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Objective: Sepsis-associated encephalopathy (SAE) is strongly linked to a high 
mortality risk, and frequently occurs in conjunction with the acute and late phases 
of sepsis. The objective of this study was to construct and verify a predictive 
model for mortality in ICU-dwelling patients with SAE.

Methods: The study selected 7,576 patients with SAE from the MIMIC-IV database 
according to the inclusion criteria and randomly divided them into training 
(n  =  5,303, 70%) and internal validation (n  =  2,273, 30%) sets. According to the same 
criteria, 1,573 patients from the eICU-CRD database were included as an external 
test set. Independent risk factors for ICU mortality were identified using Extreme 
Gradient Boosting (XGBoost) software, and prediction models were constructed 
and verified using the validation set. The receiver operating characteristic (ROC) 
and the area under the ROC curve (AUC) were used to evaluate the discrimination 
ability of the model. The SHapley Additive exPlanations (SHAP) approach was 
applied to determine the Shapley values for specific patients, account for the 
effects of factors attributed to the model, and examine how specific traits affect 
the output of the model.

Results: The survival rate of patients with SAE in the MIMIC-IV database was 88.6% 
and that of 1,573 patients in the eICU-CRD database was 89.1%. The ROC of the 
XGBoost model indicated good discrimination. The AUCs for the training, test, 
and validation sets were 0.908, 0.898, and 0.778, respectively. The impact of each 
parameter on the XGBoost model was depicted using a SHAP plot, covering both 
positive (acute physiology score III, vasopressin, age, red blood cell distribution 
width, partial thromboplastin time, and norepinephrine) and negative (Glasgow 
Coma Scale) ones.

Conclusion: A prediction model developed using XGBoost can accurately predict 
the ICU mortality of patients with SAE. The SHAP approach can enhance the 
interpretability of the machine-learning model and support clinical decision-
making.
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Introduction

Sepsis, a syndrome caused by dysfunction of organs including the 
central nervous system (CNS), heart, and lungs (1–3) due to 
dysregulation of the host response to infection, is the most common 
cause of death in intensive care unit patients worldwide. One 
manifestation of sepsis-induced cerebral dysfunction is sepsis-
associated encephalopathy (SAE), which is defined as diffuse cerebral 
dysfunction secondary to organic infection in the absence of an 
obvious central nervous system infection (4).

The pathophysiology of SAE is intricate, arising from a 
convergence of inflammatory and non-inflammatory processes 
impacting various categories of cerebral cells. Significant mechanisms 
encompass heightened microglial activation, disruption of the blood–
brain barrier (BBB), and the perpetuation of an extended 
inflammatory reaction (5). Upon the initial emergence of sepsis, an 
inordinate immune-inflammatory response is incited, setting in 
motion the infiltration of inflammatory mediators into cerebral tissue, 
thereby activating microglial cells. This activation gives rise to the 
establishment of a cytotoxic milieu, instigating the release of reactive 
oxygen species, nitric oxide (6), and glutamate, as a countermeasure 
against sepsis. Nevertheless, the CNS is notably vulnerable to 
neurotoxic agents such as free radicals, inflammatory mediators, and 
intravascular proteins, thus precipitating a malfunction in the BBB (7). 
The relentless activation of microglia perpetuates a deleterious cycle, 
culminating in aberrant neuronal performance and cellular demise, 
thereby exacerbating BBB impairment and the progression of SAE. In 
addition to this, sepsis damages the hippocampus, cortex, cerebellum 
and brainstem of the brain. Sepsis-driven brain damage occurs in a 
diffuse form and is strongly associated with cognitive impairment.

Clinicians must exclude primary CNS disorders, sedation-related 
cognitive disorders, metabolic encephalopathies, and poisonings 
before diagnosing SAE on the basis of cognitive and neuropsychiatric 
deficits, manifestations of delirium, or a Glasgow Coma Scale (GCS) 
score of less than 15 (8). Globally, up to 50% of intensive care unit 
(ICU) patients present with SAE during sepsis (4, 9), which tends to 
increase the length of stay and mortality of septic patients in the ICU 
(10). The current lack of specific treatment options and insufficient 
understanding of the underlying mechanisms of SAE are the most 
common causes of poor prognosis in sepsis. Therefore, the aim of this 
study was to investigate the independent risk factors for ICU death in 
patients with SAE and to develop a predictive model to quantify the 
likelihood of ICU death in patients with SAE.

Materials and methods

Data source

Data for this study were obtained from the MIMIC-IV and 
eICU-CRD databases, with the former being a multiparametric, 

structured single-center critical-care database published in 2003 
that includes clinically available data on more than 380,000 patients 
during 2008–2019. There was no requirement to obtain permission 
from individual patients or ethical approval statements because the 
initiative had no impact on clinical care and none of the patients in 
the database could be identified (11). Our study also followed the 
guidelines of the Declaration of Helsinki and Transparent Reporting 
of a Multivariate Prediction Model for Individual Prognosis or 
Diagnosis (12).

The eICU-CRD database contains data from the ICU wards of 
numerous hospitals in the US. It contains routine data on 200,859 
patients obtained from more than 300 hospitals in the US during 2014 
and 2015 (13). No specific patient permission was needed because 
both databases use anonymous health data.

Patient population

Presently, there exists a deficiency of precise diagnostic modalities 
for SAE. Clinical diagnosis relies on exclusion and necessitates 
discrimination from central nervous system infections, metabolic 
encephalopathy (a widespread yet potentially reversible cerebral 
dysfunction arising from metabolic or toxic origins), excessive 
sedative ingestion, and withdrawal manifestations with the potential 
to impact sensory faculties.

