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Background: Pediatric onset multiple sclerosis (POMS) commonly occurs at the

time of various endocrine changes. Evaluation of the impact of endocrine status

on disease severity in POMS has not been previously explored.

Objective: This study sought to evaluate if sex and stress hormones in children

with POMS impact motor and non-motor diseases severity.

Methods: A single-center case control study was performed. Individuals with

POMS were compared to individuals without neurologic disease. Each individual

had three blood draws assessing stress and sex hormones between 07:00 and

09:00. Measures of fatigue (Epworth sleepiness scale), depression (PHQ-9), and

quality of life (PedsQL) assessed at each visit.

Results: Forty individuals with POMS and 40 controls were enrolled. Individuals

with POMS had lower free testosterone (p= 0.003), cortisol (p < 0.001), and ACTH

(p < 0.001) and had higher progesterone (p= 0.025) levels than controls. Relapses

and EDSS were not impacted by endocrine variables. The POMS cohort had a

significantly higher Epworth score (p < 0.001), PHQ-9 score (p < 0.001), and lower

PQL score (p < 0.001) than controls. Non-motor measures were not associated

with endocrine status.

Conclusion: Free testosterone, cortisol, ACTH, and progesterone were abnormal

in children with POMS although there was no association between endocrine

status and markers of disease severity or non-motor symptoms of MS.
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Introduction

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system

(CNS) characterized by inflammation, demyelination, and gliosis (1). Roughly 3–5% of

MS cases occur in individuals younger than 18 years old, with the majority of these cases

occurring in children aged 13 to 16 (1). Although pediatric onset multiple sclerosis (POMS)

is fundamentally similar to adult MS, there are some distinct differences which differentiate
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the two conditions. For instance, whereas 84% of adults with MS

present with a relapsing-remitting course, while 98% of POMS

patients present with a relapsing-remitting course (2). Younger

children with MS typically present with multifocal symptoms, but

it remains more common for adolescent patients to present with a

single focal symptom, like in adult MS (3). Additionally, although

it takes longer for POMS patients to accrue disability, they reach

irreversible disability states at a younger age than individuals with

adult onset MS (4–6).

Hypothalamic-pituitary-adrenal (HPA) axis dysfunction

remains common in adults with MS (7, 8). Studies have linked

endocrine dysregulation (typically assessed through cortisol status)

to male infertility (9–11), female infertility (12–14), symptomatic

hyperprolactinemia (15–17), fatigue (18–20), hyperarousal states

(21), depression (19, 22), cognitive impairment (23–25), and most

importantly, poorer clinical outcomes in adults with MS (6, 26–29).

The HPA-axis is linked to the production of sex hormones through

negative feedback mechanisms (Figure 1). Studies in adults have

also demonstrated that estrogen, testosterone and progesterone

may be protective against relapses and promote remyelination, with

the potential to be manipulated to augment disease when combined

with disease modifying therapy (DMT) (30–35). Although little

is known about the role of sex-hormones in POMS, previous

publications have revealed a lack of gender differences in children

with POMS until after puberty, suggesting that sex hormones

are related to the pathogenesis of POMS (36, 37). Additionally,

multiple natural history studies of POMS have identified that

obesity, a condition with significant endocrine aspects, and early

onset puberty predict earlier onset of MS (38–40).

The role of endocrine dysfunction has been heterogeneously

investigated in adults with MS but has not been thoroughly

investigated its role children with POMS. The first objective

FIGURE 1

Flow diagram of interaction between the HPA-axis sex hormone production.

of this study aims to explore the baseline endocrine state

of children with POMS using HPA-axis and sex hormones,

to determine if these profiles are associated with markers of

disease severity and disability. The second objective of this study

explores if endocrinologic biomarkers are associated with non-

motor symptoms of MS such as fatigue, depression, and sleep

dysregulation. We hypothesized that diminished sex hormone

and elevated HPA-axis hormone status would be predictive of

more severe disease and increased relapses, both clinically and

radiographically, and that abnormal sex and HPA-axis hormone

states will increase the likelihood and severity of fatigue, depression,

and sleep dysregulation.

