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Introduction: Freezing of gait (FOG) is one of the most debilitating motor 
symptoms experienced by patients with Parkinson’s disease (PD). FOG detection 
is possible using acceleration data from wearable sensors, and a convolutional 
neural network (CNN) is often used to determine the presence of FOG epochs. 
We  compared the performance of a standard CNN for the detection of FOG 
with two more complex networks, which are well suited for time series data, the 
MiniRocket and the InceptionTime.

Methods: We combined acceleration data of people with PD across four studies. 
The final data set was split into a training (80%) and hold-out test (20%) set. A fifth 
study was included as an unseen test set. The data were windowed (2 s) and five-fold 
cross-validation was applied. The CNN, MiniRocket, and InceptionTime models were 
evaluated using a receiver operating characteristic (ROC) curve and its area under the 
curve (AUC). Multiple sensor configurations were evaluated for the best model. The 
geometric mean was subsequently calculated to select the optimal threshold. The 
selected model and threshold were evaluated on the hold-out and unseen test set.

Results: A total of 70 participants (23.7 h, 9% FOG) were included in this study for 
training and testing, and in addition, 10 participants provided an unseen test set (2.4 h, 
11% FOG). The CNN performed best (AUC = 0.86) in comparison to the InceptionTime 
(AUC = 0.82) and MiniRocket (AUC = 0.76) models. For the CNN, we  found a similar 
performance for a seven-sensor configuration (lumbar, upper and lower legs and 
feet; AUC = 0.86), six-sensor configuration (upper and lower legs and feet; AUC = 0.87), 
and two-sensor configuration (lower legs; AUC = 0.86). The optimal threshold of 0.45 
resulted in a sensitivity of 77% and a specificity of 58% for the hold-out set (AUC = 0.72), 
and a sensitivity of 85% and a specificity of 68% for the unseen test set (AUC = 0.90).

Conclusion: We confirmed that deep learning can be used to detect FOG in a 
large, heterogeneous dataset. The CNN model outperformed more complex 
networks. This model could be employed in future personalized interventions, 
with the ultimate goal of using automated FOG detection to trigger real-time 
cues to alleviate FOG in daily life.
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1 Introduction

Freezing of gait (FOG) is one of the most debilitating symptoms 
of Parkinson’s disease (PD). During freezing, people have the feeling 
that their feet are glued to the floor. FOG occurs in 20–60% of people 
in later stages of PD (1, 2) and it highly impairs mobility, causes falls, 
and reduces the quality of life (2). FOG can manifest in phenotypes 
such as trembling in place or walking with small shuffling steps. A 
third, less common phenotype of FOG is akinesia, in which the person 
cannot move their legs at all. FOG can be evoked by various situational 
triggers, such as turning, dual-tasking, walking through a doorway, or 
starting a movement (3).

The development of objective FOG detection is very relevant (4), 
as it could be used to provide for (as well as evaluate the effect of) 
personalized interventions such as cueing (3, 5). The current gold 
standard for analyzing FOG is visual video annotation by independent 
experienced raters (6). However, this is very time-consuming and not 
desirable nor feasible in daily living situations, because of privacy 
issues, nor could it be used for providing interventions in real time. 
Inertial measurement units (IMUs), containing an accelerometer and 
a gyroscope, could overcome this problem as they allow for objective 
analysis of movement. A recent review summarized the numerous 
studies investigating automated FOG detection based on IMU data by 
supervised and unsupervised learning techniques (7). Despite 
extensive research, the investigated datasets are often relatively small 
(between 4 and 34 participants) (7).

More recent work demonstrated the potential of FOG detection 
in a large dataset; a convolutional neural network (CNN) was able to 
detect FOG in 59 freezers, with 79.6% sensitivity and a specificity of 
93.3% (8). The ideal algorithm is, however, yet to be found (3).

1.1 Related work

Several deep learning techniques have been applied to detect FOG in 
IMU data, such as recurrent neural networks (RNNs), besides a CNN (7). 
A recent review by Sigcha et al. described the use of wearable sensors and 
deep learning for the monitoring and diagnosis of PD (9). They found 
fifteen studies describing the use of wearables and deep learning for FOG 
detection. The studies had a large range in sample sizes, from 7 to 63 
people with PD. A total of 14 out of 15 studies used acceleration data for 
FOG detection, of which 6 used acceleration data in combination with 
gyroscope data. In all, 10 out of 15 studies used a CNN to detect FOG (9), 
of which 4 studies used raw data as input for the CNN (10–13).

