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Objective: The aim of this study is to investigate the clinical value of radiomics 
based on non-enhanced head CT in the prediction of hemorrhage transformation 
in acute ischemic stroke (AIS).

Materials and methods: A total of 140 patients diagnosed with AIS from January 
2015 to August 2022 were enrolled. Radiomic features from infarcted areas on 
non-enhanced CT images were extracted using ITK-SNAP. The max-relevance 
and min-redundancy (mRMR) and the least absolute shrinkage and selection 
operator (LASSO) were used to select features. The radiomics signature was then 
constructed by multiple logistic regressions. The clinicoradiomics nomogram 
was constructed by combining radiomics signature and clinical characteristics. All 
predictive models were constructed in the training group, and these were verified 
in the validation group. All models were evaluated with the receiver operating 
characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA).

Results: Of the 140 patients, 59 experienced hemorrhagic transformation, while 
81 remained stable. The radiomics signature was constructed by 10 radiomics 
features. The clinicoradiomics nomogram was constructed by combining 
radiomics signature and atrial fibrillation. The area under the ROC curve (AUCs) 
of the clinical model, radiomics signature, and clinicoradiomics nomogram for 
predicting hemorrhagic transformation in the training group were 0.64, 0.86, 
and 0.86, respectively. The AUCs of the clinical model, radiomics signature, and 
clinicoradiomics nomogram for predicting hemorrhagic transformation in the 
validation group were 0.63, 0.90, and 0.90, respectively. The DCA curves showed 
that the radiomics signature performed well as well as the clinicoradiomics 
nomogram. The DCA curve showed that the clinical application value of the 
radiomics signature is similar to that of the clinicoradiomics nomogram.

Conclusion: The radiomics signature, constructed without incorporating 
clinical characteristics, can independently and effectively predict hemorrhagic 
transformation in AIS patients.

KEYWORDS

radiomics, hemorrhagic transformation, acute ischemic stroke, recanalization, AIS, 
ECASS II

OPEN ACCESS

EDITED BY

Slaven Pikija,  
Christian Doppler Clinic,  
University Hospital Salzburg, Austria

REVIEWED BY

Salvador Pedraza,  
Hospital Clinic of Barcelona, Spain
Xindao Yin,  
Nanjing Medical University, China

*CORRESPONDENCE

Yuan-zhe Li  
 ctmr@fjmu.edu.cn  

Yi Wang  
 wangyi@fjmu.edu.cn

†These authors have contributed equally to 
this work

RECEIVED 14 September 2023
ACCEPTED 08 January 2024
PUBLISHED 01 February 2024

CITATION

Huang Y-h, Chen Z-j, Chen Y-f, Cai C, Lin Y-y, 
Lin Z-q, Chen C-n, Yang M-l, Li Y-z and 
Wang Y (2024) The value of CT-based 
radiomics in predicting hemorrhagic 
transformation in acute ischemic stroke 
patients without recanalization therapy.
Front. Neurol. 15:1255621.
doi: 10.3389/fneur.2024.1255621

COPYRIGHT

© 2024 Huang, Chen, Chen, Cai, Lin, Lin, 
Chen, Yang, Li and Wang. This is an open-
access article distributed under the terms of 
the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 01 February 2024
DOI 10.3389/fneur.2024.1255621

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2024.1255621﻿&domain=pdf&date_stamp=2024-02-01
https://www.frontiersin.org/articles/10.3389/fneur.2024.1255621/full
https://www.frontiersin.org/articles/10.3389/fneur.2024.1255621/full
https://www.frontiersin.org/articles/10.3389/fneur.2024.1255621/full
https://www.frontiersin.org/articles/10.3389/fneur.2024.1255621/full
https://www.frontiersin.org/articles/10.3389/fneur.2024.1255621/full
mailto:ctmr@fjmu.edu.cn
mailto:wangyi@fjmu.edu.cn
https://doi.org/10.3389/fneur.2024.1255621
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2024.1255621