Materials and methods

Approvals and data availability

This study was approved by the Children’s Hospital Los Angeles

institutional review board (IRB). All participants were required to

provide assent when aged<18 years and consent when aged over 18

years. Participants <18 years required a consenting family member

or guardian for enrollment. Participants who turned 18 years old

during the study were consented at the next follow up visit.

Data from this study is available to qualified investigators

pending study team and IRB approval.

Study population

Participants with POMS were identified through ICD-10

codes (G35) in the electronic medical record system at the host
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institution. Participants and families/caregivers were approached

about participation in research by the study team after regularly

scheduled clinical visits. The control cohort was identified through

an institutional primary care clinic where patients who were

receiving blood-work as part of standard of care evaluation were

asked to participate in the study. The control cohort was identified

after the POMS cohort had participated in order to optimize age,

sex, and Tanner-stage matching.

Inclusion and exclusion criteria

For individuals with POMS, inclusion criteria involved being

between 8 and 18 years of age at the time of diagnosis of

POMS, in addition to both meeting McDonald’s 2017 criteria

(41) and International Pediatric Multiple Sclerosis Study Group

(IPMSSG) criteria (42) for POMS. Exclusion criteria included

active myelin oligodendrocyte glycoprotein (MOG) antibody

positivity of any titer level at the time of enrollment, aquaporin-

4 antibody positivity, prior receipt of chemotherapy (including

cyclophosphamide), use of finasteride, use of over the counter

or prescription hormonal supplements, or history of GU disease

(e.g., undescended testis). Non-hormonal gender transition was not

exclusionary for this study. Participants who subsequently became

pregnant in this study were excluded from further analysis although

earlier data points were used.

A control cohort of individuals without neurologic disease

was used as a comparator group for this study. Inclusion criteria

included an age between 8 and 18 years and receiving primary

health care within our institution. Individuals were excluded if they

had any chronic medical conditions, prior or active neurological

conditions, or had a history of endocrine dysfunction of any kind

identified on review of ICD-10 coding for well child visits and chart

review. Individuals who were receiving clinical endocrine screening

(for sex and stress hormone labs in this study) were also excluded. If

consenting to participate in the study, research endocrine labs were

added on to existing blood work when possible (e.g., labs would be

added to a scheduled CBC for an anemia evaluation) although this

was not possible in all cases.

Laboratory obtainment

During scheduled clinical blood draws, researchers assessed

participants had their sex hormones, including luteinizing

hormone (LH), follicle stimulating hormone (FSH), prolactin,

estrogen, free and total testosterone, and their stress hormones,

including cortisol, adrenocorticotropic hormone (ACTH), growth

hormone (GH) and progesterone, assessed. When possible,

research blood draws were combined with clinical blood draws to

minimize venipuncture. Study participants received blood draws at

enrollment, three months after the initial encounter, and 6 months

after the initial encounter. Labs were obtained in the morning

(07:00–09:00 local time) only. Female participants were required to

record their last menstrual period prior to blood draw. To avoid

variations in the HPA-axis hormonal analysis, labs were not drawn

within 8 weeks after the use of any oral or intravenous steroid agent.

The timing of all labs received by control participants was identical

to that of the POMS cohort.

Clinical data and disease severity
assessments

Demographics including age, gender, race/ethnicity were

collected for all participants. For individuals with POMS, disease

severity was assessed by the expanded disability severity scale

(EDSS), 25-foot walk test, symbol digit modality test (SDMT) and

9-hole peg test. Fatigue, sleep dysregulation, and depression were

also assessed using the PediatricQLMultidimensional Fatigue Scale

(PedsQL), Epworth Sleepiness Scale (ESS), and the Patient Health

Questionnaire-9 (PHQ-9) respectively. To optimize consistency, all

neurobehavioral measures were administered by the same research-

trained clinical research coordinator at each visit.

All participants received routine, standard of care,

neuroimaging following the diagnosis of POMS. The most

recent neuroimaging (up to 12 months prior to enrollment of the

study) was used as the “baseline” scan. Lesion burden was assessed

by manual quantification of white matter lesions. Subsequent scans

were obtained during the routine course of practice between 6 and

12 months. Participants with any concern for relapse were imaged

per clinical guidelines. Determination of radiographic disease

activity in relapse was made by a pediatric-trained neuroradiologist

and the principal investigator.

