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model for 1-year postoperative 
recovery in patients with lumbar 
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Background: The aim of this study is to develop a predictive model utilizing deep 
learning and machine learning techniques that will inform clinical decision-
making by predicting the 1-year postoperative recovery of patients with lumbar 
disk herniation.

Methods: The clinical data of 470 inpatients who underwent tubular 
microdiscectomy (TMD) between January 2018 and January 2021 were 
retrospectively analyzed as variables. The dataset was randomly divided into a 
training set (n = 329) and a test set (n = 141) using a 10-fold cross-validation 
technique. Various deep learning and machine learning algorithms including 
Random Forests, Extreme Gradient Boosting, Support Vector Machines, Extra 
Trees, K-Nearest Neighbors, Logistic Regression, Light Gradient Boosting 
Machine, and MLP (Artificial Neural Networks) were employed to develop 
predictive models for the recovery of patients with lumbar disk herniation 1  year 
after surgery. The cure rate score of lumbar JOA score 1  year after TMD was 
used as an outcome indicator. The primary evaluation metric was the area under 
the receiver operating characteristic curve (AUC), with additional measures 
including decision curve analysis (DCA), accuracy, sensitivity, specificity, and 
others.

Results: The heat map of the correlation matrix revealed low inter-feature 
correlation. The predictive model employing both machine learning and deep 
learning algorithms was constructed using 15 variables after feature engineering. 
Among the eight algorithms utilized, the MLP algorithm demonstrated the best 
performance.

Conclusion: Our study findings demonstrate that the MLP algorithm provides 
superior predictive performance for the recovery of patients with lumbar disk 
herniation 1  year after surgery.
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Introduction

Lumbar disk herniation (LDH) is a common and frequently 
occurring disease that is the most common cause of back and leg pain, 
resulting in great suffering such as reduced ability to work and learn, 
reduced quality of life, and even disability (1). Surgery, especially tubular 
microscopic discectomy (TMD), has become the conventional treatment 
for LDH in recent years (2). TMD is a minimally invasive method to 
remove the herniated disk from the posterior approach using surgical 
microscopic instruments. However, there are several factors that can 
affect postoperative recovery (3). Clinical predictive modeling (CPM) is 
a statistical model based on multiple pathologies of the disease that can 
predict the risk of certain future outcomes in patients with certain 
characteristics (4, 5). Building statistical models requires a large amount 
of clinical data, and machine learning (ML) algorithms can accurately 
process the raw data, analyze the connections between important data, 
and make accurate decisions (6). With the widespread use of machine 
learning, deep learning, as an important branch of machine learning, 
has advantages in automatic feature learning and function simulation 
construction (7–9). Due to the complexity and size of clinical data, using 
deep learning models and machine learning can improve the accuracy 
of models and predictions in data processing, as well as in building 
clinical models (10, 11). The goal of this study is to develop a predictive 
model based on deep learning and machine learning for the recovery of 
patients with lumbar disk herniation 1 year after surgery.

Methods

All data for this study were obtained from the Department of 
Neurosurgery, Fujian Medical University Union Hospital. The study 
recorded the medical variables of patients who were hospitalized and 
underwent TMD between January 2016 and January 2018. The data 
included patients’ basic information, medical history, physical 
examination, preoperative test results, and preoperative scores. 
Retrospective analysis was conducted, and deep learning and machine 
learning algorithms were used to establish a predictive model for the 
1-year postoperative recovery of patients with lumbar disk herniation.

Inclusion criteria

(1) Age of inclusion: 12–85 years old; (2) The prominent lumbar 
segments are: L3/4, L4/5, or L5/S1, including cases of combined 
protrusions involving two or three segments. (3) have typical sciatica 
with or without lumbar pain and other symptoms; (4) those who have 
been ineffective after standardized conservative treatment for more 
than 3 months and seriously affect their lives, or those with severe 
pain, cauda equina dysfunction, muscle strength loss, muscle atrophy, 
and other symptoms; (5) the straight leg raising test on the affected 
side is less than or equal to 70°; (6) confirmed by CT and MRI lumbar 
disk protrusion, and the location of the protrusion matches the 
corresponding neurological symptoms; and (7) receiving standardized 
unilateral paraspinal tubular microdiscectomy (TMD) technology 
treatment and a consistent physical therapy regimen (12, 13).

