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DMD deletions underlining mild
dystrophinopathies: literature
review highlights
phenotype-related mutation
clusters and provides insights
about genetic mechanisms and
prognosis

Fernanda Fortunato, Laura Tonelli, Marianna Farnè, Rita Selvatici

and Alessandra Ferlini*

Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy

DMD gene pathogenic variations cause a spectrum of phenotypes, ranging from

severe Duchenne muscular dystrophy, the Becker milder cases, the intermediate

or very mild muscle phenotypes invariably characterized by high CK, and

the ultrarare fully-asymptomatic cases. Besides these phenotypes, X-linked

dilated cardiomyopathy is also caused by DMD mutations. Males carrying DMD

deletions with absent or very mild phenotypes have been sparsely described.

We performed a horizon scan on public datasets to enroll males with the

above phenotypes and carrying DMD deletions to delineate myopathic genotype-

phenotype relationships. We inventoried 81 males, who were divided into the

following clinical categorization: fully-asymptomatic males aged >43 years (A, N

= 22); isolated hyperCKemia (CK, N = 35); and mild weakness (any age) with or

without high CK (WCK, N = 24). In all cases, deleted intervals were exons 2 to 55,

and no downstream exons were ever involved, apart from an exon 78 deletion

in a WCK patient. All deletions were in-frame apart from the known exception to

the rule of exon 2 and exon 78. We correlated the mild phenotypes (A and CK)

to deleted exons, intronic breakpoints, exon-exon junctions, 3′ isoforms rule, and

protein epitopes, and we found that some genetic profiles are exclusively/mainly

occurring in A/CK phenotypes, suggesting they are compatible with a quasi-

normal muscular performance. We discussed diverse pathogenic mechanisms

thatmay contribute tomild dystrophinopathic phenotypes, andwe tried to address

some “critical” genetic configurations or exon content needed to preserve a

semi-functional DMD gene.

KEYWORDS

dystrophinopathy, DMD, BMD, DMD gene, asymptomatic, hyperCKemia, mild weakness,

genetic prognosis

Introduction

Duchenne Muscular Dystrophy (DMD) is a severe X-linked recessive disorder, affecting

1 out of 5,000 males born worldwide, caused by mutations in the DMD gene. Located on the

short arm of the X chromosome (cytogenetic location: Xp21.2-p21.1), the DMD gene is one

of the largest known genes in the human genome, being 2.220.166 bp long, and is composed

of 79 exons encoding the 427 kDa giant dystrophin protein (1).
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Its protein product, the cytoskeleton protein dystrophin, is

a component of the dystrophin-glycoprotein complex (DGC),

a large multi-component complex with an essential role in

the maintenance of the sarcolemma and mediating interactions

between the cytoskeleton, membrane, and extracellular matrix (2).

Loss of the DGC, caused by the absence of dystrophin, provokes a

cascade of cell dysfunctions resulting in loss of physical integrity of

muscle cells and contraction-induced muscle degeneration (3).

Due to the enormous size of the DMD gene, the mutation rate

is relatively high, with approximately 1/3 of mutations occurring

de novo and the remaining 2/3 of mutations being inherited from

carrier mothers or arising from germline mosaicism (4). Mutations

can be of large intragenic deletions (∼65%), duplications (∼10%),

small mutations (∼25%), and rare deep intronic mutations and

complex rearrangements (< ∼1%) (5).

Clinically, DMD patients manifest a progressive disease

characterized by muscle mass wasting and severe weakness that

starts in early childhood. Loss of independent ambulation (LoA)

generally occurs around 12 years old, and cardiorespiratory failure

is the main cause of death (6). In addition to progressive

muscular degeneration, a DMD clinical phenotype is more

often characterized by cognitive dysfunction, neuropsychological

problems (anxiety, depression, and emotional disturbance), and

neurobehavioral abnormalities (autism spectrum, attention-deficit

hyperactivity disorder, and obsessive-compulsive disorder) (7).