Statistical analysis

Demographics and characteristics were summarized for the

full cohort and across control and POMS groups using mean and

standard deviation (SD). Categorical variables were described as a

frequency and percentage. Wilcoxon rank-sum tests were used to

test for differences in continuous variables and Fisher’s exact tests

were used to test for associations in categorical variables. Graphical

representations (e.g., box plots and correlation graphs) depicted

mean outcome values across three visits. To make most efficient

use of all follow-up data (visits 1–3), all study analyses utilized

linear mixed models with a random participant effect to account

for within participant correlation. P-values for all corresponding

hypothesis tests in the analyses were controlled with respect to false

discovery rate (FDR) using Benjamini–Hochberg’s procedure. We

defined statistical significance using a two-sided FDR adjusted p <

0.05. All statistical analyses were conducted in R Studio 4.2.2.

Results

Participants’ characteristics

Forty individuals with POMS and 40 control individuals

without POMS were included in this study. Participants’

demographics and clinical characteristics are reported in Table 1.

In the POMS cohort, the mean (SD) age at diagnosis was 14.4 (1.7)

years and mean (SD) age at first therapy was 14.9 (2) years. Mean

(SD) duration of symptoms was 2.5 (1.7) years.
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TABLE 1 Demographics and phenotypes of the study cohort.

Characteristic All Patients (n = 80)a Control (n = 40)a POMS (n = 40)a P
b

Age at testing (years) 16.9 (2.3) 17.0 (2.2) 16.8 (2.4) 0.8

Sex 0.9

Male 30 (38%) 15 (38%) 15 (38%)

Female 50 (62%) 25 (62%) 25 (62%)

Race 0.5

White 66 (82%) 31 (78%) 35 (88%)

Black 8 (10%) 5 (12%) 3 (8%)

Asian 6 (8%) 4 (10%) 2 (5%)

Ethnicity 0.4

Hispanic 43 (54%) 19 (48%) 24 (60%)

Non-Hispanic 37 (46%) 21 (52%) 16 (40%)

Tanner Stage 0.09

3 1 (1%) 0 (0%) 1 (3%)

4 10 (13%) 8 (20%) 2 (5.0%)

5 69 (86%) 32 (80%) 37 (92%)

Age at diagnosis (years) - - 14.4 (1.7) -

Age at 1st therapy (years) - - 14.9 (2) -

Duration of symptoms (years) - - 2.5 (1.7) -

aMean (sd), n (%).
bFisher’s exact test; Wilcoxon rank sum test.

Di�erence in hormones between groups

There was no significant difference in LH, FSH, estrogen, total

testosterone, prolactin, and GH between groups. Participants with

POMS had a significantly lower free testosterone (p = 0.003),

cortisol (p < 0.001), and ACTH (p < 0.001) level than the control

group and a significantly higher progesterone (p= 0.025) level than

the control group (Figure 2, Table 2).

Although some participants with POMS had fluctuating

hormone levels over time, the majority of patients had

fairly stable hormone levels throughout the three visits

(Supplementary Figure 1).

Demographics and hormones in POMS

There were no significant associations between demographics

and hormones, with the exceptions of age at first therapy and sex.

The association between age at first therapy and testosterone are

displayed in Figure 3. Age at first therapy was positively associated

with higher free testosterone (β = 1.9; 95% CI: 0.6, 3.2; p = 0.007)

and higher total testosterone (β = 69.8; 95% CI: 27.4, 112.3; p

= 0.003).

The difference in hormones based on sex is presented in Table 3.

Females had a higher LH (p = 0.017), FSH (p = 0.004), estrogen

(p < 0.001), progesterone (p = 0.031), and prolactin (p = 0.002),

and males had a higher free testosterone (p < 0.001) and total

testosterone (p < 0.001).

Hormones and disability in POMS

Themedian (IQR) baseline vitamin D level in the POMS cohort

was 33.50 ng/mL (26.8, 40). There was no association between

either sex or stress hormones and vitamin D level. Annualized

relapse rate (ARR) and EDSS functional scores were also not

significant outcomes across a variety of hormonal estimates.

