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Imperial College London, London, United Kingdom, 3Xinjiang Emergency Center, People’s Hospital of
Xinjiang Uygur Autonomous Region, Ürümqi, China

Background: Skull fracture can lead to significantmorbidity andmortality, yet the
development of e�ective predictive tools has remained a challenge. This study
aimed to establish and validate a nomogram to evaluate the 28-daymortality risk
among patients with skull fracture.

Materials and methods: Data extracted from the Medical Information Mart for
Intensive Care (MIMIC) database were utilized as the training set, while data
from the eICU Collaborative Research Database were employed as the external
validation set. This nomogram was developed using univariate Cox regression,
best subset regression (BSR), and the least absolute shrinkage and selection
operator (LASSO) methods. Subsequently, backward stepwise multivariable Cox
regression was employed to refine predictor selection. Variance inflation factor
(VIF), akaike information criterion (AIC), area under the receiver operating
characteristic curve (AUC), concordance index (C-index), calibration curve, and
decision curve analysis (DCA) were used to assess the model’s performance.

Results: A total of 1,527 adult patients with skull fracture were enrolled for this
analysis. The predictive factors in the final nomogram included age, temperature,
serum sodium, mechanical ventilation, vasoactive agent, mannitol, extradural
hematoma, loss of consciousness and Glasgow Coma Scale score. The AUC of
our nomogramwas 0.857, and C-index value was 0.832. After external validation,
the model maintained an AUC of 0.853 and a C-index of 0.829. Furthermore, it
showed good calibration with a low Brier score of 0.091 in the training set and
0.093 in the external validation set. DCA in both sets revealed that our model was
clinically useful.

Conclusion: A nomogram incorporating nine features was constructed, with a
good ability in predicting 28-day mortality in patients with skull fracture.

KEYWORDS
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Introduction

A skull fracture denotes the breakage of one or more bones within the skull vault

or base, typically resulting from road traffic accidents, falls, or acts of violence. Head

injuries are more commonly observed in middle- and low-income countries, particularly

in the context of road traffic collisions (1). In a retrospective study involving 2,254

cases of head trauma caused by assault, approximately one-third of the patients were

found to suffer from a skull fracture (2). The most prevalent skull fracture occurs at
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the parietal bone, followed by the temporal, occipital, and

frontal bones (3). Unlike fractures in other body parts, skull

fracture, in the absence of injury to vital structures like

brain tissue, are not immediately life-threatening and often

heal spontaneously. However, severe skull fracture can lead to

concomitant trauma-related intracranial injuries, such as cerebral

edema, subarachnoid hemorrhage, and cerebral lacerations,

resulting in prolonged hospitalization and increased treatment

costs. Traumatic intracranial hemorrhage (tICH) is a significant

source of morbidity and mortality in trauma patients. Subdural

hematoma (SDH), occurring in 11% to 49% of patients after

traumatic brain injury (TBI), is commonly associated with an all-

cause mortality rate of 14.2% to 53.8% within a five-year period (4).

Compared to TBI, skull fractures can be diagnosed both earlier

and more easily, offering a more direct point for assessment and

intervention. The development of a severity scoring system that

accounts for mortality risk is imperative to accurately evaluate the

prognosis and guide treatment strategies for patients with skull

fracture. It not only aids in the early identification of patients

with potentially fatal skull fractures but also optimizes resource

distribution and patient management, particularly in emergency

medical settings.

In recent years, there has been an upsurge in studies focusing

on nomograms pertaining to head injuries. Nomograms offer an

intuitive graphical representation, enhancing the comprehension

and application of complex mathematical models and statistical

methods. Healthcare professionals can expeditiously calculate

individual risks by directly interpreting the variables and scales

depicted in the chart (5). Chen et al. (6) formulated a predictive

nomogram for assessing mortality in TBI patients, incorporating

eight features (mannitol use, mechanical ventilation, vasopressor

use, international normalized ratio, urea nitrogen, respiratory

rate, and cerebrovascular disease). Lin et al. (7) developed a

model to predict post-traumatic epilepsy (PTE) after cerebral

contusions using seven variables [contusion site, chronic alcohol

use, contusion volume, skull fracture, subdural hematoma (SDH),

Glasgow coma scale (GCS) score, and non-late post-traumatic

seizure], and the model exhibited excellent performance with a C

index exceeding 0.9.

