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Objective: To review and analyze the functional connectivity (FC) abnormalities 
in the brain olfactory network (ON) of patients with chronic rhinosinusitis with 
olfactory dysfunction (CRSwOD) and explore the relationship between these FC 
abnormalities and olfactory dysfunction, providing clues to the neurophysiological 
mechanisms underlying CRSwOD.

Methods: FC analysis on the ON of patients with CRSwOD and patients with 
chronic rhinosinusitis without olfactory dysfunction (CRSsOD) identified the 
regions of the ON with abnormal FC in CRSwOD patients, and the correlation 
between abnormal FC and clinical scales for chronic rhinosinusitis was analyzed.

Results: (1) Compared with the CRSsOD group, CRSwOD patients showed 
decreased FC between the bilateral orbitofrontal cortex (OFC) and the right 
middle frontal gyrus, (2) Receiver operating characteristic (ROC) curve analysis 
revealed that the FC value between the right middle frontal gyrus and the left 
OFC (area under the curve (AUC)  =  0.852, sensitivity: 0.821, specificity: 0.800, 
p  <  0.001) was more capable of distinguishing whether CRS patients may have 
olfactory dysfunction than the FC value between the right middle frontal gyrus 
and the right OFC (AUC  =  0.827, sensitivity: 0.893, specificity: 0.667, p  <  0.001), and 
(3) Lund-Kennedy scores were positively correlated with the FC values between 
the right middle frontal gyrus and the left OFC (r  =  0.443, p  <  0.018). Lund-
Mackay scores were also positively correlated with the FC values between the 
right middle frontal gyrus and the left OFC (r  =  0.468, p  <  0.012). Questionnaire of 
Olfactory Disorders-Negative Statements scores were negatively correlated with 
the FC values between the right middle frontal gyrus and the left OFC (r  =  −0.481, 
p  <  0.001).

Conclusion: Persistent nasal inflammation affects the FC between the middle 
frontal gyrus and the OFC, which may serve as a potential imaging marker for 
identifying CRSwOD. The severity of nasal inflammation and olfactory damage 
is closely related to the FC between the middle frontal gyrus and OFC, and the 
abnormal changes in this FC can be  used to explain the neurophysiological 
mechanisms behind the occurrence of olfactory dysfunction in patients.
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1 Introduction

Chronic rhinosinusitis (CRS) is an inflammatory disease 
characterized by persistent nasal congestion, nasal discharge, facial pain, 
and olfactory dysfunction (OD). The overall prevalence of OD in the 
CRS population is approximately 67% (1). OD has a significant negative 
impact on the quality of life of patients. First, it may affect appetite and 
eating behavior, as smell plays a crucial role in the taste and enjoyment 
of food (2). Second, individuals may face safety issues due to their 
inability to detect warning odors such as smoke or gas leaks. Third, OD 
can affect personal social activities and emotional health, leading to 
anxiety, depression, and difficulty in social interactions (3). Overall, OD 
can decrease patient satisfaction and overall quality of life (4).

Olfactory information is detected by olfactory neurons in the 
olfactory epithelium, and the axons directly transmit information to the 
olfactory bulb in the brain, which subsequently projects to other cortical 
areas, including the primary and secondary olfactory cortex (5). 
Specifically, the olfactory cortex is composed of the piriform cortex, the 
anterior and lateral parts of the amygdala cortex, and the ventral medial 
prefrontal cortex. The secondary olfactory cortex includes the 
orbitofrontal cortex (OFC), insula, anterior cingulate cortex, striatum, 
thalamus, superior temporal gyrus, and hippocampus, which 
collectively make up the brain’s olfactory network (6). The core olfactory 
network includes the OFC and the piriform area of the anterior 
temporal cortex, extending to the amygdala and the contextual memory 
system (medial temporal lobe, frontal lobe, and hippocampus) (7).