There were no significant associations between EDSS functional

scores and hormones in the POMS cohort, with the exceptions

of functional cerebellar scores (Supplementary Table 1). Having a

functional cerebellar score of at least one was associated with higher

free testosterone (mean difference: 10.19; 95% CI: 3.2, 17.2; p =

0.035) and higher total testosterone (mean difference: 444.04; 95%

CI: 225.8, 663; p < 0.001).

Throughout the three visits, 15% and 8% of participants

with POMS had lymphopenia and leukopenia, respectively, of

participants with POMS. Due to the low prevalence, leukopenia

and lymphopenia were not significantly associated with hormonal

variation, except for total testosterone. Having leukopenia was

associated with a lower total testosterone (mean difference,

−171.17; 95% CI,−286.6 to−54.7) (Supplementary Table 2).

Hormones and non-motor disability in
POMS

The differences in ESS, PedsQL, and PHQ-9 scores between

POMS and Control cohorts are presented in Figure 4. The POMS
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FIGURE 2

Di�erences in hormones between POMS and control.

TABLE 2 Di�erences in hormones between POMS and control.

Hormones Controla POMSa POMS—controla P

LH (mIU/mL) 5.08 (4.3, 5.8) 6.9 (4.6, 9.2) 1.82 (−0.6, 4.2) 0.232

FSH (mIU/mL) 4.71 (4, 5.4) 4.33 (3.7, 5) −0.38 (−1.3, 0.6) 0.546

Estrogen (pg/mL) 220.12 (189.2, 251.1) 262.88 (218.5, 307.1) 42.55 (−10.7, 95.7) 0.232

Free testosterone (pg/mL) 43.26 (23.3, 63.2) 7.3 (4.6, 10) −35.97 (−55.8,−16.1) 0.003

Total testosterone (ng/dL) 223.77 (139, 308.6) 232.46 (140.6, 324.6) 8.27 (−115, 131.7) 0.896

Progesterone (ng/dL) 0.18 (0.1, 0.2) 0.99 (0.4, 1.6) 0.81 (0.2, 1.4) 0.025

Prolactin (ng/mL) 8.61 (7.7, 9.6) 8.32 (7.3, 9.3) −0.29 (−1.7, 1.1) 0.751

Cortisol (µg/dL) 8.69 (7.8, 9.6) 5.06 (4.2, 5.9) −3.63 (−4.9,−2.4) <0.001

ACTH (pg/mL) 24.7 (21.7, 27.7) 15.71 (13.7, 17.7) −8.98 (−12.6,−5.4) <0.001

GH (ng/mL) 0.31 (0.2, 0.4) 0.6 (0.1, 1.1) 0.3 (−0.2, 0.8) 0.306

aValues are presented as mean (95% confidence interval). Bold values indicate p < 0.05.

cohort had a significantly higher ESS (mean difference = 4.1; 95%

CI: 3, 5.3; p < 0.001) and PHQ-9 score (mean difference = 3.8;

95% CI: 2.3, 5.4; p < 0.001), and a significantly lower PedsQL

score (mean difference = −24.3; 95% CI:−31.4,−17.2; p < 0.001)

than the control cohort. Although some of the controls and POMS

patients had fluctuating ESS, PedsQL, and PHQ-9 scores over

time, most participants had stable scores across their three visits

(Supplementary Figure 2).
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FIGURE 3

Association between age at first therapy and testosterone. Values presented as Spearman’s correlation coe�cients.

TABLE 3 Di�erences in hormones between males and females.

Hormones Male (95% CI) Female (95% CI) Female–Male (95% CI) P

LH (mIU/mL) 3.29 (2.3, 4.3) 9.13 (5.7, 12.6) 5.8 (1.5, 10.2) 0.017

FSH (mIU/mL) 3.03 (2, 4) 5.12 (4.4, 5.9) 2.1 (0.9, 3.3) 0.004

Estrogen (pg/mL) 156.24 (132.3, 180.2) 330.14 (274, 385.6) 173.8 (101.7, 245.6) <0.001

Free testosterone (pg/mL) 15.69 (12.3, 19.1) 2.28 (0.1, 4.4) −13.5 (−17.1,−9.8) <0.001