However, to the best of our knowledge, there currently exists

no predictive model for assessing 28-day mortality in critically

ill patients diagnosed with skull fracture. This study utilized two

large public databases, namely the Medical Information Mart

for Intensive Care (MIMIC) database and eICU Collaborative

Research Database (eICU-CRD), to systematically screen predictive

factors for 28-day mortality of critically ill patients with skull

fracture. Subsequently we constructed a nomogram and ensured its

validation. This model can be utilized by medical practitioners to

enhance clinical decision-making, accurately anticipate mortality

rates, and reduce uncertainty.

Materials and methods

Data source

Our data were sourced from the MIMIC-IV database (version

2.0), MIMIC-III Clinical Database CareVue subset (version 1.4)

and eICU-CRD (version 2.0). MIMIC is a substantial, single-

center, openly accessible database. It encompasses data from 2001

to 2019 within the intensive care units (ICUs) at Beth Israel

Deaconess Medical Center. The eICU database is a multi-center

database comprising health data associated with over 200,000

admissions to ICUs across the United States between 2014 and

2015. Rigorous de-identification measures have been applied to

patient identity and hospital information in both databases. After

successfully completing the training courses stipulated by the

National Institutes of Health (NIH) and passing the relevant

examination, we were granted permission to extract data. The first

author of this study, Jia Tang, has completed the Collaborative

Institutional Training Initiative (CITI) program courses and

executed the data use agreement, thereby obtaining full access to

the aforementioned two databases (record ID: 52759164).

Research population

All patients with skull fracture from the two databases were

included in this study. For patients with multiple ICU admission,

only data from the initial ICU admission were considered.

None of the participants in our research were minors, and we

exclusively enrolled individuals with a minimum ICU duration

of 24 h. The Structured Query Language (SQL) queries used for

the selection of patients with skull fracture are presented in

Supplementary Table S1.

Feature extraction

We extracted the following data: age, sex, race, vital signs,

laboratory data and Glagow Coma Scale (GCS) within 24 h after

ICU admission (heart rate, systolic blood pressure, diastolic

blood pressure, respiratory rate, temperature, hemoglobin, white

blood cell count, platelet, prothrombin time, sodium, potassium,

bicarbonate, serum creatinine); therapeutic interventions in the

first 24 h (mechanical ventilation, vasoactive agent, furosemide,

mannitol, human serum albumin, antibiotics); surgery for fracture;

comorbidities (hypertension, chronic obstructive pulmonary

disease, congestive heart failure, liver cirrhosis, cancer), fracture

site (vault, base), open fracture, closed fracture, hemorrhage

(subarachnoid hemorrhage, subdural hematoma, extradural

hematoma), cerebral laceration and contusion, concussion, loss of

consciousness. Additionally, we incorporated the acute physiology

score III (APSIII), a widely employed tool for accessing disease

severity. In this study, vasoactive agents included dopamine,

dobutamine, epinephrine, norepinephrine, phenylephrine,

vasopressin, and milrinone. Antibiotic users did not encompass

those who administered antibiotics nasally or ocularly, nor did they

include individuals using antibiotic creams or gels. Surgical data

pertained to whether surgical operations were conducted during

hospitalization due to skull fracture. The primary endpoint for this

research was mortality within 28 days following ICU admission.

Any variable with missing data exceeding 20% was removed from

the analysis. Missing values for all variables were imputed by

multiple imputation method (8). All requested information was
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obtained using Navicat 16 for PostgreSQL through Structured

Query Language (SQL).

Statistical analysis

Data from the MIMIC-IV databse and MIMIC-III carevue

subset served as the training set and underwent 10-fold cross-

validation, while data from eICU-CRD were used for external

validation. The Shapiro-Wilk normality test was applied to

all continuous variables. For normally distributed variables,

the mean and standard deviation (SD) were utilized, while

non-normally distributed variables were represented as the

median and interquartile range (IQR). Categorical variables

were expressed as numerical values and percentages (%). The

distinction between two groups was evaluated using the t test

or Wilcoxon rank-sum test for continuous variables and the chi-

square test for categorical variables. Statistical significance was

determined with a two-sided P < 0.05. R software (version 4.3.1)

and MedCalc (version 22.009) were employed to perform the

statistical analyses.