Patients with a Sequential Organ Failure Assessment (SOFA) 
score ≥ 2 based on the Sepsis-3 classification and a GCS score < 15 or 
delirium on the day before admission to the ICU were considered SAE 
patients. The exclusion criteria were (1) presence of primary brain 
injury, (2) psychiatric disorders and neurological diseases, (3) 
metabolic, hepatic, hypertensive, or toxic encephalopathy, (4) severe 
electrolyte disturbance or deglycation, (5) patients who were 
intubated, given analgesics, and sedated at the time of admission, (6) 
long-term alcohol or drug abuse, or (7) an ICU stay of <24 h. Figure 1 
depicts the flow chart for case inclusion.

Observation indicators

This study used Structured Query Language to extract the 
following basic information of patients from both databases: age, 
gender, and mean values of vital signs at the time of first ICU 
admission, including heart rate, respiratory rate, and body 
temperature. From the time of ICU admission, the first laboratory 
data included ghrelin, lymphocytes, eosinophils, neutrophils, 
monocytes, hemoglobin, urea nitrogen, platelets, creatinine, glucose, 
blood urea nitrogen (BUN), hematocrit (HCT), partial thromboplastin 
time (PTT), white blood cell count (WBC), normalized ratio (INR), 
anion gap (AG), mean corpuscular hemoglobin (MCH), mean 
corpuscular hemoglobin concentration (MCHC), Mean Corpuscular 
Volume (MCV) and red blood cell distribution width (RDW), Severity 
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was determined using the acute physiology score III (APSIII), SOFA 
score, GCS score, and comorbidity occurrence.

Statistical analysis

Statistical processing was performed using R software (version 
4.2.2). For continuous variables, values are expressed as standard 
deviation or median of interquartile range (IQR); for categorical 
variables, values are expressed as total (%). Comparisons of continuous 
variables were made using the t test or Wilcoxon rank sum test, and 
comparisons of proportions were made using the χ 2 test or Fisher 
exact test. After the variables were identified by Extreme Gradient 
Boosting (XGBoost), we used these included clinical and laboratory 
variables to construct a prediction model for in-ICU mortality in SAE 
patients based on the XGBoost algorithm. XGBoost is an improved 
algorithm based on gradient boosting decision trees that efficiently 
constructs boosted trees and runs them in parallel (14). The core of 
the algorithm is to optimize the value of the objective function (15). 
In model development and comparison, we  use a 5-fold cross-
validation approach, which provides a more stable and reliable way to 
measure the performance of the model.

The prediction model was trained and internally validated using 
training and test sets randomized at a ratio of 7:3. The performance of 
the prediction model was externally validated using the identical data 
of patients with SAE from the eICU-CRD database. The predictive 

values of different models were analyzed using the receiver operating 
characteristic (ROC) and area under the ROC curve (AUC), with the 
latter allowing quantitative differentiation of column line graphs. In 
the XGBoost analysis, qualitative data were converted to numerical 
data, and “yes” and “no” were converted to “1” and “0,” respectively.

An aesthetically pleasing additional interpretation method, the 
SHapley Additive exPlanations (SHAP), was used in XGBoost to 
increase the readability of the model. SHAP is a technique used to 
explain the output of any machine-learning model (16). A SHAP 
summary plot was used to present the effect of the characteristics 
attributed to the model. Colors in the scatter plot intuitively represent 
the correlation between the characteristic value and the anticipated 
probability. The importance of specific features and their impacts on 
the output of the model were examined using the SHAP dependence 
plot. A SHAP force plot was used to illustrate how important 
characteristics affect use of the final model across all patients.

Results

Baseline patient characteristics

This study used 1,573 patients from the eICU-CRD database as 
the external test set, and 7,576 patients from the MIMIC-IV database 
were randomly split into a training (n = 5,303, 70%) and an internal 
test (n = 2,273, 30%) set.

FIGURE 1

Flowchart of patient cohorts.
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Among the 7,576 patients within the MIMIC-IV database afflicted 
by SAE, 6709 (88.6%) experienced survival, while 867 (11.4%) 
succumbed prior to ICU discharge. In the case of the 1,573 patients 
drawn from the eICU-CRD database, 1402 (89.1%) survived, and 171 
(10.9%) met their demise. Across the training, internal test, and 
external test sets, the majority of patients were aged over 65 years (with 
mean ages of 69, 70, and 66 years, respectively) and were 
predominantly male (comprising 59.2, 59.6, and 57.8% of the 
respective cohorts). The average length of ICU stay was 3.38 days for 
the training set, 3.29 days for the internal test set, and 3.99 days for the 
external test set. Additionally, many of these patients presented with 
comorbidities, including congestive heart failure (35.9, 36.6, and 
7.3%), COPD (28.1, 25.9, and 1.1%), diabetes (9.4, 9.2, and 0.8%), 
renal failure (25.8, 25.6, and 9.4%), or liver disease (11.5, 13.0, 
and 1.4%).