Total testosterone (ng/dL) 506.61 (399.4, 613.8) 71.14 (−14.5, 156.8) −444.3 (−562,−325.8) <0.001

Progesterone (ng/dL) 0.1 (0.09, 0.11) 1.53 (0.6, 2.5) 1.4 (0.3, 2.6) 0.031

Prolactin (ng/mL) 6.31 (5.7, 6.9) 9.55 (8.1, 10.9) 3.2 (1.4, 5.1) 0.002

Cortisol (µg/dL) 5.78 (4.1, 7.4) 4.62 (3.7, 5.6) −1.2 (−2.9, 0.6) 0.221

ACTH (pg/mL) 16 (13.2, 18.8) 15.53 (12.7, 18.4) −0.5 (−4.6, 3.7) 0.825

GH (ng/mL) 0.22 (0.1, 0.3) 0.84 (0.1, 1.6) 0.6 (−0.3, 1.5) 0.221

Bold values indicate p < 0.05.

The associations between endocrine variables, and ESS,

PedsQL, and PHQ-9 are presented in Table 4. There were no

significant associations observed between hormones and ESS or

PedsQL scores. PHQ-9 score was significantly associated with a

higher progesterone (p < 0.001, 95%CI: 0.14–0.61) in the POMS

cohort, but this association was not significantly different from that

of the control cohort.

Discussion

This study demonstrates that children with POMS present

lower levels of free testosterone, cortisol, and ACTH, in addition

to higher levels of progesterone, when compared to age, weight,

sex, and Tanner Stage matched controls. Previous studies have

identified relationships between significant endocrine events and

POMS pathogenesis (36–40), but, to our knowledge, this is the

first study to identify these endocrinologic differences in children

with POMS.

Previous studies suggest that a relationship between sex

hormones and early onset of disease in POMS exists, though date

from our cohort demonstrated no associations between endocrine

dysregulation and earlier age of onset of this condition (36, 37).

This may be associated with high Tanner stages within the POMS

group wherein 92% of the POMS cohort were Tanner Stage 5 at

the time of study participation. It is possible that this effect may

have been observed if hormones were taken closer to the time

of original diagnosis as the mean duration of symptoms in our

study was 2.5 years. Although age at diagnosis was not predictive

of any hormonal associations, age at first therapy was positively

associated with a higher level of free and total testosterone. This

may indicate that higher levels of testosterone may be protective in

preventing and earlier utilization of disease modifying therapy in

this population although this will require further longitudinal study

to properly evaluate.

Interestingly, BMI was not predictive of any endocrine

abnormalities in our study, which conflicts with previous studies

that found that higher BMI was predictive of an earlier onset

of POMS (38, 40). This may be because BMI is a relatively

limited metric and not an accurate assessment of adiposity. One

explanation for the connection between BMI and POMS is that

adipokines may play a role in pathogenesis (43). Thus, if patients

with a high BMI in our study had an inconsistent level of adiposity,

our results could have been altered or masked a potential effect.

Further, vitamin D was not a significant outcome across a variety

of endocrine variables. Previous studies suggest that vitamin D

plays a role in the onset, progression, and relapse of MS (44),
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FIGURE 4

Di�erences in epworth, PQL, and PHQ9 score between POMS and control.

as well as in the onset and relapse rate of POMS (45, 46). It is

possible that the mechanism in which vitamin D is involved in

POMS pathogenesis is distinct from the role of hormones in POMS

pathogenesis although the limited power of this studymay have also

been unable to detect differentiation.

Our results also suggested that relapses (defined by ARR) and

disability (defined by EDSS) were not impacted by endocrine status.

When EDSS functional scores were evaluated, cerebellar scores had

a significant positive association with testosterone levels. However,

as the number of individuals with an abnormal functional cerebellar

score was very low, the validity of these associations is uncertain.

This also applies to the relationship observed between leukopenia

and total testosterone, as the prevalence of leukopenia in our study

was very low. Individuals with POMS displayed skewed disability

scores (lower EDSS) and lower relapses (lower ARR) and the lack

of distribution of data may have contributed to our non-significant

findings. This is consistent with another study which suggests that

POMS patients tend to have lower EDSS scores than adult-onset

MS patients and that the stepwise nature of EDSS scoring may limit

the description of the POMS disease status (4).