Model development phase

In the initial screening for significant prognostic factors, we

employed three methods: univariate Cox regression, best subset

regression (BSR), and least absolute shrinkage and selection

operator (LASSO). In the univariate Cox model, factors with a P

< 0.05 were included in subsequent analysis. The BSR method

evaluated all possible variable combinations and selected final

variables based on the maximum value of adjusted R2. LASSO

regression determined variable selection based on the lambda.1se

value. Subsequently, each of the three models underwent backward

stepwise multivariate Cox regression for secondary screening

of independently significant factors. Ultimately, the akaike

information criterion (AIC) and receiver operating characteristic

(ROC) curves were employed to identify the optimalmodel, leading

to the construction of a nomogram. Any variable that contradicted

established clinical knowledge was eliminated. We calculated the

variance inflation factor (VIF) to ensure no collinearity among

the selected covariates (collinearity was considered when VIF >

4.0). Additionally, we checked whether the nomogram adhered

to the “10 EPV” guideline (9), which stipulates that the number

of positive samples should be at least ten times the number of

predictive variables.

For internal validation section, we employed 200 rounds of

10-fold cross validation to assess the model performance. The

discrimination of the nomogram was assessed using the area under

the receiver operating curve (AUC) and concordance index (C-

index). The AUCs of the three models were compared using the

DeLong’s test.We assessed the consistency between the nomogram-

predicted and actual outcomes using a calibration curve generated

through bootstrapped resampling (1,000 iterations) and the Brier
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Overview of the research workflow.
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TABLE 1 Demographic and clinical characteristics of the training and validation sets.

Variables Total Training set Validation set P value

n = 1,527 n = 1,130 n = 397

Agea 50.43 [30.19, 67.64] 52.16 [31.18, 67.89] 44.00 [28.00, 65.00] 0.001

Femaleb 424 (27.8) 330 (29.2) 94 (23.7) 0.040

Raceb <0.001

White 997 (65.3) 677 (59.9) 320 (80.6)

Black 55 (3.6) 26 (2.3) 29 (7.3)

Others 475 (31.1) 427 (37.8) 48 (12.1)

Vital signsa

Heart rate, bpm 86.00 [73.00, 100.00] 86.00 [73.00, 99.00] 86.00 [71.00, 102.00] 0.829

SBP, mmHg 131.00 [115.00, 146.00] 131.00 [115.00, 144.00] 134.00 [116.00, 148.00] 0.030

DBP, mmHg 71.00 [61.00, 83.00] 70.00 [60.00, 81.00] 77.00 [65.00, 89.00] <0.001

Respiratory rate, bpm 18.00 [15.00, 21.00] 18.00 [15.00, 21.00] 18.00 [16.00, 21.00] 0.928

Temperature, ◦C 36.78 [36.31, 37.21] 36.83 [36.33, 37.22] 36.70 [36.28, 37.00] <0.001

Laboratory resultsa

Hb, g/dL 13.20 [11.60, 14.40] 12.90 [11.40, 14.20] 13.60 [12.10, 14.80] <0.001

WBC, 109/L 13.20 [9.70, 17.50] 13.30 [9.80, 17.80] 12.80 [9.30, 17.00] 0.128

Platelet, 109/L 225.00 [182.00, 277.00] 226.00 [182.00, 280.00] 223.00 [182.00, 264.00] 0.278

PT, s 12.80 [11.70, 13.90] 12.60 [11.60, 13.50] 13.50 [12.20, 14.50] <0.001

Sodium, mmol/L 140.00 [137.00, 142.00] 140.00 [137.00, 142.00] 139.00 [137.00, 141.00] 0.163

Potassium, mmol/L 3.90 [3.60, 4.30] 3.90 [3.60, 4.30] 3.80 [3.50, 4.20] <0.001

Bicarbonate, mmol/L 23.00 [20.00, 25.00] 23.00 [20.00, 25.00] 23.00 [21.00, 26.00] 0.019

SCr, mg/dL 0.90 [0.70, 1.10] 0.90 [0.70, 1.10] 0.90 [0.73, 1.10] 0.108

Therapeutic interventionsb

MV 862 (56.5) 661 (58.5) 201 (50.6) 0.008

Vasoactive agent 255 (16.7) 218 (19.3) 37 (9.3) <0.001

Furosemide 57 (3.7) 54 (4.8) 3 (0.8) <0.001

Mannitol 169 (11.1) 138 (12.2) 31 (7.8) 0.021

HSA 36 (2.4) 34 (3.0) 2 (0.5) 0.008

Antibiotics 708 (46.4) 651 (57.6) 57 (14.4) <0.001

Surgery for fractureb 167 (10.9) 133 (11.8) 34 (8.6) 0.095

Comorbiditiesb

Hypertension 404 (26.5) 325 (28.8) 79 (19.9) 0.001

COPD 25 (1.6) 17 (1.5) 8 (2.0) 0.646

CHF 73 (4.8) 10 (2.5) 63 (5.6) 0.020

Liver cirrhosis 27 (1.8) 23 (2.0) 4 (1.0) 0.265

Cancer 37 (2.4) 24 (2.1) 13 (3.3) 0.274

Fracture siteb

Vault of skull 342 (22.4) 253 (22.4) 89 (22.4) 1.000

Base of skull 851 (55.7) 783 (69.3) 68 (17.1) <0.001

Fracture featureb

Open fracture 106 (6.9) 83 (7.3) 23 (5.8) 0.352

(Continued)
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TABLE 1 (Continued)

