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Current status and quality of
radiomics studies for predicting
outcome in acute ischemic
stroke patients: a systematic
review and meta-analysis

Jinfen Kong* and Danfen Zhang

Department of Radiology, Yuhuan Second People’s Hospital, Yuhuan, Taizhou, Zhejiang, China

Background: Pre-treatment prediction of reperfusion and long-term prognosis

in acute ischemic stroke (AIS) patients is crucial for e�ective treatment and

decision-making. Recent studies have demonstrated that the inclusion of

radiomics data can improve the performance of predictive models. This paper

reviews published studies focused on radiomics-based prediction of reperfusion

and long-term prognosis in AIS patients.

Methods: We systematically searched PubMed, Web of Science, and Cochrane

databases up to September 9, 2023, for studies on radiomics-based prediction

of AIS patient outcomes. The methodological quality of the included studies was

evaluated using the phase classification criteria, the radiomics quality scoring

(RQS) tool, and the Prediction model Risk Of Bias Assessment Tool (PROBAST).

Two separate meta-analyses were performed of these studies that predict long-

term prognosis and reperfusion in AIS patients.

Results: Sixteen studies with sample sizes ranging from 67 to 3,001 were

identified. Ten studies were classified as phase II, and the remaining were

categorized as phase 0 (n = 2), phase I (n = 1), and phase III (n = 3). The mean

RQS score of all studies was 39.41%, ranging from 5.56 to 75%. Most studies

(87.5%, 14/16) were at high risk of bias due to their retrospective design. The

remaining two studies were categorized as low risk and unclear risk, respectively.

The pooled area under the curve (AUC) was 0.88 [95% confidence interval (CI)

0.84–0.92] for predicting the long-term prognosis and 0.80 (95% CI 0.74–0.86)

for predicting reperfusion in AIS.

Conclusion: Radiomics has the potential to predict immediate reperfusion and

long-term outcomes in AIS patients. Further external validation and evaluation

within the clinical workflow can facilitate personalized treatment for AIS patients.

This systematic review provides valuable insights for optimizing radiomics

prediction systems for both reperfusion and long-term outcomes in AIS patients.

Systematic review registration: https://www.crd.york.ac.uk/prospero/

display_record.php?ID=CRD42023461671, identifier CRD42023461671.
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1 Introduction

Stroke is a major global health issue, characterized by high

disability, fatality, and recurrence rates (1). It brings a heavy

burden on individuals, families, and society (2). Despite the

decrease in incidence and prevalence of stroke globally, China

still has a rising number of new cases, with 250 million reported

every year (3–5). Acute ischemic stroke (AIS), accounts for

60%-80% of strokes (6), as defined by sudden neurological

deficits caused by focal cerebral ischemia (7). Early intervention

is critical to improve outcomes in AIS patients. The goal of

treatment is to achieve recanalization and reperfusion of the

ischaemic penumbra (8, 9). However, many individuals still

have severe residual impairments after treatments. Therefore,

it is important to accurately predict the prognosis of stroke

and determine the long-term treatment plan for patients (8,

10).

Rapid and accurate prediction of outcomes such as success

reperfusion and long-term prognosis is vital for effective

treatment selection. Traditional predictive models often rely

on clinical and conventional image parameters, but their

predictive power has limitations. Radiomics is a rapidly

evolving field of research that involves extracting quantitative

metrics, known as radiomic features, from medical images

(11–13). Computed tomography (CT) and magnetic resonance

imaging (MRI) are primary diagnostic tools (14, 15), while

their radiomic features also hold great potential for prognosis

prediction (16, 17). Given the complexity of radiomics data,

machine learning (ML) algorithms play a vital role in its

application (18–21), particularly in acute stroke imaging

(22, 23).

In the landscape of AIS management, conventional imaging

remains a cornerstone in diagnosis. The American Heart

Association/American Stroke Association (AHA/ASA) guidelines

for the early management of patients with AIS and the Chinese

guidelines for the diagnosis and treatment of AIS both include non-

contrast CT and conventional MRI as an important part of stroke

diagnosis (24, 25). Additionally, techniques like CT perfusion

and multimodal MRI are invaluable in guiding treatments such

as thrombolytic therapy and endovascular thrombolysis (26–29).