Sample sizes remained small in these 4 studies, from 7 to 11 
participants. Several sensor locations were used in the studies, such as 
the lumbar, thigh, ankles, and wrists. CNNs consisted of 2–4 
convolutional layers, often paired with batch normalization, pooling, 
and drop-out layers. All four studies used a leave-one-subject-out 
(LOSO) validation and achieved a sensitivity of 63–95%, specificity of 
73–99%, and area under the curve (AUC) of 0.83–0.93 (10–13). Only 
CNNs, long-short-term memory networks, and a convolutional 

denoising autoencoder were described in the review (14), which leaves 
an opportunity for better FOG classification for deeper models, given 
more data is provided.

Another review (15) described machine learning results of more 
complex models analyzing time series data, such as IMU data. The results 
suggested that better performance could be achieved by implementing 
more complex networks instead of a CNN, however, not all discussed 
networks have been tested on FOG data (15). The networks with the 
greatest potential were the Rocket and InceptionTime, which 
outperformed other networks on time series classification (15). Rocket is 
further succeeded by the MiniRocket, which is a fast data mining classifier 
(16). InceptionTime is an ensemble of deep CNN models (17), and while 
Inception-based networks have previously been used to detect FOG with 
high accuracy (93.5%) (18), high sensitivity (98%), and high specificity 
(99%) (19), the InceptionTime model specifically has not been tested yet 
for FOG detection. The MiniRocket has also not been tested to detect 
FOG on IMU data (7, 15).

Given the previous results on other IMU datasets, we hypothesized 
that MiniRocket and InceptionTime models would result in higher 
accuracy in detecting FOG in comparison to a standard CNN. The 
objective of this study was to compare those three architectures for the 
detection of FOG in a large dataset of 70 people. To create this large 
dataset we combined IMU data across four previously conducted studies 
(20–23). These studies all focused on people with PD who experienced 
FOG and who performed various gait tasks, using the same motion 
capture equipment. We  also evaluated the effect of the amount and 
location of worn IMUs on the sensitivity and specificity of FOG detection 
in order to facilitate FOG detection methods during daily living. The final 
model was tested on a hold-out test set and a separate, independent 
dataset, to evaluate its generalizability to participants unseen by the model.

2 Methods

2.1 Data

Data from four previous studies were combined into one dataset 
(20–23) and used for training and validation. These four studies included 
people with PD who experienced regular FOG. Regular FOG was defined 
as experiencing it minimally twice a day (20–23). Participants were 
measured in both the ON and OFF dopaminergic states. Duplicate 
participants between studies were identified and their data was coupled. 
Participants were split into a training (80%) and a hold-out test set (20%) 
using Scikit-Learn and stratified by the occurrence of FOG (24). An 
additional test set of 10 people with PD and FOG was obtained from 
unpublished work from Cockx et al. (25), to test whether the final model 
could generalize to unseen patients and movements. Some studies 
included healthy controls, but they were disregarded for this analysis.

All data consisted of IMU data obtained by the MVN Awinda 
motion capture system (Xsens, Enschede, the Netherlands) running 
MVN Analyze software (26). The IMUs had an accelerometer range 
of ±160 m/s2 (16g) and a sensitivity of 7.8 mg/LSB (26). Specifically, 
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the data consisted of full body measurements, comprising the seven 
sensor locations of interest to this work; the lumbar region, upper legs, 
lower legs, and both feet (20–23). The sample frequency was 60 Hz for 
full body data, and the sample frequency was 100 Hz if only lower 
body measurements were conducted. The data contained several gait 
tasks such as walking straight forward, walking through a narrow 
passage, turning on the spot (360-degree turns), and walking a gait 
trajectory including 360-degree turns. The unseen test set contained 
walking straight forward, walking through a narrow passage, turning 
on the spot, and voluntary stopping.