Variables Total Training set Validation set P value

n = 1,527 n = 1,130 n = 397

Closed fracture 1,101 (72.1) 1,039 (91.9) 62 (15.6) <0.001

Hemorrhageb

Subarachnoid hemorrhage 892 (58.4) 716 (63.4) 176 (44.3) <0.001

Subdural hematoma 908 (59.5) 730 (64.6) 178 (44.8) <0.001

Extradural hematoma 601 (39.4) 566 (50.1) 35 (8.8) <0.001

Cerebral laceration and contusionb 181 (11.9) 137 (12.1) 44 (11.1) 0.644

Concussionb 38 (2.5) 22 (1.9) 16 (4.0) 0.035

Loss of consciousnessb 787 (51.5) 729 (64.5) 58 (14.6) <0.001

GCS (point)a 13.00 [7.00, 15.00] 13.00 [9.00, 15.00] 8.00 [3.00, 14.00] <0.001

aExpressed as median [IQR]; bexpressed as n (%).

IQR, interquartile range; bpm, beats/breaths per minute; SBP, systolic blood pressure; DBP, diastolic blood pressure; Hb, hemoglobin; WBC, white blood cell count; PT, prothrombin time; SCr,

serum creatinine; MV, mechanical ventilation; HSA, human serum albumin; COPD, chronic obstructive pulmonary disease; CHF, congestive heart failure; GCS, Glasgow Coma Scale.

score (ranging from 0 to 1, with 0 indicating perfect calibration).

Decision curve analysis (DCA) was conducted to exhibit the

clinical usefulness of the nomogram. Using the nomogram, we

calculated total points for each patient and performed risk

stratification using the X-tile (version 3.6.1) software (10). This

categorization divided patients into low, mid, and high-risk

groups. The survival outcomes of three groups were analyzed

using Kaplan-Meier survival curves and evaluated by log-

rank test.

Results

Patient characteristics

This study included a total of 1,527 records of critically

ill patients with skull fractures, comprising 1,130 patients

from the MIMIC database and 397 patients from the eICU

database (Figure 1). Supplementary Figures S1, S2 showed that

the proportion of all missing values in two groups was less

than 20%. No statistical significance was observed in the data,

either before or after imputation (Supplementary Tables S2, S3).

Moreover, there was no statistically significant difference between

training set and external validation set in terms of heart rate,

respiratory rate, WBC, platelet, sodium, serum creatinine, surgery

for fracture, COPD, liver cirrhosis, cancer, open fracture, and

cerebral laceration and contusion (Table 1). Patients in the training

set had older age [52.16 (95% CI: 31.18–67.89) vs. 44.00 (95% CI:

28.00–65.00), P = 0.001], higher body temperature [36.83 (95%

CI: 36.33–37.22) vs. 36.70 (95% CI: 36.28–37.00), P < 0.001],

a higher mechanical ventilation use rate [661 (58.5%) vs. 201

(50.6%), P = 0.008], a higher vasoactive agent use rate [218

(19.3%) vs. 37 (9.3%), P < 0.001], a higher mannitol use rate [138

(12.2%) vs. 31 (7.8%), P = 0.021], a higher extradural hematoma

rate [566 (50.1%) vs. 35 (8.8%), P < 0.001] than those in the

external validation set. The GCS score in the training set was

also higher.

Construction of the nomogram

In the initial stage, 22 significant (defined as factors with

P values less than 0.05) features (age, DBP, temperature, Hb,

WBC, bicarbonate, platelet, PT, sodium, liver cirrhosis, SCr, MV,

vasoactive agent, furosemide, mannitol, congestive heart failure,

base fracture, subarachnoid hemorrhage, subdural hematoma,

extradural hematoma, loss of consciousness, and GCS) were

selected through univariate Cox hazard analysis (Figure 2). Using

the maximum value of adjusted R2 (value: 8) from BSR, we

identified eight variables (age, temperature, MV, vasoactive agent,

mannitol, sodium, liver cirrhosis, and loss of consciousness)

