-17
mailto:hangzhoudzx73@126.com
mailto:liaozhengluan@163.com
https://doi.org/10.3389/fneur.2023.1284227
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fneur.2023.1284227/full
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Feng et al. 10.3389/fneur.2023.1284227

(aMCI) individuals present with memory decline and cognitive

decline in elderly who do not meet the criteria for AD. It

is considered to be the prodromal stage of AD. Resting-state

functional magnetic resonance imaging (rs-fMRI) is a non-invasive

method and do not use radioactive contrast agents. Rs-fMRI

uses blood oxygen level-dependent (BOLD), and the difference

of susceptibility between arterial blood and venous blood can be

used as an intrinsic contrast agent under certain conditions. The

impairment of neuronal function caused by AD can disconnect

brain functional areas. Therefore, brain functional connectivity

(FC) research has become an important method to observe the

changes of brain function in AD.

In 2011, Menon proposed the concept of “triple network

model” including default-mode network (DMN), salience network

(SN), and central executive network (CEN) (1). The three networks

closely interact to regulate human cognitive and affective states. The

resting-state networks composed of PCC, medial prefrontal cortex

and inferior parietal lobule was called DMN (2). The DMN is the

most active network when the brain is not in a task, which can

monitor the changes of the internal environment, automatically

collect information from the external environment, process and

store it (3). The ECN, which includes the posterior parietal cortex

and dorsolateral prefrontal cortex, is involved in episodic memory

retrieval and psychological processes of self-reference and plays a

role in decision making in goal oriented behavior (4). In addition,

the SN is composed of the frontal insular cortex and the dorsal

anterior cingulate cortex, in the various internal and external

stimulation to identify the most relevant stimulus to guide behavior

(5, 6). In most of the fMRI studies, the DMN has attracted the most

attention because we can observe changes in its FC in AD,MCI, and

high-risk AD subjects (7, 8). In healthy young populations, the SN

has been reported to drive the DMN and CEN in both resting and

task states (9). Zhou et al. reported increased FC within the SN in

AD group (10). Recent studies have revealed changes in directional

FC within and among the three brain networks in AD and MCI

(11, 12). Further studies on the alterations of the triad network

pattern in AD and aMCI will help us to better understand their

brain network pathological mechanisms.

In the seed-based method, the researcher selects a region of the

brain of interest and then extracts the activation time course. This

time course was then tested for correlation with the time course of

other brain voxels (13). Those regions that showed a high positive

correlation with seed points were considered functionally coupled.

There are many seed-based methods for studying the FC in AD and

MCI patients (5, 14–17). After a large number of studies, analysis

of rs-fMRI data based on independent component analysis (ICA)

has been used to identify intrinsic network connectivity well (18–

21). Both the seed and ICA methods tended to reveal the same

networks. ICA can detect multiple brain networks simultaneously,

but separating noise-related components and determining the

optimal number of components is not standard (22).

Recent studies have found that resting state FC has periodic

changes in strength and direction. Chang and Glover showed that

the correlation and FC timing of the posterior cingulate gyrus and

other DMN nodes would change with time (23). Previous rs-fMRI

studies showed that brain FC can change transiently within a short

time window, which called dynamic FC (dFC) (24). Dynamic FC

has become an important indicator in rs-fMRI studies by capturing

time fluctuations in brain FC during MR scanning (24). At present,

a variety of methods can be used to study dFC, among which

the sliding time window technique is the most widely used one

to evaluate the correlation between points of interest or voxels

under different time windows (25). Prior studies have shown that

quantifying dFC patterns may be a sensitive biomarker to assess

disease progression (26, 27). Wang et al. have combined static

FC (sFC) and dFC to analyze the abnormalities in the anterior

and posterior hippocampus of subjective cognitive decline (SCD)

patients (16). A study have found that both aMCI and SCD show

varying degrees of dFC variability in triple network model (17).

There have been some studies using sFC or dFC to study brain

networks in AD spectrum diseases (17, 28–31), but there are very

few studies combining the two.