The milder, allelic form of the condition, Becker muscular

dystrophy (BMD), presents, like DMD, with a predominant

proximal distribution of muscle weakness and wasting; however,

the course is more benign and heterogeneous with a wide

spectrum of clinical presentations that range from delayed loss of

independent ambulation to almost asymptomatic cases with only

elevated activity of creatine kinase (CK).

Serum CK is commonly used as a screening biomarker to

detect patients with suspected dystrophinopathies early. However,

it may not be optimal in monitoring disease progression and

response to therapy; indeed, its serum levels greatly vary

depending on sarcolemma damage, remaining muscle mass,

environmental factors (such as metabolic changes, muscle trauma,

and exercise), and aging. Besides CK, muscle-injury proteins

specifically expressed in other tissues (e.g., the heart) could

be useful in providing information about cardiac involvement.

Particularly among these, cardiac troponin I (TNNI3) and

Interleukin 1 Receptor-Like 1 Protein (ST2), being associated

with cardiac degeneration, are potential biomarkers for cardiac

injury (8).

Indeed, a common complication of both DMD and BMD is

dilated cardiomyopathy (DCM), the severity of which may also

depend on mutation type and location (9). Very mild or even

asymptomatic individuals carrying DMD mutations are singularly

Abbreviations: DMD, Duchenne Muscular Dystrophy; BMD, Becker Muscular

Dystrophy; XLDC, X-linked dilated cardiomyopathy; DGC, dystrophin-

glycoprotein complex; LoA, Loss of independent ambulation; DCM, dilated

cardiomyopathy; A, Asymptomatic; CK, Isolated HyperCKemia; WCK, mild

weakness with or without high CK; EEJs, exon-exon junctions; EJC, exon

junction complex; mRNP, messenger ribonucleoprotein; NMD, nonsense-

mediated mRNA decay; WGS, Whole genome sequencing.

reported in the literature and only a few papers have attempted a

more systematic case review.

Waldrop et al. conducted a review of patients with

dystrophinopathy in published literature and unpublished

databases to define phenotypic features of patients with exon

51 “skip-equivalent” deletions, identifying a wide phenotypic

variability which included asymptomatic patients, isolated

hyperCKemia, and isolated dilated cardiomyopathy (10).

An integrated diagnostic workflow in an Italian multicenter

study evaluating patients with asymptomatic or minimally

symptomatic hyperCKemia has led to the identification of three

male patients carrying pathogenic variants in the DMD gene (11).

Tuffery-Giraud et al. described data from the French UMD–

DMD database including DMD molecular defects and clinical

characteristics of 2405 patients with dystrophinopathy at a

nationwide level: only one asymptomatic male patient was

identified (12).

Recently, an extensive systematic review of genotype-

phenotype correlations in patients with dystrophinopathy

was performed in order to identify phenotypic severity

predictors to provide clinicians with information about disease

progression (13).

To review these atypical cases, we performed a horizon

scan on public datasets, including PubMed and LOVD, and

also added our internal patient series of 1,200 males carrying a

DMDmutation to delineate genotype-phenotype relationships. We

inventoried 81 males, and in order to define genotype-phenotype

correlation, we proposed the following clinical categorization: (A)

= fully-asymptomatic males aged >43 years; (CK) = isolated

hyperCKemia; and (WCK) = mild weakness (any age) with or

without high CK. The results are shown in this review with

consideration to dystrophinopathy pathogenesis and roles in the

phenotype spectrum some critical exons may play.

Literature search and clinical
categorization

Based on a literature horizon scan, we inventoried all

male cases reported to be carrying a DMD deletion and with

a non-DMD/BMD phenotype. A literature search in PubMed

(14) was conducted using the following queries: “DMD” AND

“Asymptomatic” OR “HyperCKemia” OR “Mild phenotype”.