For more information about this study and the standardized 
surgical procedures at our institution, please refer to our previously 
published study (14).

Exclusion criteria

(1) Those with missing imaging data or unable to follow up as 
required; (2) those with segmental lumbar instability suggested by 
frontal and lateral lumbar X-ray and hyperextension and hyperflexion; 
(3) those with other serious physical, psychological, or mental 
diseases; (4) those with rheumatic immune diseases that may cause 
similar symptoms; and (5) those who are participating in other 
clinical trials.

Data collection

To construct and validate the prognostic model, we retrospectively 
collected clinical data related to patients with LDH who met the 
inclusion and exclusion criteria. The potential predictors included 42 
variables related to patients’ medical history, examination, and 
preoperative test results, with the cure rate of the lumbar Japanese 
Orthopedic Association (JOA) score 1 year after TMD as the 
outcome measure.

The following variables were included as factors in the analysis: 
age, gender, height, weight, body mass index (BMI), high-risk 
occupation (occupations that require prolonged sedentary or high-
intensity physical activity), family history (with first-degree relatives 
affected by LDH), history of lumbar trauma, duration of disease, 
duration of preoperative conservative treatment, duration of 
preoperative pain medication, low back pain, underlying diseases 
(hypertension, diabetes), history of smoking, history of alcohol abuse, 
angle of preoperative physical examination (as measured by the 
straight leg raise test), sensory impairment, muscle strength 
classification of the affected limb, Barthel scale, serum creatine kinase 
(CK), and lumbar degeneration, associated lumbar disk herniation, 
American Society of Anesthesiologists (ASA) grading, Oswestry 
Disability Index (ODI) score, preoperative low back pain and leg pain 
numerical rating scale (NRS) scores, the number of surgical segments 
as determined by the JOA, surgical time, and intraoperative bleeding. 
These are shown in Table 1. The cure rate score of the lumbar JOA 
1 year after TMD surgery was also used as an outcome measure. 
Further details on these factors are provided in 
Supplementary material 1.

Outcome indicators

Cure rate scores for lumbar JOA score at 1 year after TMD surgery 
were calculated using the same method as before the operation. The 
cure rate was calculated as follows:
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This rate reflects the improvement of lumbar spine function 
before and after treatment, and is utilized to evaluate the clinical 
efficacy of the intervention. A cure rate of 100% indicates 
complete recovery, while a cure rate of greater than 60% is 
considered to be significantly effective. Improvement rates falling 
within the range of 25–60% are categorized as effective, while 
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TABLE 1 Descriptive statistics of different influencing factors in a study 
population grouped by whether the improvement in lumbar JOA score 
was >60% 1  year after TMD.

Variables
Total 
(470)

JOA  ≤  60% 
(271)

JOA  >  60% 
(199)

p-
value

Age 51.81 ± 14.36 54.31 ± 14.02 48.40 ± 14.14 <0.001

Preop_JOA 13.11 ± 3.43 12.75 ± 3.09 13.59 ± 3.80 <0.001

Preop_ODI 48.29 ± 20.24 50.66 ± 19.00 45.05 ± 21.43 <0.001

Intraop 

bleeding
22.73 ± 13.56 24.23 ± 15.84 20.68 ± 9.28 <0.001

Surgery time 2.89 ± 0.75 2.99 ± 0.72 2.76 ± 0.77 <0.001

SD 1.37 ± 0.19 1.38 ± 0.16 1.35 ± 0.22 0.2883

Gender 0.5189

  Female 208(44.26) 116(42.80) 92(46.23)

