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Epilepsy is a chronic neurological disorder characterized by recurrent seizures,

and is often comorbid with other neurological and neurodegenerative diseases,

such as Alzheimer’s disease (AD). Patients with recurrent seizures often present

with cognitive impairment. However, it is unclear how seizures, even when

infrequent, produce long-lasting deficits in cognition. One mechanism may

be seizure-induced expression of 1FosB, a long-lived transcription factor

that persistently regulates expression of plasticity-related genes and drives

cognitive dysfunction. We previously found that, compared with cognitively-

intact subjects, the activity-dependent expression of 1FosB in the hippocampal

dentate gyrus (DG) was increased in individuals with mild cognitive impairment

(MCI) and in individuals with AD. In MCI patients, higher 1FosB expression

corresponded to lower Mini-Mental State Examination scores. Surgically

resected DG tissue from patients with temporal lobe epilepsy also showed

robust 1FosB expression; however, it is unclear whether 1FosB expression

also corresponds to cognitive dysfunction in non-AD-related epilepsy. To

test whether DG 1FosB expression is indicative of cognitive impairment in

epilepsies with di�erent etiologies, we assessed 1FosB expression in surgically-

resected hippocampal tissue from 33 patients with childhood epilepsies who

had undergone Wechsler Intelligence Scale for Children (WISC) testing prior to

surgery. We found that 1FosB expression is inversely correlated with Full-Scale

Intelligence Quotient (FSIQ) in patients with mild to severe intellectual disability

(FSIQ < 85). Our data indicate that 1FosB expression corresponds to cognitive

impairment in epilepsies with di�erent etiologies, supporting the hypothesis that

1FosB may epigenetically regulate gene expression and impair cognition across

a wide range of epilepsy syndromes.
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1 Introduction

Epilepsy is one of the most common neurological diseases

and affects people of all ages (1, 2). There is often disrupted

consciousness and memory during a seizure, but recurrent

seizures can also lead to long-lasting changes in neuronal and

network function, and drive chronic impairments in cognition that

persist even during seizure-free periods (3–5). Notably, cognitive

impairment can develop even with infrequent seizures (6, 7).

Seizures are frequently co-morbid with other neurological and

neurodegenerative diseases, such as Alzheimer’s disease (AD),

Down syndrome, autism, Fragile X syndrome, and others, and

seizure-induced cognitive dysfunction may also contribute to

or exacerbate cognitive deficits observed in those neurological

disorders (8–17). Thus, in addition to improving methods of

seizure control, it is also critical to understand the molecular

and network mechanisms that underlie cognitive impairment in

epilepsy, and in particular, long-lasting mechanisms that may be

engaged even when seizures are infrequent.

One molecular mechanism that may contribute to such long-

lasting effects on cognition is the activity-induced expression of

1FosB, a highly stable transcription factor in the immediate early

gene family, in the hippocampal dentate gyrus (DG). 1FosB has

an unusually long half-life of roughly 8 days in vivo, allowing it

to accumulate within the nucleus even with relatively infrequent

repetitive activation of neurons (18). 1FosB expression is robustly

induced in the nucleus accumbens after exposure to drugs of abuse,

and accumulates in the hippocampus following recurrent seizures

(19–21). Notably, 1FosB recruits histone modifying enzymes to

epigenetically regulate target gene expression, resulting in long-

lasting control of gene expression even after the initial activating

stimulus is over (18, 22). In various brain regions, 1FosB binds

to a multitude of gene targets, including those related to neuronal

excitability and plasticity (20, 23, 24). Neuronal activity-dependent

accumulation of 1FosB within hippocampal neurons following

repeated seizure activity thus chronically alters gene expression

and can affect cognitive processes. Indeed, we have previously

shown that 1FosB is robustly induced in dentate granule neurons

after seizure activity in mouse models for studying epilepsy or

for studying AD, which is accompanied by a high incidence of

epilepsy (19, 25). In those studies, 1FosB expression directly

corresponded to cognitive impairment, and inhibition of 1FosB

activity improved cognition (19, 25).