(Figure 3). Additionally, four variables (age, temperature, mv,

and vasoactive agent) were selected through LASSO regression

using the lambda.1se value (Figure 4). Subsequently, we conducted

a backward stepwise multivariable Cox regression analysis on

the variables of each model to identify factors with P < 0.01

(Table 2). Considering the importance of GCS for neurological

disorders and its ease of accessibility, we have additionally

added this parameter to each model, even though it was

eliminated in the statistical screening process. We compared

the AIC and AUC values among three models (Figure 5). In

the uni-Cox model (nine variables: age, temperature, sodium,

MV, vasoactive agent, mannitol, extradural hematoma, loss of

consciousness and GCS score), the AIC was 2073.121 and

AUC was 0.857 (95% CI: 0.827–0.886); in the BSR model

(nine variables: age, temperature, sodium, MV, vasoactive agent,

mannitol, liver cirrhosis, loss of consciousness and GCS score),

the AIC was 2075.264 and AUC was 0.861 (95% CI: 0.832–

0.889); in the LASSO model (five variables: age, temperature,

mv, vasoactive agent, and GCS), the AIC was 2132.724 and

AUC was 0.838 (95% CI: 0.807–0.868). The AUC of the uni-

Cox model was significantly different from the LASSO model

(DeLong’s test: P = 0.019), but there was no significant

difference between the uni-Cox model and BSR model (DeLong’s

test: P = 0.328). Moreover, the uni-Cox model achieved the

highest sensitivity at 81.5%, with the BSR model delivering
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Characteristics

Age

Female

Race

  Black vs. White

  Others vs. White

Heart rate

SBP

DBP

Respiratory rate

Temperature

Hb

WBC

Platelet

PT

Sodium

Potassium

Bicarbonate

SCr

MV

Vasoactive agent

Furosemide

Mannitol

HSA

Antibiotics

Surgery for fracture

Hypertension

CHF

COPD

Liver cirrhosis

Cancer

Vault of skull

Base of skull

Open fracture

Closed fracture

Subarachnoid hemorrhage

Subdural hematoma

Extradural hematoma

Cerebral laceration and contusion

Concussion

Loss of consciousness

GCS

HR (95%CI)

1.03 (1.02−1.04)

1.36 (0.99−1.86)

0.51 (0.13−2.08)

1.10 (0.81−1.50)

1.00 (0.99−1.00)

1.00 (0.99−1.00)

0.99 (0.98−1.00)

1.00 (0.97−1.03)

0.76 (0.72−0.81)

0.82 (0.77−0.87)

1.02 (1.00−1.04)

1.00 (0.99−1.00)

1.02 (1.01−1.03)

1.09 (1.04−1.13)

1.03 (0.82−1.30)

0.92 (0.88−0.95)

1.23 (1.07−1.42)

4.10 (2.72−6.19)

4.23 (3.12−5.73)

2.43 (1.47−4.02)

2.96 (2.09−4.17)

1.05 (0.43−2.55)

0.91 (0.67−1.23)

1.01 (0.63−1.61)

1.11 (0.80−1.53)

2.16 (1.34−3.48)

1.14 (0.36−3.57)

2.96 (1.51−5.79)

2.12 (0.99−4.51)

1.19 (0.84−1.68)

0.68 (0.50−0.93)

1.40 (0.84−2.35)

0.86 (0.51−1.47)

1.39 (1.00−1.94)

1.72 (1.21−2.43)

1.59 (1.17−2.16)

1.20 (0.78−1.85)

0.28 (0.04−1.99)

2.08 (1.44−2.99)

0.91 (0.87−0.94)

P−value

<0.001

0.059

0.349

0.540

0.254

0.225

0.030

0.988

<0.001

<0.001

0.023

<0.001

<0.001

<0.001

0.786

<0.001

0.004

<0.001

<0.001

0.001

<0.001

0.920

0.522

0.978

0.550

0.002

0.823

0.002

0.052

0.340

0.015

0.199

0.583

0.049

0.002

0.003

0.413

0.203

<0.001

<0.001

0 1 2 3 4 5
HR (95% CI)

FIGURE 2

Features selection by univariate Cox regression.

the highest specificity at 80.4% (Supplementary Table S4). As

a result, the first model with nine factors (age, temperature,

sodium, MV, vasoactive agent, mannitol, extradural hematoma,

loss of consciousness and GCS score) were included in the

nomogram due to its lowest AIC and highest AUC among three

models (Figure 6).
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Features selection by BSR.
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Evaluation and validation of the nomogram

The VIF values for the mentioned variables were all below 1.5,

indicating the absence of collinearity in our model. Our nomogram

demonstrated better accuracy than APSIII for predicting the

mortality at 28 days in the training set [0.857 (95% CI: 0.827–

0.86) vs. 0.761 (95% CI: 0.721–0.802), DeLong’s test: P < 0.001].