Huang et al. 10.3389/fneur.2024.1255621

Frontiers in Neurology 02 frontiersin.org

Introduction

Acute ischemic stroke (AIS) is characterized by a high incidence, 
high fatality rate, and high disability rate, making it one of the leading 
causes of death worldwide (1). Hemorrhagic transformation (HT) is 
a common and serious complication of acute ischemic stroke, with 
reported incidences ranging from 10 to 40% in the literature (2). The 
European Cooperative Acute Stroke Study II (ECASS II) classifies HT 
into four distinct types: (a) hemorrhagic infarct type 1 (HI1), 
characterized as small spot hemorrhages along the infarct margin; (b) 
hemorrhagic infarct type 2 (HI2), defined by patchy or confluent 
spotting hemorrhages within the infarct area without significant mass 
effect; (c) parenchymal hematoma type 1 (PH1), involving hematomas 
less than 30% of the infarcted area with a mild mass effect; and (d) 
parenchymal hematoma type 2 (PH2), which includes hematomas 
exceeding 30% of the infarcted area and presenting a substantial mass 
effect (3). Notably, the PH2 type of HT has an alarmingly high 
in-hospital mortality rate of 52.3% (2). HT frequently leads to the 
deterioration of neurological functions, potentially resulting in life-
threatening conditions (4), and significantly impacts patient 
prognosis (5).

Most hemorrhagic transformations are caused by the natural 
course of AIS, but they can also result from thrombolysis, 
interventional thrombectomy, and other recanalization therapies (6). 
Recanalization therapy such as thrombolysis and interventional 
thrombectomy is currently considered to be  the most effective 
treatment for acute ischemic stroke, which has been proven to 
significantly improve the neurological impairment and prognosis of 
patients (7, 8). However, because of its narrow treatment time window, 
not many patients can receive recanalization therapy. Therefore, for 
the vast majority of patients who have not received recanalization 
treatment, it is more important to predict the occurrence of 
hemorrhagic transformation in the early stages.

Early identification of patients at high risk of hemorrhagic 
transformation will lead clinicians to reduce the dose of antithrombotic 
drugs, such as aspirin, adopt more neutral treatment options, and 

conduct more frequent clinical evaluations and monitoring (9). 
Furthermore, the re-examination time of cranial CT can 
be  appropriately shortened and the frequency of cranial CT can 
be increased to detect the hemorrhagic transformation as soon as 
possible, which has guiding value for the subsequent adjustment of the 
treatment plan in clinical practice (10). For patients with a lower risk 
of hemorrhagic transformation, clinicians can take more active 
treatment plans to appropriately reduce the frequency of clinical 
monitoring and cranial CT examination so that patients can get more 
clinical benefits and reduce treatment costs. Therefore, the technical 
method that can accurately predict the hemorrhagic transformation 
in AIS patients is helpful for clinicians to make individual and accurate 
clinical treatment plans.

In recent years, radiologic features, such as the high-density sign 
of the middle cerebral artery, low density on CT, or abnormal 
diffusion-weighted imaging (DWI) signals on admission, and very low 
cerebral blood volume, have been considered predictive of 
hemorrhagic transformation. These may change the clinical 
management plan of patients and help clinicians in early prevention 
before hemorrhagic transformation occurs (2). However, the current 
research shows that it is not enough to rely on these radiologic features 
to predict hemorrhagic transformation, so it is necessary to explore a 
more accurate and objective model to predict the hemorrhagic 
transformation of AIS. It is also pointed out in the literature that the 
predictive model of hemorrhagic transformation also has the value of 
prognosis evaluation to a certain extent (11).

A variety of machine learning algorithms, combined with medical 
imaging, have been used in the diagnosis and prognosis of AIS. A 
multicenter study showed that the attention-gated U-Net deep 
learning algorithm with DWI and MRI perfusion as inputs could 
predict the final infarct volume, independent of the reperfusion state, 
and significantly overlap with the basic performance of the fluid-
attenuated inversion recovery (FLAIR) sequence obtained 3–7 days 
after onset (12). Machine learning algorithms, including regularized 
logistic regression, linear support vector machines, and random 
forests, are superior to existing pre-treatment scoring methods in 
predicting the clinical outcome of patients with macrovascular 
occlusion undergoing thrombectomy. The AUC of the machine 
learning model is 0.85–0.86, while the AUC of the pre-treatment score 
is 0.71–0.77 (13). Previous studies have found that the hemorrhagic 
transformation after AIS was related to clinical factors such as 
hypertension, age, hyperglycemia, and stroke severity (14, 15). The use 
of a machine learning algorithm to combine medical image 
quantitative information with clinical information can effectively 
predict hemorrhagic transformation.

In this study, multiple machine learning models were constructed 
to predict hemorrhagic transformation after AIS based on the 
radiomics features of the infarcted area in CT plain scan images. Then 
the optimal machine learning model and clinical factors were 
combined to construct a nomogram for the risk assessment of 
hemorrhagic transformation in individualized AIS patients.