The relevance of 1FosB to human disease is supported by

findings that its expression is increased robustly in the DG

of individuals with temporal lobe epilepsy (TLE), AD, or mild

cognitive impairment (MCI; often considered prodromal AD)

(25). Moreover, in patients with MCI, increasing magnitudes of

1FosB expression corresponded to poorer performance on the

Mini-Mental State Examination (MMSE) test of cognition (25),

suggesting that 1FosB may function similarly in humans as in

mouse models of disease.

However, it is unclear whether neuronal activity-dependent

1FosB expression in the DG also reflects cognitive impairment

in patients with epilepsy outside the context of AD, or in patients

with epilepsy who develop seizures at younger ages. To assess

this possibility, we obtained resected hippocampal DG samples

from patients with childhood epilepsies who had undergone

neuropsychiatric assessment prior to hippocampectomy, and

assessed whether 1FosB expression in human DG is related to any

measures of cognitive function in these patients. We found that DG

1FosB expression corresponds to decreased Full-Scale Intelligence

Quotient (FSIQ), a measure of cognitive ability in children, in

patients with borderline to poor intellectual functioning.

2 Materials and methods

2.1 Human tissue

Fixed DG samples from 33 individuals with childhood

epilepsies were obtained from hippocampectomy specimens

obtained after surgical resection for treatment of epilepsy at the

Children’s Hospital of Philadelphia (Philadelphia, PA) between

2000 and 2019. Seven of the 33 samples were obtained from patients

who underwent selective hippocampectomies. The remaining 26

samples were obtained from patients who underwent either

surgical excision of extra-hippocampal lesions in addition to the

hippocampectomy, or temporal lobectomy with the hippocampus

being removed as a unique surgical specimen. All samples were

formalin-fixed, processed, paraffin-embedded, and sectioned at

5µm. Clinical information was retrospectively collected from

the electronic medical record in accordance with the Children’s

Hospital of Philadelphia Institutional Review Board (protocol

IRB 19-016521).

Fixed DG samples from adult control individuals or individuals

with MCI, AD, or TLE were from previously published patient

cohorts (25). Briefly, fixed post-mortem DG samples from

individuals with AD or MCI and age-matched controls were

obtained from the Alzheimer’s Disease Research Center at the

University of California San Diego (San Diego, CA), and sectioned

at 60µm. Fixed surgically-resected DG samples from individuals

with TLE were obtained and used with informed consent under

Institutional Review Board protocol H-10255; samples were

resection specimens derived from surgery for epilepsy in adult

patients treated at Baylor College of Medicine (Houston, TX).

2.2 Immunohistochemistry

Fixed DG samples derived from surgical resections of

the hippocampus in patients with childhood epilepsies were

deparaffinized and rehydrated following a standard procedure:

three 5-min rinses in xylenes, two 10-min rinses in 100% ethanol,

two 10-min rinses in 95% ethanol, and then two 5-min rinses in

distilled water. Sections then underwent alternating rinses with

PBS and PBS with 0.5% Triton-X (PBS-Tx-0.5%) in between

the following steps: (1) 15-min incubation with endogenous

peroxidase blocking solution consisting of 3% hydrogen peroxide,

10% methanol, and PBS; (2) 10-min antigen retrieval with citrate

buffer at 85◦C; (3) 10-min incubation in 90% formic acid; (4) 60-

min incubation with a non-specific blocking solution consisting

of 10% normal goat serum (Vector Laboratories, Cat# S-1000,

RRID:AB_2336615), 1% blocking grade non-fat dry milk (Bio-

Rad, Cat# 1706404), 0.2% gelatin (Sigma-Aldrich, Cat# G2500),

and PBS-Tx 0.5%; (5) overnight primary antibody incubation

Frontiers inNeurology 02 frontiersin.org

https://doi.org/10.3389/fneur.2023.1331194
https://scicrunch.org/resolver/RRID:AB_2336615
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Fu et al. 10.3389/fneur.2023.1331194

at 4◦C; (6) 60-min secondary antibody incubation; (7) 60-min

incubation with avidin-biotin complex (Vectastain, Cat# PK-6100),

and (8) 10-min development with diaminobenzidine (Vector

Laboratories, Cat# SK-4103, RRID:AB_2336521). The antibody

concentrations used were 1:200 for rabbit anti-1FosB antibody

(Cell Signaling, Cat# 14695, RRID:AB_2798577) and 1:200 for

goat anti-rabbit biotinylated antibody (Vector Laboratories, Cat#

BA-1000, RRID:AB_2313606).