However, the rapidly developing field of radiomics is providing

new pathways for diagnosis and treatment decision-making. For

instance, a recent study illustrated that high-dimension radiomics

features derived from CT angiography enhances the accuracy of

AIS diagnosis and subtype classification, which is crucial for timely

intervention (30). Additionally, another study has shown that

radiomic models based on apparent diffusion coefficient (ADC)

map are highly effective in identifying the ischemic penumbra,

which is important in assessing the normal and ischemic penumbra

areas and influencing treatment decisions (31). In terms of

prognostic prediction, radiomics studies have seen substantial

growth in recent years. Since prognosis in AIS is influenced by

various factors, these studies often aim to combine radiomics

features with clinical information to more precise predictions of

patient outcomes. Although currently not used in clinical practice,

the combination of radiomics with established imaging techniques

will allow us to take a significant step forward in understanding and

processing AIS.

While several studies have evaluated the utility of radiomics

in AIS prediction, there is a lack of comprehensive reviews that

systematically evaluate the methodological quality and predictive

accuracy of these studies. This systematic review and meta-analysis

aim to address this gap, focusing on reperfusion and long-term

prognosis prediction in AIS patients.

2 Methods

This systematic review and meta-analysis strictly adhered

to the Preferred Reporting Items for Systematic Reviews and

Meta-Analyses 2020 (PRISMA 2020) statement. The PRISMA

checklist is provided in Supplementary Table 1. And the protocol

is prospectively registered in PROSPERO (CRD4202346167).

2.1 Literature search strategy

A comprehensive literature search for potentially relevant

articles was conducted in PubMed, Cochorane, andWeb of Science

databases (WOS), with data retrieval up to September 9, 2023. A

researcher (Jinfen Kong) designed the keywords and search strategy

of this systematic review, and both subject headings and free words

were searched. The complete search strategy can be found in the

Supplementary Table 2.

2.2 Inclusion and exclusion criteria

2.2.1 Inclusion criteria
(1) Patients were diagnosed with AIS using CT or MRI.

(2) Radiomic features were utilized to predict outcome in

AIS patients.

(3) Long-term outcome was measured using the modified

Rankin Scale (mRS) or discharge National Institute of Health

Stroke Scale (NIHSS).

(4) Reperfusion was assessed using the modified Thrombolysis

in Cerebral Infarction (mTICI) scale or other relevant methods.

(5) Study participants were aged 18 and older.

(6) Full-text was available and articles were written in English.

2.2.2 Exclusion criteria
(1) Studies conducted in phantom or animal models.

(2) Case reports or small case series (≤10 patients).

(3) Reviews, poster presentations, letters, or meeting abstracts.

(4) Cerebral hemorrhage resulting from secondary causes such

as cerebral trauma or subarachnoid hemorrhage.

(5) Predictive models rely solely on clinical factors without

incorporating radiomic features.

2.3 Data extraction

All of the retrieved studies were managed using Endnote.

After the removal of duplicates through automated and manual

processes, two researchers (Jinfen Kong and Danfen Zhang)
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FIGURE 1

PRISMA flowchart of included studies.

independently assessed the remaining articles. Preliminary

screening was conducted based on titles and abstracts before

downloading full texts. Eligible studies that met inclusion criteria

were selected after a thorough examination of the full texts.

Prior to data extraction, a standardized data extraction sheet

was prepared, including data source, sample size, population,

study design, image modality, research question, treatment,

software, segmentation, clinical and image features, validation

approach, endpoints, reference standard, and classifier model types.

Endpoints of interest were long-term prognosis and reperfusion.

Long-term prognosis was defined as mRS or discharge NIHSS.

Reperfusion was defined as mTICI or other methods. For long-term

prognosis, mRS thresholds and follow-up time were recorded. For

reperfusion, mTICI thresholds defined as successful reperfusion

were recorded. Performance metrics area under the curve (AUC)

were extracted.

2.4 Quality assessment

The methodological quality of the included studies was

independently evaluated by two reviewers (Jinfen Kong andDanfen

Zhang) and cross-checked for consistency.