Magnetic resonance imaging (MRI) provides a powerful tool for 
studying the neurostructural and functional changes in patients with 
OD. Relevant studies have shown that inflammation plays a dominant 
role in CRS with OD (CRSwOD), causing OD by disrupting the 
mucosal microenvironment and olfactory sensory neurons in the 
olfactory region (8). Prolonged inflammation and mucus 
accumulation hinder the arrival of odor molecules to the olfactory 
neurons, resulting in a decline in olfactory ability. If olfactory input is 
continuously absent or weakened, changes may occur in the olfactory 
network of the brain (4). For example, in coronavirus disease 2019 
(COVID-19) cases with long-term olfactory deficiency, mild 
reductions in gray matter thickness (ranging from 0.2 to 2%) were 
found in the OFC and the adjacent hippocampal gyrus, and there was 
an increase in tissue damage markers in the functional connectivity 
(FC) between the piriform cortex and related areas (9), which may 
be due to neural plasticity changes caused by a prolonged lack of 
olfactory stimulation. Another study found that there was a significant 
increase in gray matter volume in the secondary olfactory network, 
including the hippocampus and the parahippocampal gyrus on the 
right side, in patients with improved olfactory dysfunction symptoms 
after surgical treatment of CRS (10), further confirming the plasticity 
changes in the central olfactory network structure.

However, the functional changes in the brain in CRSwOD patients 
are still unclear. Further exploration of the alterations in the olfactory 
network in CRSwOD patients is needed. It has been observed that the 
severity of olfactory impairment reflects the olfactory network, which 
affects its FC (11). In patients with persistent OD related to COVID-
19, the overall modular coefficient of the olfactory network was 
significantly decreased compared to control subjects, and the number 
and strength of functional connections centered on the right thalamus 
were significantly increased (12). In patients with Parkinson’s disease 
with OD, there are abnormal connections between specific gray matter 

regions (brainstem, right cerebellum, and right superior temporal 
lobe) and white matter fibers (left thalamic radiation and bilateral 
posterior coronal radiation), and there is a strong correlation between 
the brainstem and right cerebellum (13). In patients with Alzheimer’s 
disease with olfactory identification dysfunction, the FC between the 
right OFC and the right frontal/central gyrus was greater than that in 
the control group, and the bilateral piriform area FC was abnormal in 
patients with severe olfactory identification dysfunction (14). 
However, there is currently a lack of reliable evidence of changes in 
the FC of the brain olfactory network in CRSwOD patients.

Therefore, this study aimed to calculate the FC between the core 
olfactory network and other regions in CRS without OD (CRSsOD) 
patients and CRSwOD patients and to identify abnormal functional 
connections in the olfactory network of CRSwOD patients. The overall 
objectives of this study were (i) to determine the abnormal functional 
connections related to the olfactory network in CRSwOD patients; (ii) 
to identify the functional connections that can diagnose CRSwOD 
effectively; and (iii) to explore the relationship between the abnormal 
functional connections in the olfactory network of CRSwOD patients 
and the clinical indicators related to olfaction.

2 Materials and methods

A total of 28 CRSwOD and 29 CRSsOD subjects were recruited 
from the Department of Otolaryngology-Head and Neck Surgery, the 
First Affiliated Hospital of Nanchang University. The inclusion criteria 
were as follows: (1) age 18–55 years old; (2) diagnosed with bilateral CRS 
with or without olfactory impairment according to the 2020 European 
Position Paper on Rhinosinusitis and Nasal Polyps; (3) right-handed; 
and (4) capable of cooperating with olfactory assessment and imaging 
examinations. The exclusion criteria were as follows: (1) history of 
olfactory and gustatory dysfunction; (2) history of head trauma, allergic 
rhinitis and surgery for CRS; (3) history of neurological disorders or 
other serious illnesses; (4) psychiatric disorders; (5) contraindications 
for MRI scanning; and (6) visible brain imaging abnormalities. Before 
MRI image acquisition, patients were screened for severe depression 
using the Patient Health Questionnaire-2 (PHQ-2). In addition, all 
subjects underwent standard otolaryngoscopic examination, sinus 
computed tomography (CT), and olfactory testing and completed the 
Questionnaire of Olfactory Disorders-Negative Statements (QOD-NS). 
Written informed consent was obtained from all subjects before data 
collection. This study was conducted in accordance with the approved 
guidelines and principles of the Helsinki Declaration. The study was also 
approved by the Medical Research Ethics Committee and Institutional 
Review Board of the First Affiliated Hospital of Nanchang University.