The demographic profiles and fundamental patient information 
pertaining to the training and test sets are delineated in Tables 1, 2. In 
Table 3, we present the foundational attributes of the study cohort 
sourced from the MIMIC-IV database, stratified by distinct outcomes. 
Notably, the average age of patients afflicted by SAE was notably 
higher in the deceased group in comparison to the survivor group. 
Furthermore, the incidence rates of myocardial infarction, peripheral 
vascular disease, dementia, diabetes, sclerosis, and liver disease 
exhibited variations between these two cohorts. Conversely, no 
statistically significant disparities were observed between the two 
groups concerning myocardial infarction, peripheral vascular disease, 
dementia, diabetes, sodium levels, and MCH. Turning our attention 
to the baseline attributes of the subjects derived from the eICU-CRD 
database for different outcomes, these details are summarized in 
Table  4. Significant differences among groups were discerned in 
variables such as sedative usage, analgesic administration, vasopressin 
and norepinephrine dosages, GCS score, SOFA score, lactate levels, 
creatinine values, bicarbonate levels, BUN, PTT, INR, AG, MCHC, 
RDW, respiratory rate, and body temperature.

Feature selection

The XGBoost algorithm identified APSIII, vasopressin, GCS 
score, PTT, norepinephrine, age, RDW, and length of ICU stay as 
independent predictors of SAE. Figure 2A presents the importance of 
each factor influencing SAE. APSIII had the highest score, indicating 
that determining severity in patients was the most relevant and 
important factor. Smaller APSIII values indicate a lower output from 
the model. The GCS score had the smallest effect on the model. 
Figure  2B presents the SHAP summary plot, which reflects the 
influence of each factor using the SHAP value in XGBoost and 
whether they had a positive or negative effect The SHAP plot illustrates 
the influence of each parameter on the XGBoost model, including the 
positive (APSIII, vasopressin, age, RDW, PTT, and norepinephrine) 
and negative (GCS) effects.

Each of the eight factors is represented by a SHAP dependence 
plot in Figure  3, which illustrates how different characteristics 
influenced the XGBoost model results. Positive SHAP values for 
specific factors represent an elevated mortality risk. We found that 
mortality was correlated with higher APSIII, age, RDW, and PTT, and 
a lower GCS score. Both longer and shorter ICU stays were associated 

with lower survival rates. Patients who receive vasopressin and 
norepinephrine may experience higher mortality rates.

When GCS scores were low, the SHAP interaction values of 
APSIII with the GCS score decreased as APSIII increased (Figure 4A). 
The interaction effect of APSIII with norepinephrine and vasopressin 
(Figures  4B,C) did not seem to be  affected by differences in 
norepinephrine or vasopressin use. Samples with the highest SHAP 
values for death in the ICU were often accompanied by vasopressin 
use and a shorter ICU stay. When the GCS score was higher, the value 
of the interaction between time and GCS score decreased as the length 
of ICU stay increased (Figure 4D). The interaction effect of time in 
ICU with norepinephrine (Figure 4E) did not appear to be affected by 
the use of norepinephrine. The value of the interaction between time 
and vasopressin use decreased as the length of ICU stay increased 
(Figure 4F). When the GCS score was high, the interaction value 
between age and GCS score decreased as age increased (Figure 4G), 
and the interaction value between age and GCS score decreased to a 
negative value at 73 years old. When norepinephrine was used, the 
value of the interaction between age and norepinephrine increased 
with age (Figure 4H) and became positive at 73 years old. The SHAP 
interaction values for age with vasopressin use also increased with age 
(Figure 4I).

The ultimate output was obtained as the sum of the attributions 
from each predictor, as seen in the SHAP force plot (Figure 5), which 
displays these SHAP values stacked for each observation.

Discrimination ability

The ROC was used to evaluate the discrimination ability of the 
model. The XGBoost model test, internal validation, and external 
validation sets had AUC values of 0.908, 0.898, and 0.778, respectively 
(Figure 6).

Discussion

SAE represents a multifaceted encephalopathy, signifying a 
widespread cerebral impairment stemming from sepsis. It manifests 
with manifestations such as delirium, coma, cognitive deficits 
encompassing the loss of learning and memory, and the occurrence 
of seizures. The pathophysiology of SAE remains partially elucidated. 
While advances in sepsis research and treatment have lately yielded 
enhanced prognostic outcomes, the mortality rate of SAE remains 
disheartening. The identification of risk factors is imperative in 
grasping the prognosis of SAE.

An XGBoost model was constructed and validated in this 
study to predict ICU mortality in patients with SAE. The 
importance analysis of the factors in the XGBoost model suggested 
that APSIII, vasopressin, age, length of ICU stay, RDW, 
norepinephrine, PTT, and GCS score are strong predictors of 
SAE. In this study, the XGBoost prediction model was obtained 
from the AUC results and had good predictive power. SHAP also 
offered credible visual interpretation of the predictions, 
encompassing both positive and negative impacts. In this study 
we not only calculated values of general parameters for predicting 
the probability of death in the ICU, but also presented a visual 
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explanation for specific patients using SHAP plots. The predictive 
value of a clinical factor for the XGBoost model increased with the 
average absolute SHAP value of each factor. Each factor was 

averaged to provide a homogeneous perspective, and the 
interpretation of SHAP was based on each individual patient (17). 
SHAP has two advantages: (1) it considers the effects of individual 

TABLE 1 Research subject base information form (internal validation).