2.4.1 Model quality assessment
The phase classification criteria is a model quality assessment

tool (32). The parameters for phase categorization included

sample size (<100 or >100), study design (retrospective or

prospective), type of validation approach (internal or independent),

and the development stage (pre- or post-marketing). The phase

classification criteria categorized image mining studies into the

discovery science and phases 0–IV.

2.4.2 Radiomics quality assessment
Radiomics quality was assessed using the 16-component

Radiomics Quality Score (RQS) tool (33). Each study was assigned

a number of points per RQS component and summed to give a

total score ranging from −8 to +36. A score of −8 to 0 points

corresponds to 0% and 36 points correspond to 100%. The mean

score of the two evaluations is presented as a percentage.

2.4.3 Risk of bias assessment
The Risk of Bias (ROB) of included studies was evaluated

using the Prediction Model Risk of Bias Assessment Tool

(PROBAST) (34). This assessment encompassed four major

domains: participants, predictors, outcomes, and statistical

analysis, ultimately reflecting overall ROB and applicability. These

domains include two, three, six and nine questions, respectively.

Questions are answered as either yes/probable yes (Y/PY),

no/probably no (N/PN), or no information (NI). If a domain is

answered with at least a N/PN, it is considered at high ROB. An

overall low ROB rating was achieved only when all four domains

were rated as low ROB.
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TABLE 1 Included radiomic studies.

Study ID Participant Training Test Validation External
validation

Population Study
design

Imaging
modality

Limin Zhang 240 194 46 No AIS Retrospective Baseline NCCT

Jeremy Hofmeister 156 109 47 Yes AIS Retrospective

and

prospective

Baseline CT, CTA,

CTP

Guanmin Quan 190 110 80 Yes AIS Retrospective Baseline MRI

(FLAIR, DWI,

MRA)

Linna Li 102 81 21 No AIS Retrospective Baseline and

post-operative

NCCT

Haoyue Zhang 141 122 29 No AIS Retrospective Baseline DWI,

FLAIR

Tatsat R. Patel 74 52 22 No AIS Retrospective Baseline CT (CTA,

NCCT)

Xing Xiong 256 95 108 Yes AIS Retrospective Baseline CT

(NCCT, CTA, CTP)

Lucas A. Ramos 3,001 1,921 600 480 Yes AIS Prospective Baseline CTA

W. Qiu 67 54 13 No AIS Retrospective Baseline NCCT and

CTA

Tian-yu Tang 155 84 71 Yes AIS Retrospective

and

prospective

Baseline DWI and

PWI

Hui Cui 70 40 30 No AIS Retrospective Baseline MRI

Manon L.

Tolhuisen

206 144 41 21 Yes AIS Retrospective Post-treatment

DWI at 24 h

Wei Ye 441 309 132 No AIS Retrospective Baseline MRI

Emily W. Avery 677 373 304 Yes Acute LVO

stroke

Retrospective Baseline CTA

Liang Jiang 1,716 1,256 460 Yes Acute LVO

stroke

Retrospective Baseline DWI

Huan Yu 148 104 44 No AIS Retrospective Baseline

multi-modal MRI

External validation, “Yes” indicates that an external validation dataset was utilized in the study; “No” indicates that no external validation dataset was employed; NM, not mentioned; AIS, acute

ischemic stroke; acute LVO stroke, acute anterior large vessel occlusion Stroke; NCCT, non-contrast computed tomography; CTA, CT angiography; CTP, CT perfusion imaging; MRI, magnetic

resonance imaging; FLAIR, fluidattenuated inversion recovery; DWI, diffusion Weighted Imaging; MRA, magnetic Resonance Angiography; PWI, perfusion-weighted imaging.

2.5 Meta-analysis

Two meta-analyses were performed: (1) A meta-analysis to

evaluate the use of radiomics for predicting long-term prognosis,

and (2) A meta-analysis to assess the use of radiomics in predicting

reperfusion. When multiple models were reported in a study,

only the one with the highest AUC was extracted. If multiple

validation datasets of the optimal model were reported, we

also extracted the highest AUC among them. Meta-analysis was

performed on the metrics (AUC) for evaluating machine learning

models. If AUC lacked 95% confidence interval (CI) and standard

error (SE), we estimated SE based on a study by Debray et al.