All gait tasks were recorded by video and annotated offline for 
FOG. A FOG episode was defined as a “brief, episodic absence or 
marked reduction of forward progression of the feet despite the 
intention to walk” (27). The number of FOG episodes and duration 
were scored from video recordings by two independent and 
experienced raters. The studies from Janssen et al. reported a high 
degree of consensus in all three studies for both the number of episodes 
and total duration of FOG episodes per participant (20–22). In the 
work of Klaver et al. (23) the degree of consensus was not reported. In 
all studies, disagreements were discussed until a consensus was 
reached. Motion and video data were synchronized by two different 
methods. The studies of Janssen et al. (20–22) synchronized the data 
by playing a sound signal at the start of motion data acquisition. The 
sound was used in the video recordings to determine the start of each 
measurement. Participants in the study from Klaver et al. (23) were 
instructed to tap with one foot three times prior to each measurement, 
which was annotated in video data and detected in the motion data 
for synchronization.

The acceleration data was translated to the local frame. Segments 
with an acceleration greater than 100 m/s2 or an angular velocity greater 
than 20 rad/s were labeled as artifacts and removed from the analysis. 
The data was filtered by a zero phase third-order bandpass Butterworth 
filter (0.3–15 Hz) to remove drift and to retain the full locomotor and 
FOG frequency spectrum. Data was down-sampled to 60 Hz if 
standardization of the sampling frequency across studies was required. 
Next, the data were windowed into two-second epochs with 75% overlap, 
similar to previous work from another research group (14). The 
corresponding FOG label was created per window such that if a window 
contained > = 25% FOG, the window was labeled as FOG. Windows 
containing <25% FOG were disregarded during training.

2.2 Deep learning models

Three different deep-learning models were trained and tested on 
the datasets: a CNN, InceptionTime, and MiniRocket. Our code is 
available at: https://github.com/emilieklaver/FOG_Detection. The 
CNN consists of three modules; an overview is given in Figure 1. Each 
module consisted of a convolutional layer with ReLU activation, a max 
pooling layer of size 2, and a dropout layer with a drop-out rate of 0.2. 
The kernel size of the first convolutional layer was 7, the subsequent 
two layers had a kernel size of 3. Class weights were balanced. Data 
output was flattened after these three modules and then passed 
through a dropout layer and a dense layer. The first dense layer 
consisted of 10 neurons with ReLU activation and the final dense layer 
consisted of 1 neuron with sigmoid activation. The internal parameters 

FIGURE 1

Overview of the CNN architecture.
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were selected a priori. The CNN was trained using 30 epochs, a 
learning rate of 0.001, a batch size of 32, the binary cross-entropy loss 
function, and 3,727 iterations. We used the AdamW optimizer with a 
weight decay of 0.001 (28). No early stop conditions were used.

InceptionTime consists of five Inception networks (17). In each 
inception network, instead of traditional full convolution layers, 
inception modules are used. A key component of the inception module 
is a bottleneck layer, which uses sliding filters to reduce the dimensionality 
of the time series data and the complexity of the model. This makes the 
model suitable for small datasets, as it reduces overfitting. The model was 
implemented using TensorFlow and the classification algorithm provided 
on GitHub (29). Instead of the default kernel sizes of 10, 20, and 40, 
smaller kernel sizes of 2, 4, and 8 were used to decrease the number of 
parameters in the network and thus prevent overfitting (17). The 
InceptionTime was trained with 20 epochs, an initial learning rate of 
0.001, and the binary cross-entropy loss function. Class weights were 
balanced and no weight decay was used.

MiniRocket is the successor of Rocket, which transforms input 
time series into features to train a linear classifier. MiniRocket 
maintains the most important characteristics of Rocket; dilation and 
proportion of positive values pooling (PPV pooling). MiniRocket uses 
two-valued kernels of a fixed length of 9, which creates a faster classifier. 
Each kernel has a fixed set of dilations, which is adjusted to the length 
of the time series. The dilation is limited to a maximum number of 
dilations of 32 per kernel to keep the transformation efficient. PPV 
pooling matches a pattern, which reflects the proportion of the input. 
This results in higher classification accuracy in comparison to other 
features comparable to global average pooling. As recommended, a 
logistic regressor was applied as data was >10,000 samples (30). The 
MiniRocket was implemented using the time series for artificial 
intelligence (version 0.3.1) in PyTorch (31). We trained the MiniRocket 
with an initial learning rate of 0.001 for 10 epochs and with a kernel 
size of 9, no weight decay was used. Logistic loss was used as the loss 
function and class weights were determined by the model.