Total Training cohorts Internal validation 
cohorts

p value

N 7,576 5,303 2,273

Death = No/Yes (%) 6709/867 (88.6/11.4) 4690/613 (88.4/11.6) 2019/254 (88.8/11.2) 0.658

ICU stay time, days (median [IQR]) 3.33 [2.00, 6.29] 3.38 [2.00, 6.33] 3.29 [1.96, 6.13] 0.363

Age (median [IQR]) 70.00 [58.00, 79.00] 69.00 [58.00, 79.00] 70.00 [59.00, 79.00] 0.706

Gender = Male/Female (%) 4497/3079 (59.4/40.6) 3142/2161 (59.2/40.8) 1355/918 (59.6/40.4) 0.787

Medical treatments, n (%)

Sedatives = No/Yes 1292/6284 (17.1/82.9) 900/4403 (17.0/83.0) 392/1881 (17.2/82.8) 0.797

Analgesic = No/Yes 729/6847 (9.6/90.4) 492/4811 (9.3/90.7) 237/2036 (10.4/89.6) 0.131

Antibiotic = No/Yes 988/6588 (13.0/87.0) 689/4614 (13.0/87.0) 299/1974 (13.2/86.8) 0.877

Vasopressin = No/Yes 6642/934 (87.7/12.3) 4634/669 (87.4/12.6) 2008/265 (88.3/11.7) 0.262

Comorbidity, n (%)

Myocardial infarct = No/Yes 5997/1579 (79.2/20.8) 4193/1110 (79.1/20.9) 1804/469 (79.4/20.6) 0.793

Congestive heart failure = No/Yes 4837/2739 (63.8/36.2) 3397/1906 (64.1/35.9) 1440/833 (63.4/36.6) 0.576

Peripheral vascular disease = No/Yes 6397/1179 (84.4/15.6) 4468/835 (84.3/15.7) 1929/344 (84.9/15.1) 0.523

Dementia = No/Yes 7353/223 (97.1/2.9) 5151/152 (97.1/2.9) 2202/71 (96.9/3.1) 0.594

COPD = No/Yes 5499/2077 (72.6/27.4) 3814/1489 (71.9/28.1) 1685/588 (74.1/25.9) 0.051

Liver disease = No/Yes 6671/905 (88.1/11.9) 4694/609 (88.5/11.5) 1977/296 (87.0/13.0) 0.064

Diabetes = No/Yes 6871/705 (90.7/9.3) 4807/496 (90.6/9.4) 2064/209 (90.8/9.2) 0.862

Renal disease = No/Yes 5627/1949 (74.3/25.7) 3935/1368 (74.2/25.8) 1692/581 (74.4/25.6) 0.852

Severe score, median (IQR)

SOFA 7.00 [5.00, 10.00] 7.00 [5.00, 9.00] 7.00 [5.00, 10.00] 0.12

GCS 13.00 [8.00, 14.00] 13.00 [8.00, 14.00] 13.00 [8.00, 14.00] 0.054

APSIII 54.00 [39.00, 75.00] 54.00 [39.00, 75.00] 54.00 [39.00, 77.00] 0.298

Laboratory tests, median (IQR)

Lactate (mmol/L) 1.80 [1.30, 2.60] 1.80 [1.30, 2.60] 1.80 [1.30, 2.55] 0.4

Glucose (mg/dl) 128.50 [113.50, 144.78] 128.25 [113.00, 145.07] 129.10 [114.94, 144.25] 0.303

Creatinine (mg/dl) 1.05 [0.75, 1.65] 1.05 [0.75, 1.65] 1.05 [0.75, 1.65] 0.854

BUN (K/uL) 21.00 [14.50, 35.50] 21.00 [14.50, 35.00] 21.50 [14.50, 37.00] 0.064

Platelets (K/ul) 178.50 [129.50, 248.00] 180.00 [130.00, 249.00] 176.50 [127.50, 246.00] 0.128

Potassium (K/ul) 4.25 [3.90, 4.65] 4.25 [3.90, 4.65] 4.25 [3.95, 4.65] 0.045

Sodium (K/ul) 138.50 [136.00, 141.00] 138.50 [136.00, 141.00] 138.50 [136.00, 141.00] 0.539

Bicarbonate (meq/L) 23.00 [20.50, 25.50] 23.00 [20.50, 25.50] 23.00 [20.50, 25.00] 0.767

Calcium (mg/dl) 8.20 [7.80, 8.70] 8.20 [7.80, 8.70] 8.20 [7.80, 8.65] 0.93

Chloride (mmol/L) 105.00 [101.00, 108.00] 105.00 [101.00, 108.00] 105.00 [101.00, 108.00] 0.416

HCT (%) 10.10 [8.90, 11.55] 10.10 [8.85, 11.50] 10.15 [8.95, 11.65] 0.143

PTT (s) 32.55 [28.05, 41.66] 32.60 [28.10, 41.90] 32.50 [28.00, 40.90] 0.329

WBC (K/uL) 12.10 [8.85, 16.05] 12.10 [8.85, 16.10] 12.00 [8.80, 15.90] 0.529

INR 1.30 [1.15, 1.55] 1.30 [1.15, 1.55] 1.30 [1.15, 1.55] 0.938

AG 14.00 [12.00, 16.50] 14.00 [12.00, 16.50] 13.50 [11.50, 16.50] 0.654

MCH (pg) 30.00 [28.60, 31.30] 30.00 [28.60, 31.30] 30.10 [28.60, 31.30] 0.783

MCHC (g/dL) 32.80 [31.60, 33.90] 32.80 [31.60, 33.90] 32.80 [31.70, 33.80] 0.899

MCV (fL) 91.00 [87.00, 95.00] 91.00 [87.00, 95.00] 91.00 [87.00, 95.00] 0.704

RDW (%) 15.00 [13.80, 16.70] 15.10 [13.80, 16.70] 15.00 [13.90, 16.50] 0.324

Vital signs, median (IQR)

Heartrate (min−1) 104.00 [90.00, 119.00] 104.00 [90.00, 119.00] 104.00 [91.00, 120.00] 0.071

Respiratory rate (min−1) 27.00 [23.50, 32.00] 27.00 [23.00, 32.00] 28.00 [24.00, 32.00] 0.033

Temperature (°C) 36.33 [35.61, 37.33] 36.33 [35.61, 37.33] 36.33 [35.61, 37.33] 0.555
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factors and the synergy between factors, which can solve the 
multicollinearity problem, and (2) SHAP determines whether the 
influence is favorable (18).