2.1 Clinical indicators

The QOD-NS consists of 17 negative statements about the extent 
of olfactory impairment in patients, with lower scores indicating a 
poorer olfactory life experience (15). The PHQ-2 primarily assesses 
the patient’s depressive state (with a total score ranging from 0 to 6), 
with a score of ≥3 indicating severe depression (16). The Lund-
Kennedy endoscopic score (LKES) uses the Lund-Kennedy (LK) 
scoring criteria, with higher scores indicating more severe nasal 
mucosal inflammation (17). The Lund-Mackay (LM) score for the 
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nasal sinus CT grading system divides the nasal sinuses into the 
maxillary sinuses; anterior ethmoid, posterior ethmoid, and sphenoid 
sinuses; frontal sinuses; and the osteomeatal complex and then assigns 
scores based on their CT appearance, with higher scores indicating a 
higher grade of polyps and a wider surgical scope (18).

2.2 Olfactory testing

Objective assessment of olfactory function was performed using 
the Sniffin’ Sticks test (Burghart Messtechnik, Wedel, Germany) to 
evaluate the bilateral olfactory detection threshold (T), odor 
discrimination (D), and odor identification (I), with each threshold 
scale ranging from 1 to 16. The TDI score is the sum of the three 
components, and olfactory function is classified as follows: normal 
olfaction, ≥30.5; hyposmia, between 16.5 and 30.5; and anosmia, 
<16.5 (19).

2.3 MRI data acquisition

MRI data were acquired using a 3.0 T MRI system (Discovery 
MR750; GE Healthcare, Milwaukee, WI). Resting-state functional MRI 
(fMRI) data were obtained using an echo-planar imaging sequence with 
the following parameters: repetition time (TR) = 2000 ms; echo time 
(TE) = 30 ms; flip angle = 90°; matrix = 64 × 64; field of view 
(FOV) = 220 × 220 mm; slice thickness = 4 mm; 240 time points. The 
high-resolution anatomical 3D T1 imaging sequence parameters were 
as follows: TR = 1900 ms; TE = 2.26 ms; flip angle = 9°; matrix = 240 × 256; 
FOV = 215 × 230 mm; slice thickness = 1.0 mm; 176 sagittal slices. 
Conventional T2-weighted imaging was performed to rule out visible 
brain structural abnormalities. During the scanning process, all subjects 
were instructed to keep their heads still, remain awake, and wear 
earplugs to reduce noise from the MRI machine.

2.4 Resting-state fMRI data preprocessing

Resting-state fMRI data were preprocessed using the Resting-State 
fMRI Data Analysis Toolkit (DPARSF_v5.3, http://rfmri.org/DPARSF) 
and Statistical Parametric Mapping software (SPM12, Wellcome 
Department of Imaging Neuroscience, London, United Kingdom) in 
MATLAB R2018b (The MathWorks Inc., Natick, MA) (20). The specific 
steps included (1) removing the first 10 time points of each image to 
ensure the stability of the magnetic field during MRI; (2) slice timing 
correction using the middle slice as a reference to eliminate the temporal 
differences caused by interslice acquisition and ensure the same starting 
point for the collected images; and (3) coregistration of functional and 
anatomical images, spatial normalization to the Montreal Neurological 
Institute (MNI) template, and resampling of each voxel to a voxel size.