  Male 262(55.74) 155(57.20) 107(53.77)

Height <0.001

  <40 102(21.70) 68(25.09) 34(17.09)

  40 ~ <60 159(33.83) 72(26.57) 87(43.72)

  ≥60 209(44.47) 131(48.34) 78(39.20)

Weight 0.1359

  <50 39(8.30) 23(8.49) 16(8.04)

  <60 131(27.87) 62(22.88) 69(34.67)

  <70 180(38.30) 113(41.70) 67(33.67)

  <80 82(17.45) 49(18.08) 33(16.58)

  <90 26(5.53) 16(5.90) 10(5.03)

  ≥90 12(2.55) 8(2.95) 4(2.01)

BMI <0.001

  <18.5 7(1.49) 3(1.11) 4(2.01)

  <24 193(41.06) 90(33.21) 103(51.76)

  <28 228(48.51) 153(56.46) 75(37.69)

  ≥28 42(8.94) 25(9.23) 17(8.54)

History of 

lower back 

trauma

1.0000

  No 452(96.17) 261(96.31) 191(95.98)

  Yes 18(3.83) 10(3.69) 8(4.02)

Hypertension 0.1546

  No 374(79.57) 209(77.12) 165(82.91)

  Yes 96(20.43) 62(22.88) 34(17.09)

Diabetes 0.0838

  No 428(91.06) 241(88.93) 187(93.97)

  Yes 42(8.94) 30(11.07) 12(6.03)

Alcohol use <0.001

  No 406(86.38) 221(81.55) 185(92.96)

  Yes 64(13.62) 50(18.45) 14(7.04)

Smoking 0.3361

  No 361(76.81) 213(78.60) 148(74.37)

  Yes 109(23.19) 58(21.40) 51(25.63)

(Continued)

TABLE 1 (Continued)

Variables
Total 
(470)

JOA  ≤  60% 
(271)

JOA  >  60% 
(199)

p-
value

ASA 0.3566

  1 305(64.68) 171(62.73) 134(67.34)

  2 152(32.34) 90(33.21) 62(31.16)

  3 13(2.77) 10(3.69) 3(1.51)

Family history 0.2410

  No 419(89.15) 246(90.77) 173(86.93)

  Yes 51(10.85) 25(9.23) 26(13.07)

Preop_

Painkiller
0.0014

  No 295(62.77) 153(56.46) 142(71.36)

  Yes 175(37.23) 118(43.54) 57(28.64)

Preop_

Hormone

0.4476

  No 438(93.19) 250(92.25) 188(94.47)

  Yes 32(6.81) 21(7.75) 11(5.53)

CTT 0.1501

  ≤6 290(61.70) 162(59.77) 104(64.32)

  ≤12 43(9.15) 22(8.12) 21(10.55)

  ≤24 75(15.96) 53(19.56) 22(11.06)

  >24 62(13.19) 34(12.55) 28(14.07)

WLPT 0.0053

  ≤6 201(42.98) 112(41.32) 89(45.23)

  ≤12 76(15.96) 43(15.87) 33(16.08)

  ≤24 43(9.15) 15(5.54) 28(14.07)

  >24 150(31.91) 101(37.27) 49(24.62)

Lumbago 0.0587

  No 113(24.04) 56(20.66) 57(28.64)

  Yes 357(75.96) 215(79.34) 142(71.36)

SLETA 0.6709

  <40 157(33.40) 93(34.32) 64(32.16)

  40–<60 202(42.98) 118(43.54) 84(42.21)

  ≥60 111(23.62) 60(22.14) 51(25.63)

DOS 0.2122

  Nothing 307(65.32) 181(66.79) 126(63.32)

  Mild 137(29.15) 72(26.57) 65(32.66)

  Obvious 26(5.53) 18(6.64) 8(4.02)