In the current investigation, APSIII emerged as the most weighty 
contributor in the importance plot, underscoring its robust capacity 
to predict mortality in the ICU for individuals grappling with SAE. As 

TABLE 2 Research subject base information form (external validation).

Total Training cohorts External validation 
cohorts

p value

N 6876 5,303 1,573

Death = No/Yes (%) 6092/784 (88.6/11.4) 4690/613 (88.4/11.6) 1402/171 (89.1/10.9) 0.478

ICU stay time, days (median [IQR]) 3.54 [2.04, 6.71] 3.38 [2.00, 6.33] 3.99 [2.28, 7.49] <0.001

Age (median [IQR]) 69.00 [58.00, 78.00] 69.00 [58.00, 79.00] 66.00 [55.00, 76.00] <0.001

Gender = Male/Female (%) 4051/2825 (58.9/41.1) 3142/2161 (59.2/40.8) 909/664 (57.8/42.2) 0.315

Medical treatments, n (%)

Sedatives = No/Yes 2093/4783 (30.4/69.6) 900/4403 (17.0/83.0) 1193/380 (75.8/24.2) <0.001

Analgesic = No/Yes 1867/5009 (27.2/72.8) 492/4811 (9.3/90.7) 1375/198 (87.4/12.6) <0.001

Antibiotic = No/Yes 2261/4615 (32.9/67.1) 689/4614 (13.0/87.0) 1572/1 (99.9/0.1) <0.001

Vasopressin = No/Yes 6061/815 (88.1/11.9) 4634/669 (87.4/12.6) 1427/146 (90.7/9.3) <0.001

Comorbidity, n (%)

Myocardial infarct = No/Yes 5709/1167 (83.0/17.0) 4193/1110 (79.1/20.9) 1516/57 (96.4/3.6) <0.001

Congestive heart failure = No/Yes 4855/2021 (70.6/29.4) 3397/1906 (64.1/35.9) 1458/115 (92.7/7.3) <0.001

Peripheral vascular disease = No/Yes 6029/847 (87.7/12.3) 4468/835 (84.3/15.7) 1561/12 (99.2/0.8) <0.001

Dementia = No/Yes 6710/166 (97.6/2.4) 5151/152 (97.1/2.9) 1559/14 (99.1/0.9) <0.001

COPD = No/Yes 5370/1506 (78.1/21.9) 3814/1489 (71.9/28.1) 1556/17 (98.9/1.1) <0.001

Liver disease = No/Yes 6245/631 (90.8/9.2) 4694/609 (88.5/11.5) 1551/22 (98.6/1.4) <0.001

Diabetes = No/Yes 6368/508 (92.6/7.4) 4807/496 (90.6/9.4) 1561/12 (99.2/0.8) <0.001

Renal disease = No/Yes 5360/1516 (78.0/22.0) 3935/1368 (74.2/25.8) 1425/148 (90.6/9.4) <0.001

Severe score, median (IQR)

SOFA 7.00 [5.00, 9.00] 7.00 [5.00, 9.00] 7.00 [5.00, 9.00] 0.043

GCS 13.00 [8.00, 14.00] 13.00 [8.00, 14.00] 11.00 [7.00, 14.00] <0.001

APSIII 55.00 [40.00, 75.00] 54.00 [39.00, 75.00] 56.00 [42.00, 77.00] <0.001

Laboratory tests, median (IQR)

Lactate (mmol/L) 1.80 [1.20, 2.60] 1.80 [1.30, 2.60] 1.70 [1.10, 2.80] 0.011

Glucose (mg/dl) 127.75 [111.00, 145.29] 128.25 [113.00, 145.07] 124.00 [105.00, 146.00] <0.001

Creatinine (mg/dl) 1.10 [0.79, 1.70] 1.05 [0.75, 1.65] 1.18 [0.82, 1.89] <0.001

BUN (K/uL) 21.50 [14.50, 35.50] 21.00 [14.50, 35.00] 23.00 [14.00, 37.00] 0.068

Platelets (K/ul) 177.00 [126.50, 246.00] 180.00 [130.00, 249.00] 167.00 [117.00, 236.00] <0.001

Potassium (K/ul) 4.20 [3.85, 4.60] 4.25 [3.90, 4.65] 4.10 [3.60, 4.51] <0.001

Sodium (K/ul) 138.50 [136.00, 141.00] 138.50 [136.00, 141.00] 139.00 [136.00, 142.00] 0.029

Bicarbonate (meq/L) 23.00 [20.00, 25.50] 23.00 [20.50, 25.50] 23.00 [20.00, 25.00] 0.006

Calcium (mg/dl) 8.20 [7.70, 8.65] 8.20 [7.80, 8.70] 8.00 [7.40, 8.60] <0.001

Chloride (mmol/L) 105.00 [101.00, 108.50] 105.00 [101.00, 108.00] 106.00 [102.00, 110.00] <0.001