However, in the external validation set, no statistical significance

existed [0.853 (95% CI: 0.805–0.900) vs. 0.832 (95% CI: 0.779–

0.885), DeLong’s test: P = 0.521] (Figures 7A, B). The C-index

for the training set was 0.832 (95% CI: 0.765–0.883), and for the

external validation set, it was 0.829 (95% CI: 0.712–0.905). After

10-fold cross internal validation, this model yielded an AUC value

of 0.847 (95% CI: 0.846–0.848) and a C-index of 0.827 (95% CI:

0.826–0.827). Figures 7C, D displayed the calibration curve for

the nomogram and it showed good calibration with a low Brier

score of 0.091 (95% CI: 0.079–0.103) in the training set and 0.093

(95% CI: 0.074–0.111) in the external validation set, indicating the

nomogram-predicted probability was highly consistent with the

actual probability. The DCA curves (Figures 7E, F) revealed that

the nomogram provided more net benefit than APSIII.

Risk stratification based on the nomogram

Patients were categorized into low, mid, and high-risk groups

based on total points calculated using the nomogram. Those with

total points below 166.1 were classified as low-risk, while those

with scores between 166.1 and 191.1 were considered as mid-

risk. Those exceeding 191.1 points were allocated to the high-risk

group (Supplementary Figure S3). Kaplan-Meier survival curves

indicated that higher points were associated with lower survival

probabilities (log-rank test: P < 0.001) (Supplementary Figure S4).

The cut-off points for risk stratification demonstrated similar

discrimination in the training set and the external validation set.

Discussion

Skull fracture is a complex condition that not only disrupts the

continuity of cranial bones but is also closely linked to various brain

injuries. Those injuries can lead to symptoms ranging from mild

alterations in consciousness to severe unconsciousness and even

death. In the most severe cases, diffuse damage and swelling can

affect the entire brain (11). In the UK, traumatic brain injury (TBI)

stands as a leading cause of mortality and disability in individuals

under 40 years old, presenting a significant public health challenge

(12). Skull fracture, as a clinical event that is relatively easier to

diagnose, provide clinicians with amore direct point for assessment

and intervention. In emergency medical contexts, the utilization of

our model can assist doctors in optimizing resource allocation and

enhancing patient management efficiency. The prediction of fatal

skull fractures is a field that has not been extensively researched,

and our study contributes additional insights to the comprehension

and management of skull fractures. In this retrospective study,

we evaluated the records of 1,527 adult patients diagnosed with

skull fracture from two databases. Nine predictive factors (age,

temperature, sodium, MV, vasoactive agent, mannitol, extradural

hematoma, loss of consciousness and GCS score) were selected

to craft this nomogram. Our findings indicated that age, body

temperature, and serum sodium levels were the top three features,

carrying the most substantial weight.

Age plays a crucial role in determining the prognosis of various

diseases (13–15). After adjusting formultiple factors in our analysis,

older age was found to be an independent prognostic factor,
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TABLE 2 Final results of backward stepwise multivariate Cox analysis in three models.

Variables Uni-Cox BSR LASSO

HR (95%CI) P value HR (95%CI) P value HR (95%CI) P value

Age 1.04 (1.03–1.05) <0.001 1.04 (1.03–1.05) <0.001 1.04 (1.03–1.04) <0.001

Temperature 0.80 (0.74–0.86) <0.001 0.79 (0.73–0.84) <0.001 0.83 (0.78–0.89) <0.001

Hemoglobin 0.91 (0.85–0.99) 0.026

PT 1.02 (1.00–1.03) 0.027

Sodium 1.07 (1.03–1.11) <0.001 1.07 (1.03–1.11) <0.001

Bicarbonate 0.95 (0.91–0.99) 0.012

MV 2.86 (1.80–4.57) <0.001 2.85 (1.80–4.51) <0.001 3.57 (2.28–5.58) <0.001

Vasoactive agent 1.77 (1.25–2.49) 0.001 2.10 (1.50–2.94) <0.001 2.27 (1.63–3.17) <0.001