2.3 Imaging and analysis

Immunostained sections were imaged by the RNA in situ

Hybridization Core facility at Baylor College of Medicine. Analysis

was performed using Fiji ImageJ (NIH, RRID:SCR_002285).

For quantification of DG 1FosB expression, images were first

converted to 16-bit black and white images. For each patient

sample, quantification was performed on 20 randomly selected

dentate granule cells following previously published procedures,

which we had found allowed for reliable representation of 1FosB

expression in the human DG (25). The mean pixel intensity for

each dentate granule cell was measured. The average of the mean

pixel intensities of three nearby acellular white matter tract areas

was used for background correction. Immunoreactivity (IR) was

defined as the average of the mean pixel intensities for the 20

dentate granule cells, corrected for background. Quantification was

performed by an experimenter blind to the specific diagnoses and

neuropsychiatric testing scores of each patient.

2.4 Statistics

Statistical analyses were performed using Prism 10 (GraphPad,

RRID:SCR_002798). Differences between two groups were assessed

via two-tailed unpaired Student’s t-tests. Correlations were assessed

via simple regression analyses. P-value correction for multiple

comparisons were performed with the Holm-Sidak post-hoc test.

3 Results

3.1 Patient demographics

We obtained surgically resected hippocampal tissue from 33

patients with childhood epilepsies who had been administered the

Wechsler Intelligence Scale for Children, Fourth Edition (WISC-

IV) assessment prior to hippocampectomy (Table 1). There were

similar numbers of male (48.5%) and female (51.5%) patients, and

patient ages ranged from 4.58 to 20.58 years old. All 33 patients

were tested prior to hippocampal resection, with the interval

between neuropsychiatric assessment and surgery varying from 1

month to almost 5 years.

Of the 33 patients, 23 patients exhibited only focal seizures, six

patients exhibited focal seizures with secondary generalization, one

patient exhibited only generalized tonic-clonic seizures, and three

patients exhibited both focal and generalized seizures. Of the 32

patients who experienced focal seizures, 24 patients had seizures

with impaired awareness (complex partial seizures), one patient

TABLE 1 Patient demographic information.

Childhood epilepsy
cohort

Sex # patients (% patients)

Male 16 (48.5%)

Female 17 (51.5%)

Age (years) Mean ± SD (range)

At hippocampectomy 12.74± 4.05 (4.58–20.58)

At neuropsychiatric testing 11.71± 4.05 (4.50–19.92)

Difference 1.03± 1.16 (0.08–4.83)

Seizure onset (22/33 patients) Mean ± SD (range)

Age (years) 5.08± 3.66 (0.00–13.00)

Years with seizures prior to hippocampectomy 7.60± 4.06 (1.08–15.92)

Seizure frequency (19/33 patients) Mean ± SD (range)

Seizures per month 68.7± 131.2 (0.25–532)

Neuropathological diagnoses # patients (% patients)

Encephalitis 5 (15.2%)

Tumor 5 (15.2%)

Infarction 4 (12.1%)

Focal cortical dysplasia 3 (9.1%)

Sturge-Weber syndrome 1 (3%)

Neuropsychiatric diagnoses# # patients (% patients)

Attention-deficit/hyperactivity disorder 8 (24.2%)

Asperger’s syndrome 1 (3%)

WISC-IV score Mean ± SD (range)

Full-Scale Intelligence Quotient 80.4± 17.0 (46–105)∗

General Ability (7/33 patients) 88.4± 15.7 (64–113)

Verbal Comprehension (28/33 patients) 86.7± 14.1 (50–116)

Perceptual Reasoning (24/33 patients) 87.4± 16.4 (51–112)

Working Memory (23/33 patients) 82.7± 16.5 (55–113)

Processing Speed (26/33 patients) 81.3± 18.2 (45–119)

Demographic information regarding patient sex, age, seizure onset, seizure frequency,

co-occurrence of other neuropathological and psychiatric diagnoses, and scores on the

Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) cognitive assessment.