Another search was performed in the LOVD DMD database (15)

by selecting patients from the “hCK” category.

This literature search led to the identification of patients by

published papers and reports; the internal database including 1,200

DMD diagnoses was also consulted.

The identified patients were classified into the following

subgroups: fully-asymptomatic patients >43 years old (A);

asymptomatic patients with hyperCKemia (CK); and patients with

mild muscle phenotype (weakness, calf hypertrophy, or muscle

cramps) with or without hyperCKemia (WCK).

To enroll asymptomatic adults, we decided to adopt an age

cut-off of >43 years which is based on literature data since all

asymptomatic individuals reported in the landscaped articles were

aged 43 or more.
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Patients’ cohort

Based on our literature horizon scan, we were able to identify

81 patients divided into the following clinical categories: 22A, 35

CK, and 24 WCK. Clinical phenotypes and genetic findings of the

identified patients were derived from 11 papers and 16 reports:

in detail, 49 patients were described in original research and 29

patients in reports. Three patients’ data were also collected from

the internal database of our Medical Genetics Unit.

Patients’ clinical phenotypes, genetic findings, and literature

references are reported in detail in Supplementary Table 1.

A, CK, and WCK patients: protein
topography of DMD mutations

Full-length dystrophin is composed of four major domains,

including the N-terminal F-actin-binding domain (ABD; encoded

by exons 1–8), rod (R; encoded by exons 8–64), cysteine-rich (CR;

encoded by exons 64–70), and C-terminal (CT; encoded by exons

71–79) domains.

The rod domain can be further divided into 24 spectrin-like

repeats (R1-R24) and four interspersed hinges (H1-H4) (16). These

hinge regions are found at positions within the protein encoded by

exon 9 and part of exon 8 (hinge 1), exon 17 (hinge 2), and exon

50 to 51 (hinge 3); the hinge 4 sequence has not been definitively

identified (17).

The cysteine-rich domain consists of subdomains WW

(tryptophan-rich domain), EFH1, EFH2 (EF hand domains 1 and

2), and ZZ (zinc finger domain) (18).

In asymptomatic males of our cohort, deleted exons involved

R17-22 repeats (encoded by exons 45–55) and the hinge 3 domain

only; hinge 1 and hinge 2 were never involved in this group

of patients.

While hinge 1 involvement was only found to be associated with

the CK phenotype, deletions clustering in the hinge 2 region were

identified in both CK and WCK patients.

As in asymptomatic patients, deleted exons in CK and WCK

phenotypes mainly involved R17-R22 repeats.

Within the deletions identified in all considered phenotypes (A,

CK, and WCK), none involved hinge 4; similarly, EFH1, EFH2,

WW, ZZ domains, and the C-terminus translation were preserved

in all identified patients since all deleted intervals clustered between

exons 2 to 55 (apart from an exon 78 deletion in a WCK patient).

A, CK, and WCK patients: distribution of
DMD mutations

In the DMD gene, mutations tend to cluster within two major

hot-spot regions with small differences within the different patients’

populations: the region of exons 2–20, where mutations remove

some or all of the actin-binding sites together with a part of the

rod domain (19), and the region of exons 44–55, where mutations

remove part of the rod domain which is essential for the correct

localization of nNOS at the sarcolemma (20).

Among patients identified with A, CK, and WCK phenotypes,

deletions were heterogeneous and substantially overlapped those

already published in other patients’ cohorts with some peculiarities.

Indeed, in all cases of our 81 patients’ cohort, deleted intervals

clustered between exons 2 and 55, and downstream exons were

never involved apart from one patient carrying an exon 78

deletion (exception-to-the-rule).

Both single and multiple exon deletions were observed in our

cohort of patients. Single exon deletions were found in 13 patients

and reported in exon 2 (N= 1), 16 (N= 1), 24 (N= 1), 26 (N= 2),

48 (N= 7), and 78 (N= 1); the most common single exon deletion

occurred in exon 48, having been identified in seven patients.