The models were trained on the three-directional acceleration 
data set from all seven sensors of the training set with five-fold 
cross-validation. Participants were assigned to either the training 
or validation set per fold to increase the generalizability of the 
model. The optimal model was identified based on the mean 
receiving operating characteristic (ROC) curve and the 
corresponding AUC of the training set. The performance of the 
optimal model was further analyzed for other sensor configurations, 
given a total of five scenarios: (1) All seven sensors, namely, the 
upper leg, lower leg, feet, and lumbar sensors; (2) Six sensors, 
namely, the upper leg, lower leg, and both feet sensors; (3) Lower 
leg sensors only; (4) Lumbar sensor only; and (5) Right foot sensor 
only. When the performance was similar, the optimal model was 
selected on the minimal amount of sensors. The threshold for the 
model was calculated by the maximum value of the geometric 
mean. Finally, the optimal model was tested on the hold-out test set 
and the unseen test set. The sensitivity, specificity, precision, and 
F-score were calculated for the threshold selected previously.

3 Results

The combined dataset for training, cross-validation,  
and the hold-out set for testing consisted of 70 uniquely identified 
people with PD and the unseen test set contained 10 people 
with PD.

3.1 Baseline characteristics

The combined dataset for training, cross-validation, and hold-out 
testing displayed similar baseline characteristics as the unseen set 
(Table 1), except for sex (50% men in the unseen test set, whereas the 
other studies included a higher male population on average: 82%). The 

TABLE 1 Baseline characteristics of participants in the training and test sets, given as median (25th-75th percentile).

Training, validation, and hold-out test sets Unseen test set

Janssen et al. (20) Janssen et al. (22) Janssen et al. (21) Klaver et al. (23) Cockx et al. (25)

No. participants 25 20 16 31 10

Age (years) 72 (65–79) 70.5 (63.5–73) 69 (62–73) 66 (60–74) 69 (66–74)

Sex (% male) 76 85 81 87 50

Disease duration (yrs) 11 (3.0–20.0) 11 (7.5–16.0) 10 (4.0–12.5) 11 (5.0–14.0) 9 (6.0–11.0)

Years since FOG 2 (0.3–12.0) 4 (2.5–6.5) 4 (2.0–10.0) n.a. n.a.

Hoehn and Yahr score 2 (2–3) 2 (2–3) 2 (2–3) 2 (2–3) 3 (2–3)

MDS-UPDRS III ON 34 (10–61) 40 (32–48) 38 (28–44) 38 (29–46) n.a.

MDS-UPDRS III OFF n.a. n.a. n.a. 51 (47–62) 50 (28–53)

FOGQ n.a. n.a. n.a. 15 (13–18) n.a.

N-FOGQ 18 (8–28) 21 (16–25) 18 (15–21) n.a. 19 (16–21)

MMSE 28 (19–30) 29 (27–30) 29 (28–30) 28 (26–30) n.a.

FAB 14 (5–26) 16 (15–17) 17 (16–18) 17 (14–18) n.a.

MoCA n.a. n.a. n.a. n.a. 28 (26–28)

TMT B-A n.a. n.a. n.a. n.a. 42 (29–56)

MDS-UPDRS III, Movement Disorders Society Unified Parkinson’s Disease Rating Scale part III; N-FOGQ, New Freezing of Gait Questionnaire (range 0–28); FOGQ, Freezing of Gait 
Questionnaire (range 0–24); MMSE, mini-mental state examination (range 0–30); FAB, Frontal Assessment Battery (range 0–18); MoCA, Montreal Cognitive Assessment; TMT B-A, Trail 
Making Test B-A; ON, ‘on’ dopaminergic state; OFF,‘off ’ dopaminergic state.

https://doi.org/10.3389/fneur.2023.1306129
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Klaver et al. 10.3389/fneur.2023.1306129

Frontiers in Neurology 05 frontiersin.org

combined dataset resulted in 23.7 h of data of which 9% contained 
FOG. This dataset was split into a training and cross-validation set 
(N = 54) of 20.6 h of data and a hold-out test set of 3.1 h of data (N = 16) 
(Table 2). This resulted in 148,641 samples available for training and cross-
validation, and 44,122 samples for testing. The unseen test set consisted 
of 2.4 h of data, which equates to 34,734 samples, containing 10.8% FOG.