Abbreviations: AIS, acute ischemic stroke; ECASS II European Cooperative Acute 

Stroke Study II; DWI, diffusion-weighted imaging; FLAIR, fluid-attenuated inversion 

recovery; ECASS, European Cooperative Acute Stroke Study; TIA, transient ischemic 

attack; NIHSS, National Institute of Health stroke scale; TOAST, Trial of Org 10,172 in 

Acute Stroke Treatment; ROI, region of interest; ICC, intra-class correlation 

coefficient; ROC, receiver operating characteristic; DCA, decision curve analysis; 

AUCs, area under the ROC curve; GLCM, gray level co-occurrence matrix; GLSZM, 

gray level size zone matrix; GLRLM, gray level run length matrix; NGTDM, 

neighboring gray tone difference matrix; GLDM, gray level dependence matrix; 

HI1, hemorrhagic infarct type 1; HI2, hemorrhagic infarct type 2; LASSO, least 

absolute shrinkage and selection operator; mRMR, max-relevance and 

min-redundancy; PH1, parenchymal hematoma type 1; PH2, parenchymal 

hematoma type 2.
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 • The research object are these acute ischemic stroke patients who without 
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Materials and methods

Patients

The study was conducted following the Declaration of Helsinki 
and was approved by the ethics committees of participating hospitals, 
with the requirement for informed consent waived.

This retrospective, two-center study collected data on patients 
with AIS from January 2015 to August 2022. The diagnostic criteria 
for AIS and hemorrhagic transformation are based on the criteria 
established by the European Cooperative Acute Stroke Study (ECASS) 
(15). The inclusion criteria were as follows: (a) the time of onset was 
more than 1 day and less than 14 days; (b) responsible lesions could 
be seen in cranial CT; (c) patients did not undergo recanalization 
therapies such as intravenous thrombolysis or interventional 
thrombectomy due to their late arrival at the hospital, occurring more 

than 24 h after the onset of the stroke; and (d) re-examination of CT 
in 7 days. The exclusion criteria were as follows: (a) there is a history 
of cerebral hemorrhage, cerebrovascular malformation, brain tumor, 
brain trauma, or brain surgery; (b) participating in other studies and 
receiving additional drugs or treatment; (c) image artifacts or other 
factors affect image quality; and (d) AIS has occurred for more than 
14 days. According to stratified sampling, the enrolled datasets were 
divided into a training group and a validation group at 7:3. The flow 
chart of the research design is displayed in Figure 1.

Clinical characteristics

The following clinical characteristics were collected for patients with 
AIS: age, gender, previous vascular risk factors (such as hypertension, 
diabetes, hyperlipidemia, and smoking), atrial fibrillation, past stroke, 

FIGURE 1

Diagram of the research design.
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transient ischemic attack (TIA), blood pressure, blood glucose, blood 
lipids, previously used drugs, the National Institute of Health stroke scale 
(NIHSS) score at admission, and a head CT plain scan before admission. 
Using relevant diagnostic tests, such as carotid ultrasound, and based on 
the outcomes of these tests, categorize the stroke subtypes as per the Trial 
of Org 10172 in Acute Stroke Treatment (TOAST) classification. A head 
CT plain scan was performed on the seventh day after treatment, and the 
CT was re-examined at any time when the symptoms of stroke worsened. 
According to the re-examination of the head CT, the patients were 
divided into a hemorrhagic transformation group and a non-hemorrhagic 
transformation group.

CT data acquisition

All head CT plain scan images were obtained from six multi-slice 
CT scanners at the Department of CT/MRI, The Second Affiliated 
Hospital of Fujian Medical University (Brilliance 64 or Brilliance iCT, 
Incisive 60, Philips Healthcare; SOMATOM Definition DS CT, 
Siemens Healthcare; Optima CT520 or Optima CT620, GE 
Healthcare). The scanning parameters were as follows: tube voltage: 
120 kVp; tube current: Optima CT520 226 mA, Brilliance 64,228 mA, 
Incisive 60,230 mA, automatic tube current modulation was using by 
other CT scanner; field of view (FOV): FOV was adapted to the size 
of the patient; matrix size: 512 × 512; section thickness: 5 mm; section 
interval: 5 mmNAC regimen.