Multiple exon deletions were reported in 68 patients and varied

greatly. Among them, deletion 45–55 was the most frequent type,

occurring in 17/68 patients.

Distributions of deletions in our cohort thus confirm the well-

known distal hot spot located in the broader region at the 3′ end

of the DMD gene, involving exons 45 to 55. All deletions identified

in our cohort were in-frame apart from the known exception to the

rule of exon 2 and exon 78, which are out-of-frame, though causing

mild phenotypes (21, 22).

The distribution of DMD deletions in patients with A, CK, and

WCK phenotypes is represented in Supplementary Table 2.

A, CK, and WCK patients:
genotype-phenotype correlation

Patients in category A showed deletions involving exon 2 (N =

1), 2–7 (N = 1), 16 (N = 1), 38–44 (N = 2), 45–51 (N = 1), 45–55

(N = 6), 48 (N = 1), 48–51 (N = 3), 48–53(N = 1), 49–51 (N = 1),

50–51 (N= 2), and 51–52 (N= 2).

In categories CK andWCK, deletions were quite heterogeneous

although deletions 45–51 (20.3%) and 45–55 (18.6%) were the

most frequent.

While deletions of exons 50–51 and 51–52 were identified only

in asymptomatic individuals, deletions of exons 45–55 occurred in

all phenotypes (A, CK, and WCK).

This in-frame deletion in the dystrophin central domain has

been described in the literature in asymptomatic subjects and

patients withmore severe muscular involvement or presenting with

significant cardiomyopathy (23–26).

Patients of our cohort substantially overlap this clinical

heterogeneity, being deletions of exon 45–55 reported in all

considered phenotypes (A, CK, and WCK).

The distribution of DMD deletions according to A, CK, and

WCK phenotypes is reported in Figure 1 (27–47).

Discussion

Although the frame rule (and its exceptions) explains the

genotype-phenotype relationship in the majority of DMD gene

pathogenic variations (mutations) causing Duchenne and Becker

muscular dystrophies, intermediate phenotypes, and isolated

cardiomyopathy (XLDC), the etiopathogenesis of sparse and rare

asymptomatic or non-classic dystrophic cases remains largely

unexplained. Understanding the mechanisms underlining these

rare dystrophinopathies is challenging since it would impact

many medical aspects. Therefore, we have reviewed all known

published/public cases carrying DMD deletions and have tried
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FIGURE 1

Distribution of DMD deletions according to patients’ phenotypes (A, CK, and WCK). A, Asymptomatic; CK, Isolated HyperCKemia; WCK, mild weakness with or without high CK, (-): individuals/patients from the

internal database of the UNIFE Medical Genetics Unit.
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to identify common genetic configurations, relationships between

deletions and loss/maintaining of protein domains, the topography

of intronic breakpoint deletions, and novel exon junctions of the

resulting transcripts. It undoubtedly would have been useful to

consider all mutation types; however, a systematic, in silico analysis

of duplications or small variations, whose impact on phenotype

is not unequivocal and could be influenced by other factors (5),

might be difficult and likely not produce consistent relationships

with the phenotype.

Genetic prognosis and clinical validity

Predicting the pathogenic meaning of incidental findings in

the DMD gene often coming from prenatal comparative genomic

hybridization (CGH) testing is important. CGH array has become

a routine exam during pregnancy, both as a screening procedure

and in cases where fetal echography anomalies may occur (4).

Therefore, DMD deletions can be identified in prenatal testing in

couples with no DMD recurrence.