3.2 Performance in the training set

The performance of the CNN was superior to the InceptionTime 
and MiniRocket during training, with a mean AUC of 0.86 [with a 

standard deviation (SD) of ±0.05] (Figure 2). The six-sensor (upper 
legs, lower legs, and feet) configuration performed best of all sensor 
configurations, with a mean AUC of 0.87 (SD ± 0.05). A similar 
performance was found for the lower leg sensors [AUC of 0.86 
(SD ± 0.05)]. Thus, this sensor configuration was considered to be the 
optimal configuration, as it minimizes the amount of sensors needed. 
In contrast, we found that for the one-sensor configurations, namely, 
the lumbar sensor [AUC of 0.79 (SD ± 0.04)] and the right foot sensor 
[AUC of 0.84 (SD ± 0.03)], performance was poorer in comparison to 
multiple sensor configurations (Figure  3). The geometric mean 
(g-mean) was 0.875, with a corresponding threshold for the lower legs 
configuration of 0.45.

TABLE 2 Characteristics of the separate datasets.

Training and validation set Hold-out test set Unseen test set

Participants 54 16 10

Signal duration (hours) 20.6 3.1 2.4

Amount of samples 148,641 44,122 34,734

FOG 8.50% 12.50% 10.80%

Amount of FOG episodes 966 279 190

FIGURE 2

Receiver operating characteristics of the classification models (mean area under the curve (AUC) of five folds  ±  standard deviation), results of the five-
fold cross-validation. Results of: (A) the CNN, (B) the InceptionTime, and (C) the MiniRocket.
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3.3 Performance in the hold-out and 
unseen test sets

Evaluation of the optimal model (CNN with IMU data of both 
lower legs) on our hold-out set resulted in an AUC of 0.72 and for the 
unseen test set, an AUC of 0.90 (Figure 4). Applying the threshold 
corresponding to the g-mean resulted in a sensitivity of 77% and a 
specificity of 58% for the hold-out set (with a precision of 0.21 and 
F-score of 0.33), and a sensitivity of 85% and a specificity of 68% for 
the unseen test set (with a precision of 0.26 and F-score of 0.39).

4 Discussion

This study aimed to compare two state-of-the-art networks for 
time series analysis, namely, MiniRocket and InceptionTime, with a 
CNN for the detection of FOG in IMU data in patients with PD and 
FOG. We combined multiple datasets to obtain a training set of 70 
unique people.

We found that the CNN performed the best based on the AUC, 
and training the CNN on the lower leg sensors resulted in a mean 
AUC of 0.86 (SD ± 0.04). We found that the sensitivity (85%) and 
specificity (68%) of the unseen test set were on par with previous 
literature, whereas the specificity of the hold-out set (58%) was lower 
in comparison to the literature (7). However, the corresponding 
sensitivity of the hold-out set (77%) was also on par with the literature 
(7). The low precision and low F-score of both the hold-out and 
unseen test sets are likely the result of an unbalanced data set during 
training (32) and by the model choice. A more balanced data set could 

be created by adding more FOG data and by removing participants 
who did not display any freezing episodes. The current model does not 
use data augmentation, which could be used to increase the FOG 
windows to create a more balanced data set. The hyperparameters of 
the model should be optimized. As data from daily living situations 
are likely to also be imbalanced, the model could be optimized further 
by adding a gait detection model prior to freeze detection.

In contrast to our hypothesis, the performance of the 
InceptionTime and MiniRocket models was inferior to that of the 
CNN. This could be  explained by overfitting, as both the 
InceptionTime (151,746 trainable parameters) and MiniRocket (9,996 
trainable parameters) are more complex than the CNN (7,653 
trainable parameters). However, the used training set contained 
substantially more samples than the largest accelerometer-based 
training set from the previously mentioned review (15); 148,641 
samples versus 316 samples, so it is likely that the difference in 
performance is not exclusively caused by overfitting. Another 
explanation could be that the heterogeneity of the data influences the 
detection of FOG, as the model needs to be able to detect FOG while 
walking straight forward, walking through a narrow passage, turning 
on the spot, and walking a gait trajectory including 360-degree turns.