For categories in which information is not available for all 33 patients, the number of patients

for which the information is available is indicated in parentheses.
#Neuropsychiatric diagnoses reflect what was documented in patients’ medical records; some

terminology may be outdated.
∗Full-Scale Intelligence Quotient (FSIQ) of patients in the childhood epilepsy cohort is

significantly decreased (p = 0.0306, two-tailed unpaired Student’s t-test) compared with the

general population (mean= 100, SD= 15).

SD, standard deviation.

exhibited focal seizures without impaired awareness (simple partial

seizures), and seven patients were unspecified. Four patients had

focal seizures secondary to lesions.

Information about seizure history, including age at seizure

onset and seizure frequency, was available only for a portion of the

patients (19–22 of the 33 patients included in this study). Of the

patients with these data available, age at seizure onset was 5.08 ±

3.66 (mean ± SD) years, with variation ranging from within the
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FIGURE 1

Dentate gyrus (DG) 1FosB immunoreactivity (IR) in patients with childhood epilepsies. (A, B) Example images of DG 1FosB IR in surgically resected

hippocampal tissue from patients with childhood epilepsies who presented with additional neuropathological (A) and neuropsychiatric diagnoses (B),

and from patients without reported comorbidities (C). Quantification of DG 1FosB IR in arbitrary units (AU) is indicated in parentheses for each

patient. (D) DG 1FosB IR quantification for all 33 patients grouped by neuropathological and neuropsychiatric diagnoses. Colored (red, blue, purple,

and green) data points indicate patients who had received multiple diagnoses and were therefore represented multiple times in the graph. Scale bar:

100µm.

1st year of life to 13 years of age. Patients exhibited seizures for 7.6

± 4.06 (mean ± SD) years prior to resection. The frequency of the

seizures that patients presented with ranged from three seizures per

year to 15–20 seizures per day.

While etiology of epilepsy was unclear for the majority of

cases in this study, there were patients who received clinical

diagnoses that have known associations with seizures, including

encephalitis (26, 27), tumor (28, 29), infarction (30, 31), focal

cortical dysplasia (32, 33), and Sturge-Weber syndrome (34, 35). In

addition, 24.2% (8/33) of the patients had psychiatric diagnoses of

attention-deficit/hyperactivity disorder (ADHD), with one patient

also having Asperger’s syndrome, which are comorbidities that

have bidirectional relationships with epilepsy (36–39). 30.3% of

patients (10/33) did not have additional neuropathological or

psychiatric diagnoses.

All patients underwent neuropsychiatric testing prior to

hippocampectomy in the form of the WISC-IV. WISC testing

is composed of subtests that fall under four broad indices

of intellectual functioning, including verbal comprehension,

perceptual reasoning, working memory, and processing speed

(40). Scores from verbal comprehension and perceptual reasoning

subtests constitute the general ability index, while scores from all

four indices constitute the Full-Scale Intelligence Quotient (FSIQ)

(41, 42). FSIQ is considered a global assessment of cognitive

functioning. While documented FSIQ scores were available for all

patients in this study, the scores for the individual indices were

not available for all patients. The average FSIQ for the general

population is 100, with a standard deviation (SD) of 15, and usually

ranges from 40 (exceptionally low) to 160 (exceptionally superior)

(40). Notably, the average FSIQ of patients with childhood

epilepsies included in this study was 80.4 with a SD of 17.0, which is

significantly lower than that of the general population (80.4± 17 vs.

100 ± 15; p = 0.031, two-tailed unpaired Student’s t-test). Patients

who also received an ADHD diagnosis had lower average FSIQ

compared with patients who did not receive an ADHD diagnosis

(68.38 ± 14.50 vs. 84.28 ± 16.16; p = 0.0189, two-tailed unpaired

Student’s t-test), which is consistent with prior findings in the

literature (43, 44).