(35). Given the difference in variables and parameters in ML

models, a random-effects model was employed to perform the

meta-analysis. R package metafor (v4.4-0) was used for meta-

analyses. Heterogeneity was assessed using the I2 statistic, with

low, moderate, and high levels of heterogeneity corresponding to

I2 values of 25, 50, and 75%, respectively (36). Publication bias

was examined using funnel plots, Egger’s bias test, and Begg’s test.

Two-sided p < 0.05 were considered statistically significant.

2.6 Sensitivity analysis

The impact of each study on the overall results was analyzed by

excluding one study at a time and recalculating the combined effect

size. R package metafor (v4.4-0) was used for sensitivity analysis.

3 Results

3.1 Study selection

Figure 1 illustrates the PRISMA flowchart outlining the study

selection process. Our search strategy initially identified 87 studies
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TABLE 2 Patient follow-up time and stratification cut-o� value in long-term prognostic modeling studies.

Study ID Endpoints Reference standard Follow-up time Cut-o� value

Limin Zhang Long-term prognosis mRS 6 months 2

Guanmin Quan Long-term prognosis mRS 3 months 2

Linna Li Long-term prognosis mRS 3 months 2

Lucas A. Ramos Reperfusion and long-term

prognosis

mRS 3 months 2

Tian-yu Tang Long-term prognosis mRS mRS at day 7 and 3

months

2

Hui Cui Long-term prognosis mRS 3 months (0, 1, 2, 3, 4), multi-categorization

task

Manon L. Tolhuisen Long-term prognosis mRS not mentioned 2

Wei Ye Long-term prognosis Discharge NIHSS not involved (1, 4, 5), multi-categorization task

Emily W. Avery Long-term prognosis mRS 3 months 2

Liang Jiang Long-term prognosis mRS 3, 6, 12 months 2

Huan Yu Long-term prognosis mRS not mentioned 2

mRS, modified Rankin Scale; NIHSS, National Institute of Health stroke scale.

from PubMed, 7 from Web of Science (WOS), and 7 from

Cochrane (Figure 1 and Supplementary Table 2). After removing 6

duplicates, we screened 95 titles/abstracts. This led to the inclusion

of 52 studies and 8 additional cited studies for full-text review.

Ultimately, 16 peer-reviewed articles were included in this meta-

analysis.

3.2 Study characteristics

A total of 16 eligible studies were included in this

systematic review (13, 37–51), and their characteristics

are presented in Table 1 and Supplementary Table 3. The

radiomics modality used in these studies was relatively

balanced, with half employing CT image features and the

remaining half using MR image features. The majority of

studies used baseline images of AIS patients, while two studies

(39, 46) included post-treatment images to predict long-term

outcome. The treatment strategy in most studies is mechanical

thrombectomy (MTB), while the remaining studies employed

diverse treatments, including intravenous thrombolytic (IVT)

therapy, endovascular treatment (EVT), intravenous recombinant

tissue plasminogen activator (IV-rtPA) therapy, and other

conventional treatment.

Within these studies, ten are dedicated to predicting long-

term prognosis, five focus on reperfusion (37, 40, 41, 43, 51),

and one addresses both aspects (42). For long-term prognosis,

assessment of the mRS spanned a follow-up period of 3–12

months, while assessments of the NIHSS occurred at discharge

or on day 7. Most studies predicting long-term prognosis using

mRS employed a threshold of 2 (Table 2). Regarding reperfusion,

five out of six studies utilized the mTICI scale as the reference

standard, employing thresholds of mTICI ≥ 2b, 2c, or 3

(Table 3).

Among the 16 studies, 12 conducted a combined model that

integrated both clinical variables and radiomics features. Notably,

TABLE 3 Threshold for successful reperfusion.

Source Endpoints Reference
standard

Reference
standard

Jeremy Hofmeister Reperfusion mTICI mTICI ≥ 2b

Haoyue Zhang Reperfusion mTICI mTICI ≥ 2c

Tatsat R. Patel Reperfusion mTICI mTICI ≥ 2c

Xing Xiong Reperfusion mTICI mTICI ≥ 2b,

or 3

Lucas A. Ramos Reperfusion

and long-term

Prognosis

mTICI mTICI ≥2b

W. Qiu Reperfusion mTICI mTICI ≥2b

mTICI, modified thrombolysis in cerebral infarction.