HCT (%) 10.90 [9.25, 14.40] 10.10 [8.85, 11.50] 30.60 [26.00, 35.90] <0.001

PTT (s) 32.70 [28.10, 41.25] 32.60 [28.10, 41.90] 33.00 [28.20, 40.00] 0.582

WBC (K/uL) 12.10 [8.70, 16.35] 12.10 [8.85, 16.10] 12.00 [8.14, 17.10] 0.363

INR 1.30 [1.15, 1.55] 1.30 [1.15, 1.55] 1.30 [1.10, 1.60] 0.383

AG 13.50 [11.00, 16.00] 14.00 [12.00, 16.50] 11.00 [8.00, 15.00] <0.001

MCH (pg) 30.00 [28.50, 31.20] 30.00 [28.60, 31.30] 29.80 [28.10, 31.10] <0.001

MCHC (g/dL) 32.80 [31.70, 33.82] 32.80 [31.60, 33.90] 32.90 [31.90, 33.80] 0.227

MCV (fL) 91.00 [87.00, 95.00] 91.00 [87.00, 95.00] 90.00 [86.00, 94.60] <0.001

RDW (%) 15.10 [13.90, 16.80] 15.10 [13.80, 16.70] 15.30 [14.00, 17.10] <0.001

Vital signs, median (IQR)

Heartrate (min−1) 101.00 [84.00, 117.00] 104.00 [90.00, 119.00] 92.00 [79.00, 109.00] <0.001

Respiratory rate (min−1) 26.00 [18.00, 31.00] 27.00 [23.00, 32.00] 19.00 [15.00, 24.00] <0.001

Temperature (°C) 36.39 [35.78, 37.28] 36.33 [35.61, 37.33] 36.70 [36.20, 37.10] <0.001
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TABLE 3 Comparison of basic characteristics of the surviving and dead groups in the MIMIC-IV database.

Variable Survival Death p value

Total 6709 867

ICU stay time, days, median (IQR) 3.2 (1.9,5.8) 5.3 (2.6,10.6) <0.001

Age, year, median (IQR) 69 (58,79) 74 (64,82) <0.001

Gender, male, n (%) 4014 (59.8) 483 (55.7) 0.02

Medical treatments, n (%)

Sedatives 5502 (82) 782 (90.2) <0.001

Analgesic 6178 (92.1) 669 (77.2) <0.001

Antibiotic 5790 (86.3) 798 (92) <0.001

Vasopressin 564 (8.4) 370 (42.7) <0.001

Comorbidity, n (%)

Myocardial infarct 1396 (20.8) 183 (21.1) 0.838

Congestive heart failure 2362 (35.2) 377 (43.5) <0.001

Peripheral vascular disease 1032 (15.4) 147 (17) 0.229

Dementia 192 (2.9) 31 (3.6) 0.242

COPD 1782 (26.6) 295 (34) <0.001

Liver disease 710 (10.6) 195 (22.5) <0.001

Diabetes 630 (9.4) 75 (8.7) 0.48

Renal disease 1661 (24.8) 288 (33.2) <0.001

Severe score, median (IQR)

SOFA 6 (4,9) 11 (8,14) <0.001

GCS 13 (10,14) 7 (3,11) <0.001

APSIII 51 (37,70) 90 (70,109) <0.001

Laboratory tests, median (IQR)

Lactate (mmol/L) 1.8 (1.3,2.5) 2.2 (1.4,3.7) <0.001

Glucose (mg/dL) 128.5 (114.6,144.3) 128 (105.2,148.2) 0.02

Creatinine (mg/dL) 1 (0.8,1.6) 1.5 (0.9,2.5) <0.001

BUN (K/uL) 20 (14,33) 33.5 (20,52.5) <0.001

Platelets (K/uL) 179 (131,246.5) 176.5 (109.8,259.5) 0.042

Potassium (K/uL) 4.2 (3.9,4.6) 4.3 (3.9,4.9) <0.001

Sodium (K/uL) 138.5 (136,141) 138.5 (135.5,141.5) 0.903

Bicarbonate (mEq/L) 23 (20.5,25.5) 21.5 (18,25) <0.001

Calcium (mg/dL) 8.2 (7.8,8.7) 8.2 (7.6,8.7) 0.003

Chloride (mmol/L) 105.5 (101.5,108) 103.5 (99,107.5) <0.001

HCT (%) 10.4 (1.9) 10.1 (2) <0.001

PTT (s) 32 (27.9,40.2) 38.1 (30.5,53.5) <0.001

WBC (K/uL) 11.9 (8.8,15.8) 13.2 (9,18.2) <0.001

INR 1.3 (1.1,1.5) 1.5 (1.2,2) <0.001

AG 13.5 (11.5,16) 16 (13.5,19.5) <0.001

MCH (pg) 30 (28.6,31.3) 30 (28.5,31.5) 0.529

MCHC (g/dL) 32.8 (31.7,33.9) 32.3 (31,33.4) <0.001

MCV (fL) 91 (87,95) 92 (88,97) <0.001

RDW (%) 14.9 (13.7,16.4) 16.6 (15,18.3) <0.001

Vital signs, median (IQR)

Heartrate (min−1) 103 (90,118) 113 (97,130) <0.001

Respiratory rate (min−1) 27 (23,32) 30 (25,35) <0.001

Temperature (°C) 36.3 (35.6,37.3) 36.3 (35.6,37.3) 0.021
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TABLE 4 Comparison of basic characteristics of the surviving and dead groups in the Eicu-CRD database.