3.2 1FosB expression in the DG in
childhood epilepsy patients is similar to
that in patients with TLE, MCI, or AD

To assess whether 1FosB is expressed in childhood epilepsy

syndromes as it is in adult TLE, MCI, and AD, and whether

its expression is related to cognitive function in epilepsy, we
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FIGURE 2

Dentate gyrus 1FosB immunoreactivity in adult individuals with

temporal lobe epilepsy (TLE), mild cognitive impairment (MCI), or

Alzheimer’s disease (AD). (A) Example images of dentate gyrus

1FosB immunoreactivity in surgically resected tissue from two

patients with TLE. (B) Example images of dentate gyrus 1FosB

immunoreactivity in postmortem samples from control individuals,

individuals with MCI, and individuals with AD. Mini-Mental State

Examination (MMSE) scores are indicated in parentheses for each

patient. Sections from patients included in this figure were stained

as part of a previously published study (25); examples shown here

are original, previously unpublished images. Scale bar: 100µm.

first performed immunohistochemistry for 1FosB on DG samples

from these 33 patients (Figure 1; Supplementary Figure 1). We

observed distinct nuclear expression of 1FosB in dentate granule

cells, consistent with the pattern observed in animal models with

epilepsy and previous studies of human samples (25). We noted

that the intensity of 1FosB expression varied between patients,

and this variability was reflected in the quantification of 1FosB

immunoreactivity (indicated by arbitrary units in parentheses;

Figure 1D). However, there was no systematic difference in

1FosB expression between patients with or without additional

neuropathological or psychiatric diagnoses in the present dataset

(Supplementary Figure 2). In addition, although DG 1FosB

expression in mice corresponds to seizure frequency, DG 1FosB

expression in this cohort of patients with childhood epilepsies did

not directly correspond to either seizure frequency (N = 19, R2 =

0.087, p = 0.219) or number of years patients experienced seizures

prior to hippocampectomy (N = 22, R2 = 0.002, p = 0.839).

However, these data were not available for all 33 patients.

To assess whether the DG1FosB expression pattern in patients

with childhood epilepsies is qualitatively similar to the expression

pattern in patients with TLE, we revisited 1FosB expression

patterns in hippocampal resection tissues obtained from adult

patients with TLE in a previous study (25). Similar to our findings

in patients with childhood epilepsies, 1FosB expression in adult

patients with TLE showed a nuclear pattern, with clearly defined

small circular areas of intense staining, particularly in comparison

with the diffuse background staining observed in the surrounding

brain parenchyma (Figure 2A). This result indicates that DG

1FosB expression is clearly observed in both childhood and

adult epilepsies.

In our previous study demonstrating robust 1FosB expression

in adult TLE, we did not have neuropsychiatric data to assess

the relationship between 1FosB and cognitive function in those

individuals. However, we were able to assess the relationship

between 1FosB expression and cognition in individuals with MCI

or AD, which is associated with an increase in seizure incidence

(45–48). Recent studies demonstrated that seizure activity tends

to begin early in disease progression and is associated with earlier

and faster rate of cognitive decline (13, 16, 47, 49). In our previous

study, we found that 1FosB expression in the DG was increased

in individuals with either MCI or AD compared with control

individuals, as shown in Figure 2B. We noted that the staining

pattern in the MCI and AD groups was also nuclear, similar

to the epilepsy samples (Figure 2B). Of particular relevance to

this study, DG 1FosB expression did not correspond to Mini-

Mental State Examination (MMSE) scores in control individuals

or in AD patients with severe cognitive impairments, but 1FosB

expression did correspond to MMSE scores in MCI patients,

indicating a relationship between DG 1FosB expression and

cognitive dysfunction in earlier or milder stages of AD (25).

3.3 1FosB expression in the DG of patients
with childhood epilepsies corresponds to
FSIQ in patients with borderline to poor
intellectual functioning

To determine whether DG 1FosB expression is related to

cognitive function in patients with childhood epilepsies, we

compared 1FosB expression levels with FSIQ, a global measure of

cognitive functioning. Because we found no relationship between

1FosB and MMSE scores in control individuals but found a

negative relationship in MCI patients in which higher 1FosB

expression reflected poorer cognitive function (25), we divided the

childhood epilepsy cohort based on cognitive function, as defined

by FSIQ. We used a FSIQ cutoff of 85, above which children are

typically considered to have average or above average intellectual

functioning, and below which children are considered to have

borderline intellectual functioning (FSIQ > 70) or intellectual

disability (FSIQ < 70) (50).