In the present study, we aimed to use rs-fMRI data to

discovery the static and dynamic FC changes of DMN, SN and

CEN in AD and aMCI, and to reveal the evolution rules of

the sFC and dFC of the three networks in the process of AD,

in order to provide strong neuroimaging evidence in the early

diagnosis. In addition, the correlation between FC values (sFC

values and dFC variability) in the three networks and cognitive

scores (MMSE and MoCA) in AD and aMCI patients will be

analyzed separately.

Materials and methods

Study cohort

From September 2016 to February 2020, 63 patients with AD

and 45 patients with aMCI were enrolled in Zhejiang Provincial

People’s Hospital. A total of 44 normal controls (NC) were

recruited. This study was approved by the Ethics Committee

of Zhejiang Provincial People’s Hospital (No. 2012KY002). All

procedures in accordance with the declaration of Helsinki. All

subjects were right-handed and gave written informed consent

prior to the experiment. All participants performed routine

brain magnetic resonance imaging (MRI), Mini-mental state

examination (MMSE), and Montreal cognitive assessment scale

(MoCA). The inclusion and exclusion criteria for AD, aMCI

and NC were referred to our previous study (32). AD inclusion

criteria: patients with AD met the revised NINCDS-ADRDA

(National Institute of Neurological and Communicative Disorders

and Stroke and the Alzheimer’s Disease and Related Disorders

Association) criteria for “probable AD” with MMSE score

≤24 and MoCA score ≤26. AMCI inclusion criteria: chief

complaint memory impairment; the clinical manifestations

were normal; MMSE score >24 and ≤27. Admission criteria

for NC subjects: no neurological defects such as hearing or

vision impairment; no stroke, epilepsy, depression or other

neurological or psychiatric diseases; conventional brain MRI

showed no infarction, hemorrhage, tumor lesions; MMSE

score ≥28.

Some subjects with missing images or head movement (6

AD, 3 aMCI, and 3 NCs) and subjects with missing mental

scale data (4 AD, 2 aMCI, and 1 NC) were excluded. Finally,

53 patients with AD, 40 patients with aMCI, and 40 NCs

were enrolled.
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TABLE 1 Demographics performances of the three groups.

AD aMCI NC p value post hocc

Sample size 53 40 40 NA NA

Age (years, mean± SD) 66.830± 7.849 66.225± 8.313 65.850± 9.178 0.851 b NA

Gender (Male: Female) 20: 33 23: 17 19: 21 0.166a NA

Education (years, mean± SD) 7.359± 4.359 7.350± 3.051 7.375± 3.378 1.000b NA

MMSE 18.717± 4.538 26.275± 0.877 28.950± 0.904 <0.001b NC>aMCI>AD

MoCA 5.492± 0.754 22.650± 2.327 27.350± 1.350 <0.001b NC>aMCI>AD

ap-values for the chi-square test; bp-value for the analysis of variance; cPost hoc testing obtained by Bonferroni correction. AD, Alzheimer’s disease; aMCI, amnestic mild cognitive impairment;

NC, normal controls; SD, standard deviation; MMSE, mini-mental state examination; MoCA, Montreal cognitive assessment scale.

TABLE 2 ANOVA results across the three groups in static FC in DMN and CEN.

Brain
network

Anatomical region Number of voxels Peak MNI coordinates
(x, y, z)

Peak intensity

DMN Right/Left SFGmed 46 3, 42, 36 11.679

CEN Left SPG 48 −27,−54, 60 11.100

DMN, default mode network; CEN, central executive network; MNI, Montreal Neurological Institute; SFGmed, medial superior frontal gyrus; SPG, superior parietal gyrus.

FIGURE 1

Static FC results among the three groups. (A) Brain regions with significant di�erences in sFC values in DMN network. (B) Brain regions with

significant di�erences in sFC values in CEN network. FC, functional connectivity; sFC, static FC; DMN, default mode network; CEN, central executive

network; SFGmed, medial superior frontal gyrus; SPG, superior parietal gyrus.