11 of these studies performed a comparation between models

using only clinical features and models incorporating radiomics

features. While 4 of these studies (41–43, 46) did not observe a

significant difference in predictive performance, the remaining 7

(13, 38, 39, 44, 47–49) demonstrated that the inclusion of radiomics

significantly improved the predictive ability for AIS prognosis.

Moreover, among these 7 studies, 3 (38, 39, 44) directly compared

the performance of the radiomics model with the clinical model,

and all found that the radiomics model was superior. Additionally,

one study (13) included conventionalMRI factors like lesion optical

densities (ODs), Fazekas scores, and admission DWI-ASPECTS,

alongside clinical features. In this case, the AUC of the radiomics

model was better than both the pure clinical model and the clinical

+ conventional MRI model.

The included studies were published between 2018 and 2023,

with seven of them all published in 2023, indicating a huge

explosion over these years. This trend highlights the increasing

importance of radiomics in the field of prognostic prediction for

patients with AIS.
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TABLE 4 Summary of the quality of included studies.

Study ID Phase RQS
score (%)

ROB

Limin Zhang II 44.44 High

Jeremy Hofmeister III 47.22 High

Guanmin Qua II 36.11 High

Linna Li II 33.33 High

Haoyue Zhang II 36.11 High

Tatsat R. Patel I 36.11 High

Xing Xiong II 36.11 High

Lucas A. Ramos III 75.00 Low

W. Qiu 0 38.89 High

Tian-yu Tang III 52.78 Unclear

Hui Cui 0 30.56 High

Manon L.

Tolhuisen

II 5.56 High

Wei Ye II 27.78 High

Emily W. Avery II 47.22 High

Liang Jiang II 52.78 High

Huan Yu II 30.56 High

Phase, phase classification criteria; RQS, radiomics quality score; ROB, risk of bias.

3.3 Quality analysis

The sample size of the included studies ranged from 67 to 3,001,

with thirteen studies (81.3%) enrolling more than 100 patients.

Most studies were retrospective (81.3%), while one study (42) was

prospective, and two studies (37, 44) employed a combination

of retrospective training and prospective validation. Validation

analysis was conducted in all studies, with seven studies using

external datasets, seven studies employing the cross-validation

method, and only three relying solely on internal datasets.

According to the phase classification criteria, ten studies (62.5%)

were classified as phase II, and the remaining were distributed as

phase 0 (n= 2), phase I (n= 1), and phase III (n= 3) (Table 4).

In terms of radiomic-specific quality, Table 4 and

Supplementary Table 4 presents the RQS scores of all included

studies. And the individual score for each RQS items, for each

of our two evaluators are shown in Supplementary Table 5 and

Supplementary Figure 1. The mean score across all 16 studies was

39.41% (range 5.56–75%). Most studies scored within 30–40%,

with only one study receiving a quality score of <10% (46)

(Figures 2A, B). Most studies reported well-documented image

acquisition protocols, nine studies (56.3%) mentioned that image

segmentation was performed by 2 or more physicians. None

addressed inter-scanner differences or vendor-dependent features.

All studies acquired images from baseline scans except one study

(46) used post-operative images, and another one (39) used both

pre- and post-operative images. Feature dimension reduction was

performed in most studies, except for one (46). Ten (62.5%) studies

incorporated clinical features into radiomic models, and three of

these studies suggested that this integration improved predictive

performance. Clinical characteristics included in models were

age, gender, age, sex, baseline NIHSS, baseline mRS, dyslipidemia,

penetrating artery infarction, hypertension, previous stroke,

ASPECTS, time since stroke (TSS), time to treatment (TTT),

and more. The correlation between clinical factors and radiomic

features was discussed in six (37.5%) studies. Only four studies

conducted cut-off analysis using nomograms to assess risks.

For model assessment, discrimination statistics were typically

provided, whereas calibration statistics were less mentioned.

Validation of radiomics signatures was performed in all studies,

with 7 studies (43.8%) employing external datasets, and 7 using

the cross-validation method. However, only one study (42) was

prospectively registered. Regarding the clinical utility, 7 studies

compared their models with the gold standard, indicating potential

clinical utility. But none performed cost-effectiveness analysis.