Variable Survival Death p value

Total 1402 171

ICU stay time, days, median (IQR) 4 (2.3,7.4) 4.3 (2.3,8.2) 0.574

Age, year, median (IQR) 66 (54,76) 66 (57,77.5) 0.197

Gender, male, n (%) 821 (58.6) 88 (51.5) 0.076

Medical treatments, n (%)

Sedatives 321 (22.9) 59 (34.5) <0.001

Analgesic 162 (11.6) 36 (21.1) <0.001

Antibiotic 1 (0.1) 0 (0) 0.727

Vasopressin 88 (6.3) 58 (33.9) <0.001

Comorbidity, n (%)

Myocardial infarct 48 (3.4) 9 (5.3) 0.224

Congestive heart failure 101 (7.2) 14 (8.2) 0.641

Peripheral vascular disease 11 (0.8) 1 (0.6) 0.777

Dementia 13 (0.9) 1 (0.6) 0.653

COPD 13 (0.9) 4 (2.3) 0.092

Liver disease 19 (1.4) 3 (1.8) 0.675

Diabetes 11 (0.8) 1 (0.6) 0.777

Renal disease 129 (9.2) 19 (11.1) 0.419

Severe score, median (IQR)

SOFA 7 (5,9) 9 (7,12) <0.001

GCS 11 (7,14) 9 (6,14) <0.001

APSIII 55 (41,73) 77 (57,103) <0.001

Laboratory tests, median (IQR)

Lactate (mmol/L) 1.6 (1.1,2.6) 2.7 (1.5,5.1) <0.001

Glucose (mg/dl) 124 (105,146) 123 (100,145) 0.531

Creatinine (mg/dl) 1.1 (0.8,1.8) 1.4 (1,2.3) <0.001

BUN (K/uL) 22 (14,35) 30 (20,48) <0.001

Platelets (K/ul) 166 (118,234) 171 (91.5,243) 0.416

Potassium (K/ul) 4.1 (3.6,4.5) 4.1 (3.6,4.8) 0.226

Sodium (K/ul) 139 (136,142) 138 (135,142) 0.192

Bicarbonate (meq/L) 23 (20,25) 21 (17,24) <0.001

Calcium (mg/dl) 8 (7.4,8.6) 8 (7.4,8.4) 0.102

Chloride (mmol/L) 106 (102,110) 105 (100,109) 0.096

HCT (%) 30.7 (26,36) 29.8 (25.8,34.7) 0.188

PTT (s) 32.9 (28,39.4) 35.8 (30.7,45.1) <0.001

WBC (K/uL) 11.9 (8.2,17) 13 (8.1,18.9) 0.231

INR 1.3 (1.1,1.6) 1.5 (1.2,2.1) <0.001

AG 11 (8,14) 14 (10,16) <0.001

MCH (pg) 29.8 (28.1,31.1) 29.4 (27.9,31.1) 0.331

MCHC (g/dL) 32.9 (32,33.8) 32.5 (31.4,33.3) <0.001

MCV (fL) 90 (86.2,94.4) 91.2 (85.6,96) 0.319

RDW (%) 15.1 (14,17) 16.4 (14.9,18.2) <0.001

Vital signs, median (IQR)

Heartrate (min−1) 92 (79,108.8) 93 (80.5,110) 0.231

Respiratory rate (min−1) 19 (15,24) 20 (16,25) 0.014

Temperature (°C) 36.7 (36.3,37.2) 36.5 (36,37) <0.001
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an integral facet of the APACHE system, APSIII aptly showcases its 
aptitude in prognosticating the mortality rates of patients grappling 
with severe sepsis and septic shock (19). In a large number of studies 
it has been found that survivors have significantly lower APACHE III 
scores than deceased patients and that higher scores (OR 1.11,95% CI 
1.05–1.18, p  = 0.001) are associated with increased in-hospital 
all-cause mortality in patients with severe sepsis (20, 21). Inflammatory 
response, immunosuppression, and multiple organ dysfunction 
syndrome may be responsible for the high scores in patients with SAE 
(1, 22). A predominant clinical characteristic of SAE is the alteration 
in the level of consciousness. In milder cases, there is a reduction in 
attention and alertness, accompanied by symptoms like anxiety and 
delirium. In severe instances, it may lead to stupor or coma. Long-
term cognitive impairments encompass deficits in memory, attention, 
verbal fluency, and executive functions, significantly impacting the 
quality of life for survivors. In a study concentrated on discerning 
initial and potentially amendable factors of SAE upon admission to 
the ICU, it was determined that even slight alterations in cognitive 
function, as defined by a GCS score of 13–14, were autonomously 
correlated with mortality at the point of ICU admission (10, 23). 
Furthermore, our findings confirm the independent role of the GCS 
score as a risk factor for ICU mortality in SAE patients. This reinforces 
the utility of the GCS score and APSIII in gauging the severity and 
prognosis of individuals afflicted with SAE.

Norepinephrine and vasopressin are now commonly used in 
clinics as vasoactive drugs. In the Surviving Sepsis Campaign 
guidelines, norepinephrine is recommended as the vasopressor for 
sepsis treatment (24), and often vasopressin is used as an adjunct to 
sepsis. Maheshwari et al. found that the significant blood pressure 
response to VAS was substantially linked to reduced survival 
probability in patients with septic shock (25). However, there are only 
treatment guidelines for sepsis and septic shock (15, 17), with a lack 
of specific treatment guidelines for SAE (24, 26). To realistically assess 
ICU mortality in SAE, clinicians should be aware of other treatment 
options for SAE in order to improve the corresponding survival 

assessment system. Currently, no specific therapeutic interventions are 
tailored for SAE. Treatment protocols are established on the 
comprehensive management of sepsis, with a predominant focus on 
symptoms associated with cerebral maladies, while endeavoring to 
minimize detriment to the central nervous system. Early-stage 
resuscitation is acknowledged as a pivotal therapeutic strategy for 
sepsis, and the administration of vasoactive agents correlated with 
normal arterial pressure subsequent to initial fluid therapy can 
mitigate the severity of sepsis (27). Furthermore, glucocorticoids, 
alternative markers, and modulators of the neuroimmune axis have 
been under consideration for addressing sepsis-induced cognitive 
impairments (28, 29). Indoleamine 2,3-dioxygenase, impacting the 
inflammatory cascade, is identified as a potential therapeutic target for 
central nervous system disorders, fostering cognitive enhancement in 
sepsis patients (30).