Individuals with POMS had a significantly higher ESS and

PHQ-9 score, and a significantly lower PedsQL score, indicating

a higher level of sleepiness and depression and lower quality

of life. There were no clinically significant associations between

endocrine status and any of the neurocognitive measures. This

was surprising given the high rates of fatigue and depression and

lower quality of life in the POMS cohort and may be reflective

or either low study power or inferior testing instruments given

they are all screening, rather than diagnostic, measures. Previous

studies in adult MS populations have suggested that HPA-axis

hyperactivity is associated with increased fatigue and depression

(18–20, 22), but in our study, we observed that individuals

with POMS had a significantly lower free cortisol and ACTH

level, suggesting HPA-axis underactivity. The mechanism in which

individuals with POMS develop fatigue and depression may be

different than that of adults with the condition and represents

an important, and potentially modifiable, area of investigation for

future studies.

This study is not without limitations. Although the study

involved an age, sex, and Tanner-stage matched control cohort

of individuals without POMS, the sample size for both groups

was small, limiting the power to detect differences between

groups. Regardless, generalizability in this cohort to other patient

populations is difficult although our sample size was comparable

to other previous POMS studies (36, 39, 40, 43). Our study was

a single-center study which introduces ascertainment and severity

bias as our site is the only regional center for POMS care in the

region. In addition, the generalizability of these data may also be

limited by the single center design. As the median time between

the diagnosis of POMS and this study was 2.5 years, nearly all

patients were already Tanner 4 or 5 at the time of participation.

As such, endocrine assessments are more reflective of mature,

post-pubertal, samples. Evaluating these endocrine labs would be

very beneficial at the time of diagnosis and is being planned as

a subsequent study. Sex and stress hormones are also notoriously

variable and while sample collection occurred in a standardized
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TABLE 4 Associations between endocrine variables and non-motor measures fatigue/sleepiness, depression and quality of life.

Hormones Control (95% CI) P POMS (95% CI) P POMS–control (95% CI) P

Fatigue/sleepiness (Epworth Sleepiness Score)

LH (mIU/mL) −0.06 (−0.2, 0.1) 0.90 0.03 (−0.01, 0.07) 0.33 0.09 (−0.07, 0.25) 0.671

FSH (mIU/mL) −0.13 (−0.3, 0.07) 0.90 0.23 (0.03, 0.42) 0.20 0.36 (0.07, 0.65) 0.100

Estrogen (pg/mL) 0 (0, 0.01) 0.94 0 (0, 0) 0.34 0 (−0.01, 0) 0.671

Free testosterone (pg/mL) 0 (−0.01, 0.01) 0.94 −0.01 (−0.1, 0.08) 0.90 −0.01 (−0.1, 0.08) 0.850

Total testosterone (ng/dL) 0 (0, 0) 0.90 0 (0, 0) 0.84 0 (0, 0) 0.671

Progesterone (ng/dL) −0.29 (−2.5, 1.93) 0.94 0.06 (−0.15, 0.27) 0.84 0.34 (−1.89, 2.57) 0.850

Prolactin (ng/mL) −0.09 (−0.27, 0.09) 0.90 −0.01 (−0.15, 0.14) 0.92 0.08 (−0.14, 0.31) 0.671

Cortisol (µg/dL) 0 (−0.12, 0.11) 0.95 0.11 (−0.02, 0.24) 0.33 0.11 (−0.07, 0.29) 0.671

ACTH (pg/mL) −0.02 (−0.07, 0.02) 0.90 −0.07 (−0.13, 0) 0.30 −0.04 (−0.12, 0.04) 0.671

GH (ng/mL) −0.28 (−1.73, 1.16) 0.94 −0.14 (−0.43, 0.15) 0.58 0.14 (−1.33, 1.62) 0.850

Pediatric Quality of Life (PedsQL)

LH (mIU/mL) 0.21 (−0.45, 0.88) 0.83 −0.05 (−0.22, 0.13) 0.74 −0.26 (−0.95, 0.43) 0.750