In terms of open science and data, two studies (42, 48) obtained

radiomic features on a set of representative regions of interest

(ROIs), with the calculated features and code being open access

(Figures 2A, B).

For risk of bias (ROB), there are 13 of 16 models originated

from retrospective studies, which carried a high risk of bias (ROB).

The remaining three studies employed prospective validation,

resulting in a low ROB (Table 4 and Supplementary Table 6). In

terms of the assessment of predictors domain, 13 studies were rated

at high ROB due to the potential bias in retrospective studies where

researchers knew both predictors and data results. For the outcome

domain, 14 studies had a low ROB, while one model had an unclear

ROB (43), and another one had a high ROB (46). Lastly, as for the

analysis domain, one study (37) had a high ROB because it selected

predictors based solely on univariable analysis, and four studies

(38, 40, 44, 46) had unclear ROB due to incomplete disclosure of

how missing data were handled, failure to indicate whether data

complexity was considered, lack of explanation on how overfitting

was avoided, or not illustrating the weight of factors. The summary

of ROB evaluation is presented in Figure 2C.

3.4 The value of radiomics in predicting AIS
outcome

To evaluate the prognostic value of radiomics in AIS patients,

we conducted two separate meta-analyses. The first meta-analysis

focused on models designed to predict long-term prognosis in

AIS patients, involving 14 radiomics models extracted from 11

studies. From these studies, we selected the best-performing model

from 10 of them. Additionally, one study (45) implemented a

distinctive approach by stratifying the mRS into 0, 1, 2, 3, and 4 and

constructing an individualized model for each mRS score, where

the model with mRS = 4 had a SE= 0 and was therefore excluded.

Consequently, a total of 14 models were incorporated into the first

meta-analysis. The result showed a pooled AUC of 0.883, calculated

using a random-effects model, with a 95% CI ranging from 0.844 to

0.921 (p-value = 0.01) (Figure 3A). The I2 statistic is 61.8% which

indicates high heterogeneity among these studies.

To investigate the potential source of heterogeneity, we

performed subgroup analysis, and found that multi-center or

single-center is a significant contributor to the overall heterogeneity
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FIGURE 2

Quality assessment of included studies. (A) Bar chart of the mean score of each study according to the radiomics quality scoring tool. (B) Pie chart of

the mean score of studies according to the radiomics quality scoring tool. (C) Evaluation of Risk of bias.

within the dataset. When analyzing the single-center subgroup,

the pooled AUC was 0.95 (95% CI 0.91–0.98, p < 0.0001), and

the I2 value was reduced to 47.31%. When analyzing the multi-

center subgroup, the pooled AUC was 0.86 (95% CI 0.83–0.89, p <

0.0001), and the I2 value wasmarkedly reduced to 6.39%, indicating

a relatively lower heterogeneity (Figure 3A).

In the second meta-analysis, which included six radiomic

studies that focused on reperfusion prediction, the pooled AUC

was 0.800 (95%CI 0.734–0.863, p < 0.001) (Figure 3B). And the I2

statistic also suggested considerable heterogeneity in the AUC (I2

= 86.0%). We investigated potential factors that might contribute

to the heterogeneity. However, variables such as multi-center or

single-center, imaging modality, experimental design, location, and

treatment were not able to explain the heterogeneity very well.

In conclusion, these results showed that the synthesized AUCs

of the radiomics models are notably high. While some unexplained

heterogeneity remains, radiomics exhibits promise in predicting

long-term prognosis and reperfusion outcomes in AIS patients.

3.5 Publication bias

In the meta-analysis of AUC, no publication bias was detected

for predicting both long-term outcome and reperfusion after

stroke (Figures 4A, B). Begg’s test results further confirmed this

observation, with p-value = 0.25 for the prediction of long-term

outcomes and p-value= 0.85 for the prediction of reperfusion.