MRI acquisition

Data acquisition was performed using a Discovery MR750

3.0 T MR scanner with a standard head coil. In order to rule out

relevant brain diseases, routine brain MRI scans were performed

first. Then we collected the high-resolution three-dimensional

T1-weighted magnetization-prepared rapid gradient echo (3D-

T1 MPRAGE) sequence. The scanning parameters: echo time

(TE) = 2.9ms, repeat time (TR) = 6.7ms, turnover Angle

= 12◦, inversion time (TI) = 450ms, FOV = 256 × 256
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FIGURE 2

Post hoc comparisons of analysis of variance. The connection

between two pillars represents significant between-group

di�erences (* P < 0.05, ** P < 0.01, Bonferroni correction). The

error bars refer to the standard error. sFC, static functional

connectivity; AD, Alzheimer’s disease; aMCI, amnestic mild cognitive

impairment; NC, normal controls; DMN, default mode network;

CEN, central executive network.

mm2, layer thickness/layer spacing = 1/0mm. Matrix = 256

× 256, total 192 layers of sagittal sections. Finally, rs-fMRI

sequence acquired using echo plane imaging (EPI). Scanning

parameters: TE = 30ms, TR = 2,000ms, turnover Angle =

90◦, FOV = 220 × 220 mm2, and layer thickness/layer spacing

= 3.2/0mm. It contained 210 time points, each of which

had 44 slices. The subjects were asked to remain still, not

to have any thought activity and not to fall asleep during

the scanning.

Preprocessing of rs-fMRI

Rs-fMRI Data was preprocessed based on Data Processing

& Analysis for Brain Imaging (DPABI) (33) based on MATLAB

(Matrix Laboratory) platform including the following steps: (1)

Convert DICOM to NIFTI format; (2) Delete the first 10 time

points; (3) Level time correction and head motion correction; (4)

Standardization to MNI standard space using 3D-T1 MPRAGE

images, resampling is 3mm × 3mm × 3mm; (5) Eliminate

linear trends; (6) a noise removal including white matter signals,

cerebrospinal fluid signals, and Friston-24 headmotion parameters;

and (7) bandpass filtering (0.01–0.1 Hz).

Estimation of static and dynamic functional
connectivity

We used a seed-based approach to extract DMN, SN and CEN.

The definition of the three seeds in three networks was based on

previous fMRI studies (5, 34). The seed of DMN was set at the

posterior cingulate cortex (PCC) (χ= 0, y=−53, z= 26). The seed

of SN was set in the dorsal anterior cingulate cortex (dACC) (χ =

10, y= 34, z= 24). The seed of the CEN was set in the dorsolateral

prefrontal cortex (dlPFC) (χ= 30, y= 12, z= 60). The diameter of

the seed point was set to 6 mm.

Static FC calculation process was as follows: The Pearson

correlation coefficient between the time series of voxels within each

seed point and the time series of each voxel in the whole brain was

determined, reflecting the brain static connectivity pattern.

The dFC model was characterized using the sliding window

method, which cuts the ROI time series into several short segments.

The coefficient of variation (CV) map was computed across time

windows. In order to be consistent with the previous dynamic rs-

fMRI studies (35–38), we used a 50 TR sliding window length and

a 2 TR step length. We have further verified our results using 60 TR

sliding window length and a 2 TR step size and added the figures

for validation in the Supplementary Figures 1, 2. For each sliding

window, a correlation plot was generated by calculating the time

correlation coefficients between the truncated time series of seed

points in the three brain networks and all other voxels. Then, the

CV map was calculated to quantify variability of dFC. To improve

the normality of the correlation distribution, each correlation graph

was converted to a z-valued map using Fisher’s r-to-z transform.

Finally, a 6mm full width at half maximum Gaussian kernel was

used for smoothing.

Statistical analysis

The statistics of demographic and psychiatric scales were

performed on SPSS 22.0 software. Analysis of variance (ANOVA)

was used to compare age, education level, MMSE score, and MoCA

score among AD, aMCI, and NC groups. The data of demographic

variables were classified by Chi-square test. A post hoc test was then

performed for statistically significant differences.