2.5 Definition of nodes

According to previously published fMRI task activation studies, 
the olfactory network includes the olfactory cortex, insula, and OFC 
(21, 22). Seed time series were extracted from preprocessed data in 
MNI space (x, y, and z coordinates) as the average time series within 

a five-voxel radius around the coordinates defined in previous 
activation studies (see Figure  1). The seed for the core olfactory 
network was derived from meta-analyses that identified three bilateral 
brain regions as most likely to be  activated by olfactory stimuli, 
including the olfactory cortex ([−22 0–14], [22 2–12]), orbitofrontal 
cortex ([−24 30–10], [28 34–12]), and insula ([−30 18 6], [28 16 8]). 
The network was computed as the FC map surviving at p < 0.01 and a 
minimum cluster size (k) of 60 voxels.

2.6 Static functional connectivity

The static FC was quantified using the Pearson correlation 
coefficient (r) between the average time series of each region of 
interest (ROI) voxel and the average time series of all other voxels in 
the brain. Subsequently, Fisher’s Z transformation was used to convert 
all r values to z values.

2.7 Statistical analysis

Population demographics were analyzed using SPSS 17.0. The 
Shapiro–Wilk test was used to assess the normality of continuous 
variables, and normally distributed continuous variables are presented 
as the mean ± standard deviation, while nonnormally distributed 
continuous variables are presented as the median ± interquartile range. 
Group differences were assessed using two-sample t tests, and sex 
proportions were compared using chi-square tests. To explore the 
differences in FC between patients with CRSwOD and patients with 
CRSsOD, independent two-sample t tests were performed on Fisher’s 
Z transformed scores, using Gaussian random field (GRF) correction.

Then we generated the receiver operating characteristic (ROC) 
curve to analyze whether the brain regions with significant differences 
in FC values between CRSwOD and CRSsOD patients could 
distinguish these patient groups, and calculated the area under the 
ROC curve (AUC) to evaluate the diagnostic efficacy.

3 Results

3.1 Clinical characteristics of participants

A total of 57 participants were recruited, including 29 patients 
with CRSsOD (17 males, 12 females) and 28 patients with CRSwOD 
(19 males, 9 females). Other than TDI scores, which were significantly 
higher in the CRSsOD group than in the CRSwOD group (p < 0.05), 
there were no significant differences in age, sex, or other clinical data, 
including PHQ-2, QOD-NS, LK, and LM scores, between the two 
groups (p > 0.05). The demographic data of all participants are 
summarized in Table 1.

3.2 Differences in resting-state functional 
connectivity between the CRSsOD and 
CRSwOD groups

The voxel-level results of intergroup resting-state FC comparisons 
using the bilateral OFC as the seed region are presented in Table 2. 
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Compared to the CRSwOD group, CRSsOD patients showed 
significantly increased FC between the bilateral OFC and right middle 
frontal gyrus (two-sample t test, p < 0.05, GRF corrected) 
(Figures 2, 3). However, no significant differences in FC were found 
between the two groups using the seed regions of piriform cortex and 
insula lobe.

3.3 Receiver operating characteristic curve 
analysis

The FC values between the right middle frontal gyrus and left 
OFC (area under the curve (AUC) = 0. 852, sensitivity: 0.821, 
specificity: 0.800, p < 0.001) were more effective in distinguishing 
olfactory functional changes in CRS patients than the FC values 

between the right middle frontal gyrus and right OFC 
(AUC = 0.827, sensitivity: 0.893, specificity: 0.667, p < 0.001) 
(Figure 4).

3.4 Correlation analysis

We analyzed the correlation among LK scores, LM scores, 
QOD-NS scores, and FC values between the bilateral OFC and 
right middle frontal gyrus. LK scores were positively correlated 
with the FC values between the right middle frontal gyrus and left 
OFC (r = 0.443, p < 0.018). LM scores were also positively correlated 
with the FC values between the right middle frontal gyrus and left 
OFC (r = 0.468, p < 0.012). QOD-NS scores were negatively 
correlated with the FC values between the right middle frontal 

FIGURE 1

Core seed points of the olfactory network.