3.6 Robustness of meta-analysis

To demonstrate the robustness of meta-analysis, we performed

sensitivity analyses by excluding individual study at a time

and recalculating the combined AUC. For long-term prognosis

prediction, the synthesized AUC values ranged from 0.832 to 0.949,

with standard errors ranged from 0.0036 to 0.0052, which is closely

matching the overall values (Table 5). For reperfusion prediction,

the synthesized AUC values ranged from 0.743 to 0.847, and

standard errors ranged from 0.0006 to 0.0035, which was also close

to the overall values (Table 6). These results suggest that these two

meta-analysis results are highly robust and are not significantly

influenced by any individual study.

4 Discussion

The increasing popularity of radiomics prediction for assessing

AIS patient outcomes is evident from the growing number of

studies in recent years. This systematic review and meta-analysis

identified 16 studies employing radiomic techniques to predict
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FIGURE 3

Forest plots of the predictive performance of radiomics models. Forest plots showed the predictive performance of radiomics models in (A)

long-term prognosis (mRS) and (B) immediate reperfusion (mTICI) of AIS patients. For long-term prognosis, the results of subgroup analysis

according to single-center or multicenter factors are shown; Area under curve (AUC) for each study is presented as a black dot, with the horizontal

line indicating the 95% confidence interval (CI). The pooled result for all studies is presented as a black diamond.
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FIGURE 4

Funnel plot for publication bias of AUC. Funnel plot showed the publication bias of AUC in (A) long-term prognosis (mRS) and (B) immediate

reperfusion (mTICI) of AIS patients.

TABLE 5 Sensitivity analyses for long-term prognosis prediction.

Excluded study Leave-one-
out
AUC

Leave-one-
out
SE

Limin Zhang 0.8735 0.0036

Guanmin Quan 0.8735 0.0036

Lucas A. Ramos 0.9485 0.0052

Tian-yu Tang 0.8739 0.0036

Manon L. Tolhuisen 0.8733 0.0037

Emily W. Avery 0.875 0.0036

Liang Jiang 0.874 0.0037

Linna Li 0.8734 0.0036

Hui Cui (mRS= 0) 0.8733 0.0036

Hui Cui (mRS= 1) 0.8706 0.0037

Hui Cui (mRS= 2) 0.8671 0.0037

Hui Cui (mRS= 3) 0.8733 0.0036

Wei Ye 0.8323 0.0043

Huan Yu 0.8728 0.0037

AUC, area under curve; SE, standard error.

reperfusion and prognosis in AIS patients. Remarkably, radiomics

model demonstrated promising performance, with pooled AUC

values of 0.883 for long-term prognosis and 0.800 for reperfusion

prediction, validating its potential value in AIS management.

Regarding the quality of studies in our meta-analysis, the

average RQS was 14, representing 39.41% of the total RQS, with a

median score of 13, corresponding to 36.11% of the total RQS.Most

studies scored between 30 to 40%, while two studies scored below

30%, with one as low as 5.56%. Upon comparison with radiomics

meta-analyses in other fields, we observed that the quality of

radiomics studies is a widely concern. For instance, a review of

cholangiocarcinoma encompassing 38 original studies reported a

median RQS of 9, amounting to just 25.0% of the total RQS (52).

TABLE 6 Sensitivity analyses for reperfusion prediction.

Excluded study Leave-one-
out
AUC

Leave-one-
out
SE

Jeremy Hofmeister 0.746 0.0006

Haoyue Zhang 0.847 0.0035

Tatsat R. Patel 0.746 0.0006

Xing Xiong 0.746 0.0006

Lucas A. Ramos 0.746 0.0006

AUC, area under curve; SE, standard error.

Similarly, a review focusing on ovarian imaging, which included

63 studies, found a median RQS of 6, corresponding to 30.6% of

the total RQS, indicating lower scoring (53). Another meta-analysis

covering 57 ovarian cancer studies reported an average RQS of

30.7%, which is also considered unsatisfactory (54). Reviews in

other areas of radiomics, such as prostate cancer (55), meningiomas

(56), nasopharyngeal carcinoma (57), and cardiovascular fields

(58), have also highlighted concerns regarding the quality of

machine learning and radiomics research, underscoring the general

insufficiency in the scientific rigor of radiomics studies (59). This

draws attention to the need for a more standardized approach in

the radiomics workflow before its integration into clinical practice,

to enhance the quality and reliability of findings, thereby ensuring

their utility and applicability in clinical settings.