It is to be noted that, in our revised cohort, deletions of exons

50–51 and 51–52 occur in category A only. Deletions of exon 50–51

are described in BMD although the clinical phenotype generally

ranges from very mild to asymptomatic (10, 33, 48). This deletion

belongs to the so-called “skip-51 equivalent” class, which has been

clinically investigated to predict the phenotype resulting from the

exon 51 (eteplirsen drug) skipping. CGH outputs such as exon

50–51 deletions should be considered very mild phenotypes, as

already noted (10). The deletion of exon 51–52 occurs only in

category A as well, but it is a rare deletion found in Caucasian

populations and described in only one BMD patient in China

(5, 49). Our analysis strongly supports that the 51–52 deletion

may be “purely asymptomatic and non-dystrophic”, thus orienting

genetic counseling in case of prenatal incidental findings toward

a benign phenotype. The very rare, isolated exon 2 deletion was

extensively studied as a non-dystrophic mutation since it associates

with the activation of an alternative ATG in exon 6 (21). An exon 16

deletion is also rare and invariably associated with an asymptomatic

phenotype (27); therefore, it is also to be considered a “benign”

non-dystrophic variant.

Genotype data and clinical implications in
DMD

In all of our cases, we observed that deleted intervals were

exons 2 to 55, and no downstream exons were ever involved

apart from an exon 78 deletion (exception-to-the-rule) in a WCK

patient. Obviously, domains downstream exon 55 are intact in

the A, CK, and WCK categories and preserve H4, EFH1, EFH2,

WW, and ZZ domains and the C-terminus translation. These

data also imply that the DMD 3′ Dp71 isoform is never involved

and is always preserved in these phenotypes. This reinforces their

importance in the correct development of muscle function, as

described (50). It is to be noted that the 56–79 region corresponds

to the ancient sea urchin DMD gene, whose function is purely

annelid-striated muscle-related, supporting our observation and

consequent hypothesis that this region is very relevant for muscle

function. Deletions in category A (N = 22) were exon 2 (N = 1),

2–7 (N = 1), 16 (N = 1), 38–44 (N = 2), 45–51 (N = 1), 45–55

(N = 6), 48 (N = 1), 48–51 (N = 3), 48–53 (N = 1), 49–51 (N

= 1), 50–51 (N = 2), and 51–52 (N = 2). Deletions in the CK

and WCK categories vary, where deletion 45–51 represents 20.3%

(12/59) of cases and deletion 45–55 accounts for 18.6% (11/59).

Single exon deletions were exon 2, 16, 24, 26, 48, and 78 in A,

CK, and WCK patients. All deletions were in-frame apart from

the known exception of exon 2 and exon 78. The isolated exon

48 deletion is intriguing since it occurs in two mild cases (A and

CK) as well as in five WCK individuals (Supplementary Table 2).

Exon 48 deletion was studied in many papers and was reported

as a “cardiac deletion” (51). This deletion is predicted to create

a new hinge domain adjacent to the natural hinge 3, which may

heavily impact the protein structure. Indeed, its occurrence in all

mild phenotypes, including some young patients (category WCK),

makes its interpretation difficult. This deletion deserves to be

studied using genome sequencing techniques (see below) to define

the intronic breakpoints and/or eventually concurring complex

rearrangements which may modulate its effect.

We attempted a correlation between introns, where at least

one breakpoint occurs, and the phenotype (Figure 2). Intron 44,

as expected, is the most frequent breakpoint site in all of the

categories (A: 41%, CK: 68%, andWCK: 42%). Similarly, occurring

breakpoints are in introns 55 and 47, but not in intron 51 where the

major breakpoints occur in 32% of category A, 34% of category CK,

and only 8% in category WCK. Obviously, these differences may

reflect the deletion intervals in categories A and CK, where we have

already noted that deletions with a major breakpoint in intron 51

(the so-called 51 skip equivalent) are much more frequent than in

other cases. Intron 51, again, would deserve to be fully characterized

in these patients since it possibly provides regulatory motifs that

impact dystrophin protein synthesis efficiency (see also below).

Many deletions overlap among A, CK, and WCK categories,

especially those occurring at the exon intervals 45–51, and it is not

possible to identify other phenotype-specific deletion profiles.