Cerebral infarction region segmentation

ITK-SNAP (version 3.8.0) was used for the manual segmentation of 
the region of interest (ROI) (1). The segmentation was carried out along 
the edge of the infarcted area on each slicer of the CT image (Figure 2). 
Reader 1, who was blinded to the patient information, segmented all 
ROIs. Then, all ROIs were segmented again by the same radiologist after 
1 month to evaluate the intra-observer agreement. Another neurologist 
segmented all cases over the same period to evaluate the inter-observer 
agreement. The intra-class correlation coefficient (ICC) was applied to 
assess the reproducibility of radiomic feature extraction, and a two-way 
mixed-effects model was used to calculate the ICC [17]. In this study, 
radiomic features of ICC > 0.90 were selected and considered a mark of 
satisfactory intra- and inter-observer agreement.

Radiomic feature extraction

A total of 1,316 radiomic features were extracted from the cerebral 
infarction region using the AK application belonging to the PHIgo 
workstation (Version 1.5.0 R), which can be roughly divided into the 
following categories: first-order statistics, shape-based, gray level 
co-occurrence matrix (GLCM), gray level size zone matrix (GLSZM), 
gray level run length matrix (GLRLM), neighboring gray tone 
difference matrix (NGTDM), and gray level dependence 
matrix (GLDM).

Classifier modeling

Max-relevance and min-redundancy (mRMR) and the least 
absolute shrinkage and selection operator (LASSO) were successively 
used for radiomic feature selection. Based on the heuristic scoring 
criteria, radiomic features with ICCs >0.90 were ranked by the mRMR 
method according to their relevance-redundancy index, and the 
top  10 features with high relevance were retained. The optimized 
subset of features was then selected from the retained features by the 
LASSO classifier. The radiomics signature was then constructed by 
multiple logistic regressions based on the selected radiomic features. 
Rad-score was calculated by summing the selected features weighted 
by their coefficients.

To assess the disparities in clinical characteristics between the 
hemorrhagic transformation group and the non-hemorrhagic 
transformation group, we conducted both univariate and multivariate 
analyses. Subsequently, we identified independently significant clinical 
characteristics and utilized them to develop a predictive model for 
hemorrhagic transformation using logistic regression. Additionally, 
we constructed a comprehensive clinicoradiomics nomogram that 
integrated the radiomic features derived from the radiomics signature 
with the clinical characteristics identified from the logistic 
regression model.

Statistical analysis

The clinical characteristics between the hemorrhagic 
transformation group and the non-hemorrhagic transformation group 
were evaluated using the two independent sample t-test or 

FIGURE 2

ROI segmentation using ITK-SNAP. (A,B) ROIs of the infarct area at different axial levels. (C) A 3D-ROI of the infarcted region. 3D three-dimensional, CT 
computed tomography, ROI region of interest.
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Mann–Whitney U-test accordingly. The predictive performance of 
machine learning models was evaluated using the receiver operating 
characteristic (ROC) curve. Differences in area under the ROC curves 
(AUCs) between the models were evaluated using Delong’s test. In 
addition, only the machine learning model with the highest AUC for 
each sequence was used for Delong’s test. p < 0.05 were considered 
significant. The data were analyzed using SPSS 25 (version 25), R 
software (version 4.0.4), and MATLAB (version 2022a).

Results

Demographics

A total of 140 patients with AIS were selected for this study. All 
patients were assigned randomly to the training group (n = 99) or the 
validation group (n = 41). In this cohort of AIS patients, 59 cases were 
identified as having undergone hemorrhagic transformation, while 
81 cases remained stable. Within the hemorrhagic transformation 
group, 21 cases were classified as HI1, 15 cases as HI2, 11 cases as 
PH1, and 12 cases as PH2. The hemorrhagic transformation of AIS is 
displayed in Figure 3. Of the 140 patients, 86 were men and 54 were 
women. The mean age of the patients was 65.2 ± 12.2 years, range 
39–93 years. In patients with hemorrhagic transformation and those 
without, significant differences were observed in fasting blood 
glucose (FBG), serum cholesterol, and NIHSS scores, as well as the 
presence of atrial fibrillation (p  < 0.05). However, there were no 
significant differences between these two groups in terms of age, 
blood pressure upon admission, previous medications, diabetes, high 
cholesterol, hypertension, sex, smoking habits, history of stroke, or 
transient ischemic attack (p  > 0.05). Table  1 displays the clinical 
characteristics of the subjects in both the training and validation 
groups.Radiomic signature construction.