We found that in individuals with FSIQ > 85, 1FosB did

not correspond to FSIQ (Figure 3A). However, in individuals with

FSIQ < 85, higher levels of 1FosB expression corresponded to

lower FSIQ (Figures 3B, C). There was no significant relationship

between any individual index score with 1FosB in either group,

which may in part be due to variable sample sizes since not all index

scores were available for every patient (Supplementary Figure 3).
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While not statistically significant, we noted that in individuals with

FSIQ < 85, the general trend for all indices were negative (i.e.,

decreased scores with increased1FosB; Supplementary Figure 3B),

whereas the general trends for individuals with FSIQ > 85 were

more mixed (Supplementary Figure 3A). Subdividing patients by

sex, time between neuropsychiatric testing and hippocampectomy,

and other neuropathological and psychiatric diagnoses did not

yield other significant relationships (Supplementary Figure 4).

Interestingly, while scores for most indices showed no or negative

trends with 1FosB, the processing speed index score showed

positive trends with 1FosB in several subdivisions of patients

(Supplementary Figures 3–5), and the trend was significant in

patients whose tissue was found to have hippocampal sclerosis

(Supplementary Figure 5F).

4 Discussion

In summary, we found that 1FosB is expressed robustly in the

dentate granule cells of patients with childhood epilepsies, similar

to adult individuals with TLE, MCI, or AD, and that the magnitude

of1FosB expression in these cells corresponded to FSIQ in patients

whose FSIQ is <85.

Our finding that 1FosB is expressed similarly in the DG of

humans as in that of mice support the potential translatability of

the functions and mechanisms of action of 1FosB that have been

uncovered in rodent models of human diseases. An FSIQ of 85 has

been used as the cutoff between individuals with average intellectual

functioning and those with borderline intellectual functioning (BIF;

FSIQ 70–84) or intellectual disability (FSIQ < 70) (50). While BIF

is not considered a mental disability in the most recent Diagnostic

and Statistical Manual of Mental Disorders (DSM-5), children with

BIF have high risk for the same mental, social, and intellectual

difficulties as those with intellectual disability (50–54). Our finding

that 1FosB corresponds to FSIQ in this patient subpopulation

(FSIQ < 85) suggests that in these individuals, 1FosB may be

engaging mechanisms that negatively affect cognition. It has been

shown in rodent models that alterations to 1FosB expression

in the hippocampus in non-disease conditions are sufficient to

induce hippocampal-dependent learning and memory deficits,

whereas normalizing aberrantly increased1FosB activity in disease

conditions improves cognition (19, 21, 25, 55). Additionally, due

the long half-life 1FosB, its impact on cognition could persist

even during periods in between seizures. Thus, the findings in this

study suggest that in patients with FSIQ < 85, achieving seizure

control may not be sufficient, and that it may be beneficial to also

investigate methods to regulate 1FosB activity or to manage its

downstream effects (21).

1FosB did not correspond to FSIQ in patients whose FSIQ is

>85, suggesting that it may not closely reflect cognitive function in

patients whose cognition scores are considered average or better.

It is possible that 1FosB expression is not sensitive enough to

reflect more subtle variations in cognition. Indeed, in our previous

study with postmortem tissue,1FosB did not correspond toMMSE

scores in control individuals, who had average cognition, but did

correspond to MMSE scores in MCI individuals, who have below

average cognition (25). Similarly, 1FosB expression corresponded

to performance in a hippocampal-dependent memory task in mice

used to study AD neuropathology, but not in wildtype control mice

(19). Another possibility is that availability of binding partners for

1FosB may be differentially expressed in the patient subgroups.

1FosB, like other members of the AP-1 transcription factor family,

usually form heterodimers with other AP-1 transcription factors,

and the resulting complex regulates gene transcription (18, 56).

Future research investigating whether binding partners of 1FosB

are expressed differently in patients with FSIQ above or below 85

may shed light on this possibility.