Protein epitopes’ impact and dystrophin
muscular function

In asymptomatic males, deleted exons involved R17-22 repeats

and hinge 3 and 4 domains only; other repeats, hinge 1 and

hinge 2, were never involved. The dispensability of spectrin repeats

is well-known in DMD since it is frequently missed in the

BMD phenotype. The four dystrophin hinge domains influence

muscle maturation and maintenance (52). Hinges 2 and 4 are

particularly important for the sarcolemma complex since they

contain a polyproline site and a WW motif, respectively, and are

required for binding to beta-dystroglycan. Our review suggests

that keeping hinge 1 and 2 domains might be sufficient to

preserve intact muscle functions (see below for the impact on

gene therapy).

Impact on protein synthesis e�ciency

Different dystrophin synthesis efficiency depending on

different DMD deletions has already been observed (26). In
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FIGURE 2

Dystrophinopathies clinical severity and correlation with the genetic profile. The correlation between intronic breakpoints. Introns 44 (major break

site in the DMD 3′ mutation hot spot), 47, and 55 breakpoints occur with similar frequency in the three categories (A, CK, and WCK) although some

di�erences can be seen but with no significant di�erences; intron 51 breakpoint occurs with high frequency in A and CK categories. This di�erence is

statistically significant if categories A and CK are merged compared to category WCK. The occurrence of isolated exon deletions. In-frame isolated

exon deletions are rare in milder (A and CK) categories, being about 10% of all deletions; WCK single-exon deletions (26 and 48) represent 29% of all

deletion events, suggesting that single-exon deletions, despite causing a minimal loss of protein domain, are not associated with a milder phenotype.

The correlation between the exon-exon junctions. Exon-exon junctions (EEJs) are important for the correct splicing process of the DMD transcript.

In our cohorts, the 44–56 EEJ is common to all categories although occurring in di�erent frequencies with a gradient associated with the disease

severity (more frequent in A phenotype). EEJ 44/47–52 is mainly present in the A and CK phenotypes. Interestingly, this EEJ invariably implies the

presence of the 3′ deletion breakpoint in intron 51 which determines the loss of exon 51.

this study, 17 BMD patients carrying in-frame deletions were

correlated to the protein levels. All patients showed 44% of control

dystrophin levels; however, BMD patients with deletions up to exon

51 showed significantly higher dystrophin levels. This supports

our observation and hypothesis that exon 51 “skip-equivalent”

deletions (45–51 or 50–51) and deletion 51–52 can truly allow the

production of more dystrophin protein. The reasons for that are

fully unknown although the finding of the high frequency of an

intron 51 breakpoint in these individuals is intriguing. As already

proposed, these deletions should be studied at the genomic level,

and breakpoints should be defined in order to unravel possible

regulatory mechanisms.

Impact of therapy design

As we have suggested above, preservation of hinge 1 and 2

domains might be sufficient to keep a “quasi-normal” muscle

function. DMD gene therapy is already in clinical trials or

provisionally approved by the FDA (53). The threemini-dystrophin

constructs used for gene therapy are different in terms of exon

content. Interestingly, the Sarepta (Genethon) construct includes

both H1 and H2 (and H4), while other constructs do not (54).

The invariable conservation of H1 and H2 in all asymptomatic

individuals of our cohort may suggest that these domains are

crucial for correct muscle function via the dystrophin interactions

at the sarcolemma.

Constructs designed for gene therapies also raise the issue

of “critical exons”. The concept of critical exons might be

related to protein domains (as for hinge domains) or to specific

protein regions that are dispensable (spectrin-like repeats 17–

22) or not (COOH Terminus). Another view for looking at

critical exons is to consider exon-exon junctions. RNA exon-

exon junctions (EEJs) are formed via the exon junction complex

(EJC) which recognizes the appropriate EEJ via the messenger

ribonucleoprotein (mRNP) component in order to facilitate correct

splicing. Correct EEJs assembled in EJCs accompany mRNA

during its export from the nucleus into the cytoplasm since they

communicate information about the splicing process and the

position of introns. In addition, an EJC’s core component and
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TABLE 1 Relevant reflections as take-home messages following reviewing asymptomatic or mild DMD cases.