Furosemide 1.67 (0.97–2.88) 0.065

Mannitol 3.19 (2.19–4.66) <0.001 3.01 (2.07–4.36) <0.001

Liver cirrhosis 2.50 (1.24–5.04) 0.010 3.05 (1.53–6.06) 0.002

Base of skull 0.74 (0.54–1.02) 0.066

Extradural hematoma 1.82 (1.32–2.52) <0.001

Loss of consciousness 2.29 (1.56–3.38) <0.001 2.16 (1.48–3.14) <0.001

Uni-Cox, univariate Cox regression; BSR, best subset regression; LASSO, least absolute shrinkage and selection operator; HR, hazard ratio; CI, confidence interval; PT, prothrombin time; MV,

mechanical ventilation.
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FIGURE 5

Comparison among three models. (A) Comparison of AIC values among three models. (B) Comparison of AUC values among three models.

exerting a relatively strong influence in the present nomogram.

Growing evidence suggests that aging is associated with a decline in

the body’s immune function, known as “immunosenescence” (16).

This weakened immune function can lead to a diminished capacity

to defend against infections, which is a significant contributor to

mortality in brain trauma patients (17, 18). Additionally, aging

increase the vulnerability of microvessels, raising the risk of

intracranial hemorrhage after skull fracture (19). Progressive brain

atrophy, a characteristic of aging, leads to decreased brain tissue

elasticity, increasing the risk of injuries such as diffuse axonal

injury, acute subdural hematoma, and others after brain trauma

(20, 21). Elderly patients also tend to have more comorbidities,

further worsening their prognosis (22). For older patients, it is

crucial to be vigilant about their heightened risk of mortality. Early

detection and intervention in age-related health issues are key in

improving outcomes for these patients.

There is inconsistency in the existing research findings

regarding the impact of temperature on the prognosis of TBI
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FIGURE 6

Nomogram for predicting the risk of 28-day mortality in patients with skull fracture.

patients. Some theories posit that hyperthermia, by increasing

vascular permeability and promoting edema and inflammation,

can lead to secondary brain injury in TBI cases. Conversely, lower

temperature may slow down post-injury oxidative stress, cellular

apoptosis, and inflammatory responses, providing neuroprotective

effects for TBI patients (23). However, results from a phase

III randomized trial showed no significant improvement in

the prognosis of severe pediatric TBI with clinically induced

hypothermia (24). Our nomogram highlights that body

temperature carries significant weight, and as it decreased, the

patient’s prognosis worsens. There were several reasons that may

be responsible for our findings. One possible explanation was that

when body temperature drops, it can cause vasoconstriction and

bradycardia, affecting the perfusion and oxygen delivery to vital

organs (25). Another reason was perhaps that hypothermia can

result in coagulation abnormalities, heightening the risk of bleeding

(26). Therefore, we recommend that patients with skull fracture

should be closely monitored for body temperature, and further

exploration on this issue for such patients is deemed necessary.

Nearly 27% of critically ill patients suffer from various extents

of hypernatremia during their hospitalization in the ICU (27).

Our findings indicated that increased serum sodium levels were

associated with a higher risk of death in patients with skull

fractures. Hypernatremia has been proven in medical research to

be closely related to poor prognosis. In a study involving COVID-

19 patients, patients with hypernatremia had a 2.34–3.05 times

higher risk of death compared to those with normal sodium levels

(28). Additionally, in a study of cancer patients, patients with

hypernatremia had significantly shorter survival times compared

to those with normal sodium levels, and their hospital stays

were also significantly longer (29). This electrolyte disorder not

only reflects an impairment of the body’s water balance but can

also lead to serious neurological symptoms in patients. Causes

of hypernatremia in patients with neurological disorders include

the use of hyperosmotic fluids, limited access to free water, or

conditions such as diabetes insipidus (30). Hu et al. found that

hypernatremia was an independent prognostic factor for critically

neurological patients (odds ratio: 1.192, 95% CI: 1.135–1.252, P

< 0.001) (31). Cho et al. (32) found that hypernatremia had a

strong independent association with poor long-term neurological

outcomes in survivors of cardiac arrest.