We also noted that 1FosB did not correspond to individual

WISC index scores, although this may in part be due to reduced

power given variable sample sizes, since index scores were not

available for all patients in the cohort. Interestingly, while most

indices showed no trend or a negative trend with increasing

magnitude of 1FosB expression, the processing speed index

instead showed a positive trend in multiple patient subcategories

(Supplementary Figures 3–5). Higher processing speed has been

hypothesized to reduce the demand on working memory

capabilities (57, 58). Therefore, one possibility is that higher

processing speed may be a compensatory mechanism engaged as

a response to impaired working memory, which may be of interest

for future investigations.

There were limitations in this study related to incomplete

patient profiles, which may have precluded further insights. Seizure

frequency is a critical piece of information that was unavailable

for 14 of the 33 total patients investigated in this study. Even

for the 19 patients for which this information was available, it

is unclear when seizure frequency was assessed relative to when

surgical resection of the hippocampus took place. The 8-day in vivo

half-life of 1FosB likely limits its ability to reflect seizure history

beyond a few weeks prior to sample collection. Thus, 1FosB may

not closely track seizure frequency if that information was obtained

too far in advance of the resection. Because it is not possible

to obtain similarly processed hippocampal resection tissues from

control individuals without a history of seizures, it was also not

possible for us to determine the extent to which 1FosB expression

was increased above baseline at the time of surgery. In addition, the

interval of time between WISC assessment and surgical resection

of the hippocampus varied between patients, which could limit

how closely 1FosB expression (indicative of brain state at time

of surgery) reflects cognitive performance (indicative of brain

state at time of neuropsychiatric testing). It is also unclear what

specific medications or other treatments patients had received prior

to neuropsychiatric testing or hippocampectomy. Certain anti-

seizure medications have been documented to have side effects

on cognition and mood, which could affect performance during

neuropsychiatric testing independently of 1FosB (7, 59–62). Anti-

seizure medication may also affect 1FosB expression by altering

seizure frequency (19, 63) or perhaps by direct regulation (21).

There is also limited information available about the etiology

of seizures or which brain areas other than the hippocampus were

affected by seizure activity, which are factors that can affect the

extent and severity of cognitive impairment in epilepsy (7). In

the present study, we investigated DG 1FosB expression, which is

indicative of seizure activity in the hippocampus itself, since1FosB

accumulation occurs in neurons that are (hyper) active. However,

1FosB in the DG does not regulate all domains of cognitive

function, and seizures and lesions present in extra-hippocampal
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FIGURE 3

Dentate gyrus 1FosB immunoreactivity corresponds to Full-Scale Intelligence Quotient (FSIQ) in patients with childhood epilepsies and borderline

intellectual functioning or intellectual disability. (A, B) Regression analyses of dentate gyrus 1FosB immunoreactivity and FSIQ for patients with FSIQ

> 85 (A) and patients with FSIQ < 85 (B). (C) Representative images of dentate gyrus 1FosB immunoreactivity of patients indicated in red in (B). FSIQ

is indicated in parentheses for each patient. IR, immunoreactivity; AU, arbitrary units. Scale bar: 50µm.

regions of the brain may also contribute to the variability in

neuropsychiatric test performance. Indeed, some patients also

had neurological comorbidities that could also impair cognition

independently of or concurrently with seizures in the hippocampus.

The presence of a tumor, for example, can directly disrupt local

neural processing, and treatments for patients with tumors also

often have negative effects on cognition (64). Cortical infarct

resulting from ischemia can also induce neuronal excitotoxicity

and cell death, loss of dendritic spines, alterations in synaptic

receptor composition, and long-term potentiation deficits, which

can all contribute to cognitive impairment (65). Indeed, there

may be pathophysiological mechanisms that both increase seizure

propensity and impair cognitive function (7, 66). These factors

could obfuscate the relationship between DG 1FosB expression

and cognitive performance.

Despite these limitations, our study demonstrates that robust

1FosB expression in the DG can be found in individuals of a broad

range of ages and with varying medical conditions. Moreover, in

specific subsets of those patient populations, DG1FosB expression

corresponds to aspects of cognitive function, similar to rodent

models of the same diseases. These findings suggest that 1FosB

pathways may be important for future studies to further elucidate,

as understanding its mechanisms of action has the potential to

create new avenues for therapeutic development.
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