TABLE 1 Demographic and clinical data of the CRSsOD and CRSwOD groups.

CRSsOD (n =  29) CRSwOD (n =  28) p value

Age, years 36.33 ± 11.49 42.25 ± 13.99 0.08

Sex, male/female 17/12 19/9 0.19

TDI score 36.23 ± 2.79 13.84 ± 34.67 <0.01

PHQ-2 score 1.69 ± 1.48 1.74 ± 1.45 0.46

QOD-NS score 35.47 ± 10.13 38.43 ± 5.74 0.29

LK score ±2.29 6.00 ± 2.02 0.73

LM score 14.53 ± 5.14 15.39 ± 12.83 0.35

CRSwOD, chronic rhinosinusitis with olfactory dysfunction; CRSsOD, chronic rhinosinusitis without olfactory dysfunction; TDI, the bilateral olfactory detection threshold (T), odor 
discrimination (D), and odor identification (I); PHQ-2, the Patient Health Questionnaire-2; QOD-NS, the Questionnaire of Olfactory Disorders-Negative Statements; LK score, the Lund-
Kennedy endoscopic score; LM score, the Lund-Mackay score.
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FIGURE 2

Brain regions showing significant changes in resting-state functional connectivity in the prefrontal cortex (voxel-level p  <  0.05, GRF corrected). There 
were significant between-group differences (p  <  0.05) in the average weighted resting-state functional connectivity in these regions. (A) Compared to 
the CRSwOD group, patients with CRSsOD showed increased functional connectivity between the right orbitofrontal cortex (OFC) and right middle 
frontal gyrus, with no significant functional connectivity differences observed between other seed points. (B) Compared to the CRSwOD group, 
patients with CRSsOD showed increased functional connectivity between the left OFC and right middle frontal gyrus, with no significant functional 
connectivity differences observed between other seed points.

TABLE 2 Differences in FC values between the CRSsOD and CRSwOD groups.

Seed ROI L/R Brain area Cluster size (voxels) MNI coordinates of peak voxel t value

X Y Z

Left OFC

R Frontal-Mid 58 36 54 30 −0.95

Right OFC

R Frontal-Mid 70 36 45 3 −0.76

The coordinates are stereotactic coordinates based on the Montreal Neurological Institute (MNI) brain atlas. OFC, orbitofrontal cortex; Frontal-Mid, frontal middle gyrus.
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gyrus and left OFC (r = −0.481, p < 0.001). However, there were no 
significant correlations among LK scores, LM scores, QOD-NS 
scores, and FC values between the right middle frontal gyrus and 
right OFC (Figure 5).

4 Discussion

This study investigated the differences in FC between the olfactory 
network and other brain regions in patients with CRSsOD and 
CRSwOD. Compared to patients with CRSsOD, patients with 
CRSwOD exhibited abnormal FC between the OFC and the right 
middle frontal gyrus.

Abnormal FC was observed between the OFC and the middle 
frontal gyrus in the CRSwOD group. This may be due to the close 
relationship between the OFC and the orbitofrontal system and 
olfaction (23). The middle frontal gyrus is an important region of the 
orbitofrontal system, which is involved in emotion, social behavior, 
and autonomic control. Previous studies have suggested that the 
middle frontal gyrus is involved in attention, working memory, and 
language processing (24). Activation of the bilateral middle frontal 
gyrus has been observed in healthy individuals when identifying 
odor-containing pictures and when presented with olfactory word 
cues (25). Increased neural activity in the right middle frontal gyrus 

has been observed during successful odor recognition (26, 27). 
Positron emission tomography studies have also shown increased 
regional cerebral blood flow in the middle frontal gyrus and superior 
frontal gyrus when individuals evaluated the pleasantness and 
familiarity of odors (28).