Of the 1,116 radiomic features, 923 features with intra- and inter-
observer ICCs >0.80 were retained. mRMR eliminates redundant and 
irrelevant features for stable radiomic features, and 20 features were 
retained. Based on the training group, the 10 most significant features 
were selected by LASSO to build the radiomic signature. The 10 most 

significant feature names and corresponding coefficients are displayed 
in Figure 4.

Diagnostic ability of radiomic signature

In the training group, the AUC value of the radiomic signature 
was 0.86 (95% CI: 0.79–0.93). In the validation group, the AUC value 
of the radiomic signature was 0.90 (95% CI 0.80–1.00). Further 
information can be found in Table 1 and Figure 5.

The diagnostic ability of nomogram

Multivariable logistic regression analysis revealed that the 
Rad-score and atrial fibrillation were significant independent factors 
for AIS with hemorrhage transformation (Figure  6). The clinical 
model was also constructed using multivariate logistic regression 
analysis. For the clinical model, the AUCs with the training group and 
the validation group were 0.64 (95% CI 0.56–0.72) and 0.63 (95% CI 
0.50–0.76), respectively. For the clinicoradiomics nomogram, the 
AUCs with the training group and the validation group were 0.86 
(95% CI 0.78–0.93) and 0.90 (95% CI 0.80–1.00), respectively (Table 2; 
Figure 5). The calibration curve indicated a strong level of agreement 
between the actual and predicted diagnoses in both groups (Figure 7). 
The results of the Hosmer–Lemeshow test were not statistically 
significant, with a p-value of 0.33 for the training group and 0.15 for 
the validation group. Decision curve analysis (DCA) curves showed 
that the radiomics signature and clinicoradiomics nomogram were 
significantly better than the clinical model in predicting AIS with 
hemorrhage transformation (Figure 8).

Discussion

In recent years, imaging has played an important role in the 
diagnosis, treatment, and prognosis of cerebrovascular diseases. 
Hemorrhagic transformation is closely related to the poor prognosis 

FIGURE 3

CT images depicting patients with acute ischemic stroke prior to (A) and subsequent to (B) hemorrhagic transformation.
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FIGURE 4

Most predictive subset of radiomics feature was chosen, along with the corresponding coefficients.

of patients with AIS, and it is also an important reference index for 
clinical treatment (16). Previous studies have established models 
based on imaging features to predict the risk of hemorrhagic 

transformation in patients with AIS after thrombolysis or 
interventional thrombectomy and showed good predictive efficiency 
(17–19). However, as far as we are aware, there are few studies on 

TABLE 1 Clinical characteristics of patients.

Clinical factors Entire group 
(n =  140)

Training group 
(n =  99)

Validation group 
(n =  41)

p-value

Age, years 65.7 (12.1) 66.2 (11.8) 64.6 (12.7) 0.513

Blood pressure on admission 146.0 (24.8) 146.6 (25.8) 146.3 (23.0) 0.468

FBG 7.0 (2.5) 7.2 (2.5) 6.6 (2.4) 0.001

Serum cholesterol 4.6 (1.5) 4.5 (1.4) 4.7 (1.6) 0.018

NIHSS 9.7 (7.7) 9.8 (7.5) 9.7 (6.8) 0.851

Atrial fibrillation 27 (19.2) 19 (19.2) 8 (19.5) < 0.001

Diabetes 30 (21.4) 28 (28.3) 2 (4.9) 0.571

High cholesterol 1 (0.7) 0 (0.0) 1 (2.4) 1.000

Hypertension 65 (46.4) 46 (46.5) 19 (46.3) 0.114

Sex (male) 86 (61.4) 61 (61.6) 25 (61.0) 0.430

Smoking 27 (19.3) 20 (20.2) 7 (17.1) 0.550

Stroke history 25 (17.9) 16 (16.2) 9 (22.0) 0.122

Volumetry in cm3 18.86 (9.37) 18.63 (9.54) 18.91 (9.15) 0.719

TOAST categorization

Large-artery atherosclerosis 78 (55.71) 55 (55.56) 23 (56.10) 0.953

Cardioembolism 26 (18.57) 18 (18.18) 8 (19.51) 0.854

Small-vessel occlusion 23 (16.43) 16 (16.16) 7 (17.07) 0.895

Stroke of other determined etiology 8 (5.71) 6 (6.06) 2 (4.88) 0.784

Stroke of undetermined etiology 5 (3.60) 4 (4.04) 1 (2.44) 0.642

For continuous variables, the data are expressed as mean (SD). For categorical variables, they are presented as count (percentage). NIHSS, National Institute of Health stroke scale; TOAST, 
Trial of Org 10,172 in acute stroke treatment; SD, standard deviation; FBG, fasting blood glucose.

https://doi.org/10.3389/fneur.2024.1255621
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Huang et al. 10.3389/fneur.2024.1255621

Frontiers in Neurology 07 frontiersin.org

predicting the risk of hemorrhagic transformation in patients who do 
not receive recanalization therapy, such as thrombolysis or 
interventional thrombectomy, which account for the majority of AIS 
cases, based on imaging characteristics.