Others have also compared an Inception-based model with other 
neural networks, such as a CNN and multiple variants of a long short-
term memory (LSTM) network (18). They tested the models on the 
Daphnet freezing of gait dataset (33). The authors found that their 
iSPLInception network (accuracy of 93.5) performed better in 
comparison to the standard CNN (accuracy of 93.0), which is in 
contrast to our work (18). This can be explained by the differences in 
the used dataset and network structure. Due to the limited amount of 

FIGURE 3

Receiver operating characteristics of the CNN with five different sensor configurations. Results are shown as the mean of the five-fold cross-validation. 
*Seven sensors: lumbar, upper legs, lower legs, and feet sensors. **Six sensors: upper legs, lower legs, and feet sensors.
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data in their dataset, they could not take the subject into account in 
the split between training, testing, and validation sets. The overlap of 
subjects between sets might have resulted in an overestimation of the 
performance of their network. The network is also different from the 
presented network; in the iSPLInception network, the first input layer 
is followed by a BatchNorm layer, which is not present in the 
InceptionTime network utilized in the present study. Kernels in the 
iSPLInception network have the size of 1, 3, and 5, whereas we used 
kernels of size 2, 4, and 8 for InceptionTime.

A further expansion of the iSPLInception network has been 
conducted in which the inSEption and LN-Inception networks were 
proposed (19). Here, inSEption utilizes the inception module but also 
includes squeeze and excitation blocks. The LN-inception network 
differs from the Inception network as it only employs two parallel 
convolutional operations in order to prevent overfitting. A public 
dataset was added to the DaphNet dataset, containing the IMU data 
of 38 people with PD who were turning on the spot (34). The data 
contained 173 FOG episodes (19, 34). They found remarkable 
detection of FOG for both models; the LN-Inception had a sensitivity 
of 97% and specificity of 99%, whereas the inSEption model resulted 
in a sensitivity of 98% and specificity of 99% (19). This clearly 
illustrates the potential of an Inception-based model for the detection 
of FOG. The authors, however, did not describe if participants 
overlapped between the training and test sets, which could result in 
high sensitivity and specificity.

The results of our CNN are in line with previous work. In a 
recent review, Pardoel and Nantel (7) described the results of neural 
networks of detection of FOG with a sensitivity range of 72.2–
99.83% and a specificity range of 48.4–99.96%. As the field of 

artificial intelligence is moving quickly, after this review in 2019, 
numerous other research groups reported their work on neural 
networks for FOG detection. Recent work by Borzì and colleagues, 
in 2023, used a multi-head CNN and a large dataset of 118 people 
with PD to detect FOG (8). These authors used three different 
datasets for their work: the REMPARK, 6MWT, and ADL datasets. 
The REMPARK dataset consists of 21 people with PD (9.1 h, 93 min 
of FOG, and 1,058 episodes of FOG) and was used for the initial 
training. This set was split into a training set, a validation set 
(N = 16), and a hold-out test set (N = 5). The 6MWT dataset consists 
of 38 people with PD (2.4 h, 5.3 min of FOG, and 52 FOG episodes) 
and was used as an unseen test set. The ADL dataset (5.9 h) contains 
several gait tasks of 59 people with PD but with no FOG. This dataset 
was used as an unseen test set to test for false positives (8). Their 
model resulted in a sensitivity of 87.7% and specificity of 88.3% on 
their hold-out test set, performing better than the presented work in 
this paper. However, their hold-out test set was relatively small, 
containing the data of 5 people, whereas the presented work used a 
hold-out set of 16 people. Their unseen test set with FOG episodes 
resulted in a sensitivity of 79.6% and a specificity of 93.3%, which 
are similar to our results (8). The unseen test set displayed different 
characteristics when compared to the presented work; and our 
unseen test set contained data of 10 people, whereas Borzì et al.’s set 
used the data of 38 people. However, our unseen test contained more 
data (4.8 h versus 2.4 h) and more freezing episodes (190 episodes 
versus 52 episodes). Other studies (10–13) that used a CNN with 
raw acceleration data and smaller sample sizes demonstrated similar 
results in comparison to the results of the unseen test set. An 
overview of these studies is given in Table 3.