We have performed one sample T tests first in all three groups

and observed typical DMN, CEN, and SN patterns. We have

included the relevant figures in the Supplementary Figures 3–11.

Differences in sFC values and dFC variability patterns among the

triple networks of the three groups were computed by ANOVA

on DPABI based on MATLAB. We regressed four covariates: age,

sex, education level, and head movement. A gray matter template

was applied to remove interference such as white matter and

cerebrospinal fluid. The resultant F-maps were thresholded using

Gaussian Random Field theory (GRF) correction with voxel P <

0.001 and cluster P < 0.05. The brain regions with significant

inter-group differences were then examined post hoc test using

SPSS software. Select Bonferroni correction to adjust for multiple

comparisons (P < 0.01).

The correlation between FC values (sFC values and dFC

variability) of the three brain networks and cognitive scores (MMSE

and MoCA) in patient groups (AD and aMCI) was analyzed

separately regressed out the effects of head movement, age, gender,

and education. Bonferroni correction was further used, and P <

0.01 was considered statistically significant.

Results

Demographic and cognitive scale data

The demographic and cognitive scale data of all study subjects

were shown in Table 1. Among the three groups, there were
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TABLE 3 ANOVA results across the three groups in dynamic FC variability in DMN and SN.

Brain
network

Anatomical region Number of voxels Peak MNI coordinates
(x, y, z)

Peak intensity

DMN Left IFGoperc 116 −54, 12, 3 15.037

DMN Right SFGdor 36 21, 9, 63 11.509

SN Right Cerebelum_7b 23 24,−78,−51 11.0924

SN Left IFGoperc 11 −30, 12, 27 9.503

DMN, default mode network; SN, salience network;MNI,Montreal Neurological Institute; IFGoperc, opercular part inferior frontal gyrus; SFGdor, dorsolateral superior frontal gyrus; IFGoperc,

opercular part inferior frontal gyrus.

no significant differences in age, gender, and education level (P

> 0.05). However, MMSE and MoCA scores were significantly

different (P < 0.05). Post hoc analysis showed that the AD group

had the worst performance in MMSE andMoCA scores (P < 0.05).

Static FC results of the triple networks

ANOVA results across the three groups in sFC were showed

in Table 2. Within the DMN network, we observed significant

differences in sFC values of right/left medial superior frontal gyrus

(SFGmed) among three groups (GRF correction, voxel P < 0.001,

cluster P < 0.05) (Figure 1A). Post hoc analyses showed significant

differences in sFC values between AD vs. aMCI and between aMCI

vs. NC (Bonferroni correction, P < 0.01) (Figure 2). Within the

CEN network, we observed significant differences in sFC values

of left superior parietal gyrus (SPG) among three groups (GRF

correction, voxel P < 0.001, cluster P < 0.05) (Figure 1B). Post

hoc analyses showed significant differences in sFC values between

AD vs. aMCI (Bonferroni correction, P < 0.01) and between aMCI

vs. NC (Bonferroni correction, P < 0.05) (Figure 2). In the SN

network, no brain region was found to be significantly different

among the three groups.

Dynamic FC results of the triple networks

ANOVA results across the three groups in dFC variability

were showed in Table 3. Within the DMN network, there were

significant differences in dFC variability of left opercular part

inferior frontal gyrus (IFGoperc) (DMN1) and right dorsolateral

superior frontal gyrus (SFGdor) (DMN2) among three groups

(GRF correction, voxel P < 0.001, cluster P < 0.05) (Figures 3A, B).

Post hoc analyses showed significant differences in dFC variability

between AD vs. aMCI (Bonferroni correction, P < 0.01) and AD

vs. NC (Bonferroni correction, P < 0.01) (Figure 4). Within the

SN network, there were significant differences in dFC variability of

right Cerebelum_7b (SN1) and left opercular part inferior frontal

gyrus (IFGoperc) (SN2) among the three groups (GRF correction,

voxel P < 0.001, cluster P < 0.05) (Figures 3C, D). Post hoc

analyses showed significant differences in dFC variability between

AD vs. aMCI (Bonferroni correction, P < 0.01) and aMCI vs.