Intracranial hemorrhage plays a pivotal role in evaluating the

severity of head trauma. Research indicates that skull fracture is

an independent risk factor for intracranial hemorrhage, which

can negatively impact the neurological prognosis of patients with

TBI (33). Extradural hemorrhage is the most common subtype of

hemorrhage occurring in underage patients after skull fractures

(34, 35). Skull fracture can tear blood vessels near the skull, leading
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FIGURE 7

Discrimination, calibration, and clinical usefulness of the nomogram in the training and validation sets. (A) ROC curves of the nomogram and APSIII in
the training set. (B) ROC curves of the nomogram and APSIII in the external validation set. (C) Calibration curve of the nomogram in the training set.
(D) Calibration curve of the nomogram in the external validation set. (E) Decision curve analysis of the nomogram and APSIII in the training set. (F)
Decision curve analysis of the nomogram and APSIII in the external validation set.

to extradural hematoma (36). Our results indicated that extradural

hematoma significantly influences the prognosis of skull fracture

patients, causing brain tissue compression, increased intracranial

pressure, and the risk of neural structure injury (37). This

finding highlights the critical need for immediate identification of

extradural hematoma in these patients. Understanding the grave

implications of extradural hematoma in skull fractures enables

clinicians to allocate resources more effectively and improve patient

outcomes through targeted interventions.

In the management of brain injury patients, preventing

hypoxia and hypotension is paramount.Mechanical ventilation and

vasoactive agents are often used for this purpose. Our nomogram

revealed that mechanical ventilation and vasoactive agents use

were associated with higher mortality. In the ICU, patients who

require mechanical ventilation and vasoactive drugs from the

first day tend to have more severe conditions compared to those

who do not need these interventions. The most common site

of infection in patients with TBI admitted to ICU is respiratory

system (38). Mechanical ventilation is considered a risk factor for

ventilator-associated pneumonia, and the risk for TBI patients is

approximately 42% (39). In order to achieve blood pressure and

cerebral perfusion pressure (CPP) targets, we administer vasoactive

drugs, such as norepinephrine (a widely used vasopressor in the

worldwide). However, there is evidence pointing to its potential

to induce vasospasm after intracranial hemorrhage, leading to a

decrease in cerebral oxygenation (40). It’s important to note that the

association between vasoactive drugs use and increased mortality

does not imply that these drugs are fatal. They are essential in

specific circumstances, but their use should be carefully considered

and monitored to ensure the best treatment outcomes and patient

safety. Further research is needed to explore the relationship and

potential mechanisms between vasoactive drugs and the prognosis

of patients with skull fracture.

Increased intracranial pressure (ICP) is strongly linked to poor

neurological outcomes and mortality in acute TBI patients (41). In

clinical practice, mannitol is routinely employed to address elevated

intracranial pressure. Nonetheless, in certain studies related to TBI,

the early use of mannitol was found to be independently associated

with a higher occurrence of AKI (42). Mannitol’s diuretic action

may lead to hypovolemia and hypoperfusion, posing a significant

risk for increased morbidity and mortality in patients with brain

pathology (43). Our analysis showed that mannitol use was

associated with poor patient outcomes. Further studies are needed

to investigate the mechanisms behind this association and explore

other factors that may influence the correlation between mannitol

usage and mortality risk. Finally, our analysis also revealed that

the loss of consciousness contributed to an augmented risk of

28-day mortality. The occurrence of consciousness loss in these
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patients may indicate more severe brain damage and consequent

neurological dysfunction. This severe neurological dysfunction

may subject them to a greater incidence of complications and

risks during their hospitalization, ultimately raising the probability

of death.

In this study, by employing univariate Cox regression, BSR,

LASSO, and backward stepwise multivariable Cox regression, our

analysis effectively reduced the risk of overfitting and underfitting.

Moreover, the availability of all variables in the final model

guarantees the practicality and clinical utility of this nomogram.

However, there are limitations to consider. Not all patients’

diagnostic information in the public databases was consistently

well-defined, impacting the precision of our results, particularly

in cases with ambiguous diagnoses like “unspecified” fracture

types. Additionally, the limited data in the databases result in the

exclusion of critical factors that could impact patients’ survival,

such as detailed information on injury causes and processes, which

could have informed fracture site analysis and severity assessment.

For issues with inconsistent diagnostic information, we can build

separate models for patients with different diagnoses in the future.

For ambiguous diagnosis issues, we can try to exclude these patients

during data preprocessing. For the challenge of limited data,

developing models based on large datasets from multiple centers

is a viable approach. We believe that implementing these measures

will enhance the stability and generalizability of our model.

Conclusion

In summary, we have successfully developed and validated

the first prognostic model that integrates nine clinical features

to effectively predict the 28-day mortality risk in ICU patients

with skull fractures. Early intervention in modifiable variables

in the model, such as body temperature and serum sodium,

can significantly improve the prognosis in skull fracture patients.

Previous studies relating to skull fracture emphasized risk factors

but didn’t combine them into a full model. Our research addressed

this gap by developing a comprehensive model that integrates

several variables, potentially aiding clinicians in making well-

informed decisions regarding the management of skull fractures.
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