In CRSwOD patients, there was a positive correlation between 
the nasal endoscopy score (LK score), sinus CT score (LM score), 
and FC values between the right middle frontal gyrus and the left 
OFC. Higher scores in these evaluations indicate a greater severity 
of nasal mucosal inflammation and polyp grading, which leads to 
more severe OD. We  speculate that when OD worsen, the FC 
between the right middle frontal gyrus and the left OFC 
strengthens to compensate for the olfactory loss caused by the 
dysfunction. On the other hand, there was a negative correlation 
between QOD-NS scores and the FC values between the right 
middle frontal gyrus and the left OFC. Higher QOD-NS scores 
indicate milder OD, and in these patients, there was no enhanced 
FC between the right middle frontal gyrus and the left OFC. This 
may be related to the reciprocal interaction between the middle 
frontal gyrus and the olfactory network, as the neurons in the 
middle frontal gyrus are involved in the recognition and processing 
of olfactory information. As OD worsens, the FC between the 
middle frontal gyrus and the OFC in the olfactory network may 
strengthen, and it may weaken when OD improves. Studies have 
shown that the middle frontal gyrus can modulate olfactory 
perception and memory based on emotional and mnemonic 
information (29). These regions are closely connected to the 
olfactory system and are involved in the regulation of emotion and 
behavior (30). For example, pleasant odors can evoke positive 
emotions, while unpleasant odors can evoke negative emotions 
(31). These emotional reactions and behavioral regulation are 
closely related to the orbitofrontal system. Additionally, it has been 
shown that olfactory information is encoded in the olfactory bulbs 
and transmitted to the piriform cortex. The piriform cortex 
projects to several brain regions within the limbic system, such as 
the anterior cingulate cortex and the amygdala, and is directly 
connected to the frontal cortex through the axonal pathways of the 
OFC (32). The piriform cortex is known to play a crucial role in 
odor discrimination (33), and a decrease in FC between the 
piriform cortex and the middle frontal gyrus has been observed in 
individuals with decreased olfactory discernment.

5 Conclusion

In conclusion, patients with CRSwOD exhibit changes in the 
brain’s olfactory network, particularly abnormal FC between the core 
olfactory network (OFC) and the middle frontal gyrus. This abnormal 
FC may be an important contributor to the OD observed in CRSwOD 
patients. There is a close relationship between nasal inflammation, 
polyp severity, and OD and the FC between the middle frontal gyrus 
and the OFC. Abnormal FC may be a neurobiological mechanism 
underlying OD in patients with CRSwOD.

There are several limitations in our study. First, it was a cross-
sectional study with only one scan per participant. Further 
longitudinal studies are needed to confirm and further explore 
our findings to increase our understanding of CRSwOD. Second, 

FIGURE 3

Average abnormal functional connectivity values (Z scores) between 
the left orbitofrontal cortex (A) and right orbitofrontal cortex (B) in 
CRSwOD patients compared to CRSsOD patients. * Represents a 
significant difference, * p  <  0.05, ** p  <  0.01, *** p  <  0.001, **** 
p  <  0.0001.

FIGURE 4

ROC analysis of the average weighted functional connectivity values 
in the changing brain regions based on the left orbitofrontal cortex 
(A) and right orbitofrontal cortex (B) in patients with CRSsOD and 
CRSwOD. FPR, false-positive rate; TPR, true-positive rate.
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the small sample size restricted our ability to investigate changes 
in other indices. Third, we focused on internetwork relationships 
and did not explore intranetwork changes. Finally, we did not 
focus on the current research on olfactory transmission pathways 
in CRS. Future studies with higher field strength instruments or 
better preprocessing methods to obtain clearer cortical and 
subcortical nuclei could provide valuable insights into the 
mechanisms underlying the transition from CRSsOD 
to CRSwOD.
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