NC (Bonferroni correction, P < 0.01) for right Cerebelum_7b,

AD vs. NC (Bonferroni correction, P < 0.01) and aMCI vs. NC

(Bonferroni correction, P < 0.05) for left IFGoperc (Figure 4).

In the CEN network, there was no brain region found to be

significantly different among the three groups.

Correlation between mental cognition
scales and static and dynamic FC

There was a significant negative correlation between sFC value

of CEN (Left SPG) and MMSE and MoCA scores (P < 0.01,

Bonferroni correction). There was a significant negative correlation

between dFC value variability of SN1 (right Cerebelum_7b) and

MMSE and MoCA scores (P < 0.01, Bonferroni correction)

(Figure 5).

Discussion

To our knowledge, the current study is one of the few that

combines sFC and dFC and the triple networkmodel to analyze AD

and aMCI patients. The main findings of this study were that sFC

and dFC variability within the three brain networks were altered to

varying degrees. Furthermore, alterations in sFC within the CEN

and dFC variability within the SN were significantly associated

with cognitive scores in AD and aMCI patients. Most importantly,

alterations in sFC and dFC variability, in combination with the

triple network model, can be important biomarkers to improve the

efficiency of diagnosing AD and aMCI.

Static FC alteration of the triple networks

The human brain is connected through a complex network of

functions that depend on each other to maintain cognitive function

(39). Therefore, studying the static and dynamic states of brain

functional network can better reflect the connectivity and activity

of the resting state of the human brain, providing the basis for a

more comprehensive understanding of the brain network in AD

disease. In our previous study of 32 patients with AD, 26 patients

with aMCI, and 58 NCs using rs-fMRI to detect directional FC

in DMN, the AD group showed enhanced directional FC from

the whole brain to the PCC, and weakened directional FC from

the PCC to the whole brain within the DMN compared to the

control group (34). Within the DMN network, the current study

showed that there were significant differences in sFC values of
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FIGURE 3

Dynamic FC results among the three groups. (A, B) Brain regions with significant di�erences in dFC variability in DMN network. (C, D) Brain regions

with significant di�erences in dFC variability in SN network. FC, functional connectivity; dFC, dynamic FC; DMN, default mode network; SN, salience

network; IFGoperc, opercular part inferior frontal gyrus; SFGdor, dorsolateral superior frontal gyrus; IFGoperc, opercular part inferior frontal gyrus.

right/left SFGmed. SFGmed is also a node of the DMN and is

involved in its task processing. Post hoc tests showed that sFC values

were significantly different between aMCI and NC, and the value

of aMCI was elevated, suggesting the existence of compensation.

Within the CEN network, there were significant differences in

sFC values in left SPG. The functions of the CEN include: goal-

directed cognition, inhibition, working memory, and task switch.

The SPG is the somatosensory association cortex, which is related

to spatial localization. Post hoc tests showed that sFC of SPG

significantly decreased in aMCI compared to NC, suggesting that

sFC is disrupted in the early stage of AD. As the disease progresses,

sFC values increased, which is consistent with previous static FC

studies (40), the increase in FC in AD stage may be a functional

compensation after neurodegeneration.
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Dynamic FC alteration of the triple
networks

Within the DMN network, the dFC variability in left IFGoperc

and right SFGdor showed significant differences among the

three groups. Brain area IFG plays an active role in emotion

regulation. SFGdor is involved in various cognitive activities,

FIGURE 4

Post hoc comparisons of analysis of variance. The connection

between two pillars represents significant between-group

di�erences (* P < 0.05, ** P < 0.01, Bonferroni correction). The

error bars refer to the standard error. dFC, dynamic functional

connectivity; AD, Alzheimer’s disease; aMCI, amnestic mild cognitive

impairment; NC, normal controls; DMN, default mode network; SN,

salience network.

mainly working memory, attention allocation, and cognitive

manipulation execution. The SFGdor is also a key node of the

DMN and the CEN. Within the SN network, there were significant

differences in dFC variability of right Cerebelum_7b and left

IFGoperc. SN plays an important role in identifying important or

prominent information. A follow-up study showed that abnormal

cerebellar FC is a more sensitive indicator of dysfunction in

aMCI patients (41). An other study revealed that different rsFC

patterns in cognitive-related sub-regions of the cerebellum (42).