FIGURE 4

Receiver operating characteristics of the lower legs CNN tested on the hold-out test set and unseen test set.
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A strength of our study is that we  ensured that the same 
participants were not distributed amongst both training and test data. 
This prevented the neural networks from memorizing the 
characteristics of previously seen patients. Our data included a 
comprehensive set of gait tasks, such as walking straight ahead, 
turning, and walking through a narrow passage. This results in a 
model that is suitable to apply on other datasets and in daily living 
situations as the training was not individualized or specified for 
specific gait tasks. This was confirmed by testing the final model on 
an unseen data set. Surprisingly, we found that our results of the 
unseen test set outperformed the results of the hold-out set. This may 
be a result of the types of data from the sets; the unseen test set 
contains a large amount of walking straight forward, which is also 
dominant in our training data. Data could unfortunately not 
be  balanced further within gait tasks, as data currently has been 
randomly assigned by the amount of FOG per participant. Future 
work could use stratification of the data based on the gait tasks to 
mitigate this problem. Another strength of this study is the addition 
of the unseen test set. This data could have been merged with the 
training set, however, the unseen test set allows us to assess how 
generalizable the model is.

A drawback of this work, as for any model, is that it is limited by 
the provided annotations of FOG. The model can only perform as well 
as the observers do. It is known that observers disagree on the start 
and end of episodes, which causes a gray area of FOG (35). The joining 
of several datasets also comes with some limitations. It is likely that 
the IMU data is not uniform, as slightly different data preprocessing 
was used as the MVN Analyze software was updated over time. 
Another limitation of this work is the data selection. Only windows 
with FOG present over 25% of the time were used for the training set. 
In real-time data, windows with FOG present below 25% of the time 

also occur. If the model would be used to activate a medical device to 
alleviate FOG, then in that case it would be that the algorithm reacts 
too late to the upcoming FOG episode. This would reduce the 
effectiveness of the medical device. End-users likely prefer to have the 
FOG episode detected at the time it occurs. In order to achieve such 
a goal, a prediction model needs to be developed. Furthermore, data 
obtained from daily life are likely to contain more complex gait tasks, 
which could lead to poorer detection of FOG. This could be mitigated 
by re-training the network with patient-specific at-home data or by 
implementing a secondary network for gait detection, as previously 
described by other researchers (36).

In our sensor evaluation, we found the best performance with a 
six-sensor configuration and found a similar performance for the 
lower leg sensor configuration. This suggests that not all sensor 
locations contribute equally to the detection of FOG. We found that 
one-sensor configurations performed worse in comparison to 
multiple-sensor configurations. This suggests that the differences 
between the left and right lower extremity are an important factor in 
detecting FOG. We also found that the CNN trained on the right 
lower leg sensors outperformed the lumbar sensor, which holds great 
promise for integration in future cueing devices. Often, cueing devices 
are placed at the lower extremities (23, 37, 38) and our results indicate 
that this is a sufficient measurement site to detect FOG.

In conclusion, we confirmed that deep learning can be used to 
detect FOG in a large, heterogeneous dataset. In our study, 
we  compared three different models and found that the CNN 
performed best compared to InceptionTime and MiniRocket. This 
CNN should be further optimized to create a model that detects FOG 
with even higher sensitivity and specificity, with the ultimate goal of 
using automated FOG detection to trigger real-time interventions, 
such as cues, to alleviate FOG in daily life.

TABLE 3 Comparison of recent studies and the proposed work.

Study Number of PD 
participants

Sensor location 
(data type)

Validation Performance

San-Segunda et al. (11) 11 Lumbar, thigh and ankle

(acc)

LOSO Sensitivity

Specificity

AUC

95%

73%

0.93

Bikias et al. (12) 11 Wrists

(acc, gyro)

LOSO Sensitivity

Specificity

83%

88%

Naghavi and Wade (10) 7 Ankles

(acc, gyro)

LOSO Sensitivity

Specificity

63%

99%

O’Day et al. (13) 7 Lumbar and ankles

(acc, gyro)

LOSO AUC 0.83

Borzì et al. (8) 118 Lumbar

(acc)

Hold-out Sensitivity

Specificity

AUC

88%

88%

0.95

Proposed Training 54

Hold-out 16

Unseen 10

Lower legs

(acc)

Five-fold Hold-out  

Sensitivity

Specificity

AUC

Unseen

Sensitivity

Specificity

AUC

77%

58%

0.72

85%

68%

0.90

Studies that used raw data and a CNN to detect FOG were included. acc, acceleration; gyro, gyroscope; LOSO, leave-one-subject-out; AUC, area under the curve.
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