Most of the patients with SAE in this study stayed in the ICU for 
less than 1 week, and the length of ICU stay had an overall negative 
effect on the outcome. Related studies have found length of ICU stay 
to be related to disease severity (31), which has important implications 
for the wise use of scarce medical resources (32). Elderly patients with 
SAE admitted to the ICU mostly died earlier than did younger patients 
with SAE, which is supported by the findings of Martin et al. (33). The 
introduction of comorbidities harm immune function as age 
progresses, which causes patients with critical illness to deteriorate 
more rapidly. Geriatric patients may be  more vulnerable to CNS 
issues, particularly if hypertension, diabetes mellitus, or acute renal 
injury is the underlying illness (10, 34, 35). Older hospitalized people 
need more-specialized nursing or rehabilitation care. These findings 
offer guidance on how to allocate healthcare resources for patients 
with SAE and offer suggestions for future research projects and 
patient interventions.

RDW may be therapeutically valuable for predicting the future 
course and prognosis of various disorders, including stroke, atrial 
fibrillation (36), COPD (37), community-acquired pneumonia, and 
sepsis (38). Currently, several studies have indicated that RDW 

FIGURE 2

Predictor variables selection. (A) Importance of the predictor variables selected by XGBoost. (B) The SHAP summary plot.
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possesses not only diagnostic significance but also serves as a 
prognostic factor for sepsis, signifying systemic dysfunction and 
immune response dysregulation. Víctor Moreno-Torres, MD, et al. 
have proposed that RDW enhances the discriminative capacity of 
SOFA, LODS, APACHE-II, and SAPS-II, rendering it a potential 
parameter within these prognostic scoring systems (39). A study by 
Sadaka et al., which included 279 patients with septic shock, suggested 
that elevated RDW at admission was related to death in the ICU in 
both adults and neonates (40). This finding was also demonstrated in 
another study, which found that the addition of RDW to the ICU 
scoring system improved its mortality predictions (41, 42). The 
present study indicated there was a higher risk of dying from SAE in 
the ICU when RDW levels were high. Elevated RDW reflects a severe 
dysregulation of red blood cell homeostasis, which may be  an 
important prognostic factor for SAE. The mechanistic relationship 
between RDW and the ICU mortality rate in SAE remains obscure. 
However, research suggests that oxidative stress may contribute to the 
detrimental impact of RDW on the prognosis of SAE, as oxidative 

stress levels exhibit a positive correlation with RDW (43). Apart from 
this, the inflammatory response in septic patients shortens red blood 
cell lifespan, impairs red blood cell maturation, resulting in premature 
release, and thus elevating RDW (44, 45). Furthermore, 
proinflammatory cytokines inhibit erythropoietin-induced red blood 
cell proliferation and maturation, also leading to an increase in RDW 
(46). This may represent another rationale for the association between 
RDW and ICU mortality.

One strength of this study was the external validation of the SAE 
mortality risk model using the eICU-CRD database, which confirmed 
its efficacy. SHAP allows visualization of XGBoost models, and its 
sound visual interpretation greatly increases the confidence that 
clinicians have in the application of machine learning. However, there 
were some limitations to this study. First, only data from the US were 
utilized to construct and validate the model, which might reduce its 
applicability to other regions of the world. Furthermore, in 
retrospective studies, it is inevitable to relinquish certain variables 
with a substantial amount of missing values. Various unmeasured 

FIGURE 3

SHAP dependency plot of the XGboost model. The SHAP dependence plot shows how a single feature affects the output of the XGBoost prediction 
model. SHAP values for specific features exceed zero, representing an increased risk of death. RDW, red blood cell distribution width; PTT, partial 
thromboplastin time.
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FIGURE 4

SHAP interaction plot of the eight most essential features for SAE assessment. SHAP, SHapley Additive explanation; XGBoost, eXtreme Gradient 
Boosting; SAE, sepsis-associated encephalopathy.

FIGURE 5

SHAP force plot of the XGboost model. (A) Influence plot of macroscopic features for all samples. (B) Influence plot of macroscopic features for a 
random portion of the samples. A positive Shap value represents a positive gain area and a negative Shap value represents a negative gain area.
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confounding variables such as race and treatment modalities, along 
with inflammation-related data, could potentially influence the 
mortality risk of SAE patients. Therefore, given the constraints of the 
MIMIC-IV database and the eICU-CRD database, it is plausible that 
the XGBoost model may have omitted certain pivotal factors. Finally, 
the divergence in the origins of these two patient cohorts, hailing from 
distinct databases, has led to disparate study timelines between the 
training and external validation cohorts. This temporal incongruity 
might be a pivotal element contributing to the attenuation of this 
model’s efficacy within the eICU-CRD database.

Conclusion

This study validated the efficacy of machine-learning-based 
XGBoost for early outcome predictions for patients with SAE. The 
SHAP method improves the readability of XGBoost models and aids 
doctors in comprehending the logic behind findings obtained from 
such models.
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FIGURE 6

Receiver operating characteristic curves of the XGBoost model. (A) The test set (AUC=0.908). (B) The internal validation set (AUC=0.898). (C) The 
external validation set (AUC=0.778).
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