Cerebellar lesions may be part of the pathogenesis of aMCI, and

more studies are needed to confirm the role of the cerebellum

in AD spectrum disorders. Variability of dFC in the present

study represents network flexibility. A larger CV indicates a more

flexible network, while a smaller CV indicates a more stable

network. From the results, the variability of dFC in DMN and

SN2 was highest in NC, which indicates that the dynamic DMN

and SN2 of NC group has higher flexibility. On the contrary, for

dynamic SN1, we observed a similar pattern to static CEN, that is,

compared with AD and NC, aMCI has the smallest dFC variability,

which indicates that the dynamic SN1 of aMCI group has

higher stability.

While most previous seed-based rs-fMRI studies have focused

on the DMN, our study simultaneously included both DMN, SN,

and CEN. We can speculate that AD and aMCI patients have

both common and unique disruptions in the triple network. These

three networks are directly or indirectly involved in cognitive tasks

in the brain. Disruption of any of the three networks leads to

abnormal internal psychological events and goal-related stimuli

FIGURE 5

Correlation between MMSE score and static and dynamic FC (A, B). Correlation between MoCA score and static and dynamic FC (C, D). FC,

functional connectivity; MMSE, mini-mental state examination; MoCA, Montreal cognitive assessment scale; CEN, central executive network; SN,

salience network.
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(43). Dynamic FC can capture repeated FC patterns that occur

spontaneously and provide details such as FC strength or spatial

dynamic properties that are averaged out in static brain network

analysis (44). However, the changes in sFC and dFC within the

triple network in AD and aMCI patients are not consistent. Other

studies have found that SCD and aMCI groups have altered dFC

variability in all three networks compared with healthy controls

(17). However, the corrected test method they used in the ANOVA

was not very rigorous, and they did not include static FC in

the study. Although we did not find brain regions with altered

sFC in the SN and altered dFC in the CEN, which may be

related to the relatively strict GRF correction we adopted or the

small sample size we included. In short, sFC combined with dFC

provides a new entry point for further exploring the dynamic

and static changes of neurons in the brain and revealing the

pathogenesis of AD.

Correlation between mental cognition
scales and FC

There was a significant negative relevance between FC values

(sFC values of CEN and dFC variability of SN1) and MMSE

and MoCA scores. Among them, we found a negative correlation

between dynamic SN1 and cognition, which indicates that smaller

variability (higher stability) is more beneficial to cognition.

However, we did not find a correlation between static and dynamic

FC of DMN and cognition. Binnewijzend et al. suggested that DMN

FC changes are associated with cognitive decline (45). A recent

study also reported a correlation between intrinsic FC and cognitive

function, which found that stronger FC between the PCC and the

medial prefrontal lobe was associated with better performance of

working memory (46). The connectivity changes in the dFC state

reflect the complex neuroregulatory mechanism in the brain and

are closely related to behavior.

Limitations

There are still some limitations to our study. First, we

lack pathological biomarkers and genetic data. Secondly, using

a large number of nuisances regressors in rs-fMRI may lead

to overfitting the data, resulting in removing the signal of

interest. Finally, our sample size was small. The correlation

analysis was performed only in the AD+aMCI groups, not

separately among the three groups. In the future, we will recruit

more subjects, and conduct follow-up, while collecting AD

pathological and genetic data to further confirm the results of

this study.

Conclusion

In summary, the current study is one of the few to combine

sFC and dFC and triple network models to analyze patients

with AD and aMCI. Our study found that the variability

of sFC and dFC within the triple network model was

altered to varying degrees in AD and aMCI. Our study also

demonstrated that alterations in sFC and dFC of the triple

network model were significantly associated with cognitive

performance in AD and aMCI patients. Therefore, it suggests

that sFC, dFC combined with the triple network model

can be considered as neuroimaging biomarkers for AD and

aMCI diagnosis.
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