FSH (mIU/mL) 0.21 (−0.73, 1.15) 0.83 −0.17 (−1.03, 0.69) 0.78 −0.38 (−1.66, 0.89) 0.787

Estrogen (pg/mL) 0 (−0.02, 0.03) 0.88 0 (−0.01, 0.02) 0.68 0 (−0.02, 0.03) 0.989

Free testosterone (pg/mL) −0.04 (−0.1, 0.03) 0.83 −0.45 (−0.94, 0.02) 0.20 −0.42 (−0.91, 0.07) 0.567

Total testosterone (ng/dL) 0 (−0.01, 0.01) 0.83 −0.01 (−0.02, 0) 0.40 −0.01 (−0.3, 0) 0.01 0.750

Progesterone (ng/dL) −4.8 (−13.78, 4.14) 0.83 −0.9 (−1.79, 0) 0.20 3.91 (−5.08, 12.93) 0.750

Prolactin (ng/mL) 0.19 (−0.63, 1.01) 0.83 0.18 (−0.45, 0.81) 0.74 −0.01 (−1.05, 1.03) 0.990

Cortisol (µg/dL) 0.25 (−0.25, 0.74) 0.83 −0.32 (−0.86, 0.23) 0.50 −0.56 (−1.3, 0.17) 0.567

ACTH (pg/mL) 0.05 (−0.13, 0.24) 0.83 0.3 (0, 0.6) 0.20 0.25 (−0.11, 0.6) 0.567

GH (ng/mL) −1.62 (−8.52, 5.26) 0.83 0.07 (−1.2, 1.35) 0.91 1.69 (−5.31, 8.71) 0.787

Depression (PHQ-9)

LH (mIU/mL) −0.05 (−0.23, 0.13) 0.57 0.01 (−0.04, 0.06) 0.91 0.06 (−0.12, 0.25) 0.712

FSH (mIU/mL) −0.01 (−0.26, 0.23) 0.92 0.03 (−0.2, 0.26) 0.92 0.04 (−0.3, 0.38) 0.900

Estrogen (pg/mL) 0 (0, 0.01) 0.92 0 (0, 0) 0.95 0 (−0.01, 0) 0.712

Free testosterone (pg/mL) 0 (−0.02, 0.01) 0.92 −0.07 (−0.18, 0.05) 0.50 −0.06 (−0.17, 0.05) 0.712

Total testosterone (ng/dL) 0 (0, 0) 0.92 0 (0, 0) 0.91 0 (0, 0.01) 0.712

Progesterone (ng/dL) −0.45 (−2.88, 1.97) 0.92 0.38 (0.14, 0.61) < 0.001 0.83 (−1.6, 3.27) 0.712

Prolactin (ng/mL) 0.03 (−0.18, 0.23) 0.92 0.1 (−0.06, 0.27) 0.50 0.08 (−0.19, 0.34) 0.712

Cortisol (µg/dL) −0.06 (−0.19, 0.07) 0.92 0.1 (−0.05, 0.24) 0.50 0.16 (−0.04, 0.36) 0.550

ACTH (pg/mL) −0.01 (−0.05, 0.04) 0.92 −0.09 (−0.16,−0.01) 0.15 −0.08 (−0.17, 0.01) 0.550

GH (ng/mL) −0.17 (−1.9, 1.57) 0.92 −0.05 (−0.39, 0.28) 0.92 0.11 (−1.66, 1.88) 0.900

fashion at the same time for each blood draw, there was variability

in the read outs. For this reason, an average level (across three

collections) was used for calculations in this study to minimize

outlier data. Screening measures such as the PHQ-9, PedsQL, and

ESS were utilized in this study as opposed to more comprehensive

assessments of depression, quality of life and fatigue and these

briefer testing batteries may not have captured clinically significant

effects. Future studies with more in-depth cognitive testing are

already underway on this study group to further explore this

potential association.

Conclusions and future directions

This study identified significant differences in baseline free

testosterone, cortisol, ACTH, and progesterone in children

with POMS although there was not a clear connection

between hormones and markers of disease severity or non-

focal symptoms of MS. Future research should investigate the

clinical implication of these hormonal differences in POMS and

the potential association with neurocognitive, non-motor, clinical

symptoms.
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