Statement Rationale

The DMD 3′ region (exon 56–79) is important for the muscle function Invariably preserved in A and CK phenotypes

Hinges 1 and 2 are important for preserving the muscle function Invariably preserved in A phenotype

Deletions of exons 2 and 16 are “non dystrophic” mutations Invariably associated to asymptomatic cases

Deletion of exon 51–52 are causing extremely mild cases Invariably associated to extremely mild/asymptomatic cases

Isolated exon 48 has an unpredictable phenotype Identified in only one A and one CK individual, but frequent (5/24) in

patients with WCK

Isolated, in-frame, exon deletions do not predict a mild or asymptomatic phenotype Isolated exon deletions occur in 7% of A/CK cases and 29% of WCK

cases

its associated proteins regulate different steps of gene expression,

including translation efficiency and nonsense-mediated mRNA

decay (NMD) (55, 56).

To provide a relevant link to the sarcolemma and muscle cells,

the EJC is involved in the cardiac myocyte stress response (57).

Unnatural DMD exon-exon junctions created by deletion events

may impact all of the abovementioned functions and may account

for the different clinical effects we observe in patients possibly

related to correct and efficient splicing or protein synthesis rate.

Looking at our cohort, we can also see that, exactly overlapping

the breakpoint data, EEJ 44/47–52 frequency is very different in

categories A and CK (18 and 34%, respectively) compared to

category WCK (8%) (Figure 2). These EEJs reflect the exon 51

deletion and the intron 51 breakpoint, so the data are obviously

confirmatory; nevertheless, they again underline the need to get

insights into intron 51, its unnatural EEJs, and its sequence.

Reflections and future research avenues

As an outcome of this work, wemay propose some “statements”

to address possible criticisms and decisions during the diagnostic

practice (Table 1). Indeed, our knowledge about why some DMD

deletions cause no or mild muscle phenotypes is still poor.

Therefore, we have drafted twomain “recommendations” which we

believe to be important in view of having DMD patients in trials or

under therapy using RNA molecules or transgenes.

1) Intronic breakpoints should be finely characterized. Whole

genome sequencing (WGS) is now a standard procedure included

in routine diagnostics, and its cost is greatly decreased (58).

It would not be too expensive or time-consuming to include

WGS analysis in cases where the genotype-phenotype is not

coherent with the current knowledge or frame rule or in cases of

patients enrolled in clinical trials. DMD knowledge would greatly

benefit this approach, certainly providing numerous amounts of

data concerning patients’ true genotypes and likely allowing the

identification of novel, non-coding, regulatory motifs impacting

clinical features.

2) 3′ isoform preservation/loss should be studied. Identical

to the previous recommendation, 3′ isoform profiling should

be performed again in some patients with a lack of genotype-

phenotype correlation as well as in boys enrolled in trials. DMD

3′ isoforms, especially Dp71 (as we discussed above) can play a

role in dystrophin production, such as quantity and quality, and

in developmental perspective.

Thus, WGS analysis coupled with non-invasive DMD isoforms’

transcription studies (59) is fully feasible and not too expensive,

especially if applied to smaller sub-cohorts of patients.

Conclusions

We hope the readers have found this mini-review interesting

and useful. The take-home message is that asymptomatic

phenotypes may provide clues in understanding DMD

etiopathogenesis, in better defining the complex dystrophin

protein transcription, translation, and regulatory paths, and

in possibly refining therapy design. We have highlighted that

some deletions should be carefully considered when identified as

incidental findings and genetic counseling must be always offered

to help the interpretation of these rare DMD genotypes.
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