Similar to previous studies, we also found that atrial fibrillation 
was an independent risk factor for hemorrhagic transformation (20, 
21). As is widely known, the cardiogenic emboli formed by atrial 
fibrillation are usually large and can easily block large arteries such as 
the internal carotid artery and middle cerebral artery, leading to large-
area cerebral infarctions. A large number of studies show that large-
area cerebral infarction is more likely to occur than hemorrhagic 
transformation. The mechanism may be that when a large cerebral 
infarction occurs, brain tissue ischemia and hypoxia lead to severe 
cytotoxic edema, which exacerbates the disruption of the blood–brain 

barrier, thus leading to the occurrence of hemorrhagic transformation 
(17, 22). However, the results of this study showed that the radiomics 
signature was less disturbed by clinical factors, and the predictive 
efficiency was significantly better than the traditional clinical model.

In this study, the clinical model, radiomics signature, and 
clinicoradiomics nomogram were constructed to predict hemorrhagic 
transformation in AIS patients who did not receive thrombolysis or 
interventional thrombectomy. The results showed that the head 
CT-based radiomics signature and clinicoradiomics nomogram both 
had good predictive performance, and the validation accuracy was 
0.83 and 0.88, respectively. However, according to the DCA curve, the 
clinical application value of the clinicoradiomics nomogram is 
consistent with that of the radiomics signature. In the absence of 
detailed clinical data and hematological indicators at the initial stage 

FIGURE 5

ROC curves of radiomics signature in the training group (A) and validation group (B).

FIGURE 6

Clinicoradiomics nomogram.
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FIGURE 7

Calibration curves of radiomics signature in the training group (A) and validation group (B).

of the disease, the risk of hemorrhagic transformation can be predicted 
only according to the radiomic features based on CT images, which 
provides an important reference for clinicians to early evaluate the risk 
of hemorrhagic transformation and make a preliminary treatment 
plan. Early and accurate identification of high-risk AIS patients with 
hemorrhagic transformation can enable clinicians to carry out more 
stringent clinical monitoring and head CT re-examination in the early 
stages to prevent hemorrhagic transformation and improve the 

prognosis of patients (9). In addition, according to the predicted 
results of the model, the risk of hemorrhagic transformation in 
patients with AIS can be stratified to help clinicians make individual 
and accurate clinical treatment plans.

A limitation of this study is the small number of patients and its 
retrospective nature. However, to validate these preliminary findings, 
it is imperative to conduct further prospective investigations. The 
development of automatic segmentation for cerebral hemorrhage is 
urgently needed. This study only focused on AIS patients with 
hemorrhagic transformation, which results in selection bias and 
lower power.

In short, early prediction of hemorrhagic transformation is 
very important, and the radiomics signature, which was 
constructed without clinical characteristics, can independently 
predict hemorrhagic transformation in AIS effectively. This 
radiomics signature may change the clinical management plan of 
patients, improve clinical treatment decisions, and benefit 
more patients.

Data availability statement

The original contributions presented in the study are included in 
the article/supplementary material, further inquiries can be directed 
to the corresponding authors.

TABLE 2 Diagnostic performance of the radiomic signature in training and validation groups.

Models Groups AUC 95% CI Accuracy Sensitivity Specificity

Radiomics signature Training group 0.86 0.79–0.93 0.79 0.79 0.79

Validation group 0.90 0.80–1.00 0.83 0.88 0.79

Clinicoradiomics nomogram Training group 0.86 0.78–0.93 0.81 0.71 0.81

Validation group 0.90 0.80–1.00 0.88 0.80 0.94

Clinical model Training group 0.64 0.56–0.72 0.69 0.36 0.79

Validation group 0.63 0.50–0.76 0.68 0.35 0.75

AUC, area under the curve; CI confidence interval.

FIGURE 8

Decision curve analysis curve.
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