Incorporating clinical characteristics into radiomics models

in most cases highlights the importance of a comprehensive

approach. Integrating a patient’s clinical and radiomic profile can

improve predictive accuracy. In fact, several studies demonstrated

enhanced performance of prediction after integration, highlighting

the advantages of using multidimensional information.

These findings emphasize the increasing acceptance and

potential of radiomics in enhancing clinical decision-making for

AIS patients. When these high-dimensional data are combined

with machine learning models, they have the potential to

optimize personalized treatment approaches. Such objective and
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time-sensitive risk stratification strategy can help with treatment

decisions and enable tele-stroke assessment of patients. Particularly

in the absence of reliable clinical information at the time of

admission, models solely using radiomics features can serve as a

valuable prognostication tool.

4.1 Limitation

A principal limitation concerns the quality assessment of

included studies. The RQS tool is widely used for evaluating

the quality of radiomics research. However, a recent study

has highlighted the challenges in correctly understanding and

implementing RQS to allocate reproducible scores (60), while

inappropriate methodological quality assessment can lead to

bias in quality assessments. Indeed, our study encountered this

inter-rater reliability issue as well, particularly in the items of

calibration statistics, validation, and open science and data, where

our two evaluators assigned inconsistent scores for 6 included

studies (Supplementary Table 5 and Supplementary Figure 1). We

analyzed that these inconsistencies arose from the different

expertise of the two raters in medical statistics and machine

learning, affecting calibration statistics and open science and data,

and varied academic experiences in radiology impacting validation

item. Our current approach to address these inconsistencies is

to average the divergent scores. However, we recognize that this

simplistic method is a compromise and reflects a broader challenge

faced by researchers using RQS tool. A robust and reproducible

scoring tool for radiomics research is crucial for our study and for

the field of radiomics. We eagerly anticipate the development of

more standardized tools for evaluating radiomics research, which

would not only aid our meta-analysis but also guide future studies

in radiomics field.

Another critical limitation is evident in the current landscape of

AIS radiomics studies. Firstly, for when predicting reperfusion, we

observe significant heterogeneity among studies, which could not

solely explained by single-center vs. multicenter design. Variations

in study populations, methodologies, and the choice of utilizing

first-pass effect recirculation results or multiple recirculation

results for predicting MTB also could contribute to the inter-

study heterogeneity. Indeed, previous studies have emphasized that

radiomics studies are heterogeneous in various areas (52–55, 59,

61, 62). Subgroup analysis may partially address this heterogeneity.

However, a comprehensive assessment of these factors will require

more published studies. Moreover, due to the different parameters

used in each article, we extracted AUC for the meta-analysis, as it

was reported in all 16 studies. However, for a more comprehensive

analysis, parameters such as model accuracy and precision need

to be evaluated. Regrettably, due to constraints imposed by the

original studies, we were unable to conduct a comprehensive

evaluation using these additional parameters.

Additionally, in studies featuring multiple radiomics models,

we selected the best-performing model for each. This approach,

while enhancing comparability across studies, introducing a

selection bias, potentially leading to overly optimistic estimates.

We chose the best-performing models based on their ability to

provide consistent and comparable benchmarks across studies.

However, this necessitates a cautious interpretation of our findings,

recognizing that it may limit the overall generalizability of the

results. Future research would benefit from incorporating a broader

range of models to provide a deeper understanding of predictive

capabilities in the field.

Moreover, the dominance of retrospective studies raises

concerns about selection bias and potentially overestimate of

model performance. The lack of consideration for inter-scanner

differences or vendor-dependent features further impact image

quality and feature extraction. To enhance consistency and

reproducibility, it is crucial to establish a unified protocol for image

acquisition and processing. Moving forward, future studies should

prioritize prospective, multicentric collaborations to validate and

generalize the predictive power of radiomics models across diverse

populations and clinical settings.

5 Conclusions

This review provides a quality assessment and meta-analysis of

studies that using radiomics features to predict outcome in AIS

patients, highlighting the potential of radiomics-based predictive

models. As the field continues to grow, integrating radiomics-

based machine learning models into clinical pathways is expected

to improve personalized care of AIS patients. Future efforts should

further leverage this potential to optimize patient outcomes.
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