MS 0.4210

  1 2(0.43) 2(0.74) 0

  2 1(0.21) 1(0.37) 0

  3 5(1.06) 4(1.48) 1(0.50)

  4 91(19.15) 54(19.93) 37(18.09)

  5 371(78.94) 210(77.49) 161(80.90)

Babinski 0.9225

  Negative 459(97.66) 264(97.42) 195(97.99)

(Continued)
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TABLE 1 (Continued)

Variables
Total 
(470)

JOA  ≤  60% 
(271)

JOA  >  60% 
(199)

p-
value

  Positive 11(2.34) 7(2.58) 4(2.01)

CK 0.4958

  ≤198 431(91.70) 246(90.77) 185(92.96)

  >198 39(8.30) 25(9.23) 14(7.04)

Number <0.001

  1 129(27.45) 44(16.24) 85(42.71)

  2 292(62.13) 199(73.43) 93(46.73)

  3 29(6.17) 14(5.17) 15(7.54)

  4 16(3.40) 12(4.43) 4(2.01)

  5 4(0.85) 2(0.74) 2(1.01)

SSN 0.2220

  1 460(97.87) 263(97.05) 197(98.99)

  2 8(1.70) 7(2.58) 1(0.50)

  3 2(0.43) 1(0.37) 1(0.50)

Protrusion 

direction

<0.001

  Left 346(73.62) 224(82.66) 122(61.31)

  Right 124(26.38) 47(17.34) 77(38.69)

Collapse 0.7114

  No 392(83.40) 228(84.13) 164(82.41)

  Yes 78(16.60) 43(15.87) 35(17.59)

LS 1.0000

  No 450(95.74) 259(95.57) 191(95.98)

  Yes 20(4.26) 12(4.43) 8(4.02)

Osteoporosis 0.0284

  No 424(90.21) 237(87.45) 187(93.97)

  Yes 46(9.79) 34(12.55) 12(6.03)

Calcification <0.001

  No 126(26.81) 44(16.24) 82(41.21)

  Yes 344(73.19) 227(83.76) 117(58.79)

Sagittal_Disc_

Herniation_

Pos

0.0053

  −3 3(0.64) 0 3(1.51)

  −2 21(4.47) 8(2.95) 13(6.53)

  −1 313(66.60) 198(73.06) 115(57.79)

  0 117(24.89) 59(21.77) 58(29.15)

  1 13(2.77) 5(1.85) 8(4.02)

  2 3(0.64) 1(0.37) 2(1.01)

Location <0.001

  1 117(24.89) 52(19.19) 65(32.66)

  2 305(64.89) 201(74.17) 104(52.26)

  3 44(9.36) 17(6.27) 27(13.57)

  4 4(0.85) 1(0.37) 3(1.51)

(Continued)

TABLE 1 (Continued)

Variables
Total 
(470)

JOA  ≤  60% 
(271)

JOA  >  60% 
(199)

p-
value

Grade <0.001

  1 101(21.49) 41(15.13) 60(30.15)

  2 309(65.74) 201(74.17) 108(54.27)

  3 60(12.77) 29(10.70) 31(15.58)

Modic change <0.001

  0 105(22.34) 39(14.39) 66(33.17)

  1 244(51.91) 176(64.94) 68(34.17)

  2 55(11.70) 26(9.59) 29(14.57)

  3 66(14.04) 30(11.07) 36(18.09)

Pfirrmann <0.001

  1 2(0.43) 0 2(1.01)

  2 29(6.17) 10(3.69) 19(9.55)

  3 102(21.70) 32(11.81) 70(35.18)

  4 286(60.85) 191(70.48) 95(47.74)

  5 51(10.85) 38(14.02) 13(6.53)

Lumbago_

NRS

<0.001

  0–2 104(22.13) 35(12.92) 69(34.67)

  3–4 241(51.28) 166(61.25) 75(37.69)

  5–6 90(19.15) 52(19.19) 38(19.10)

  7–8 35(7.45) 18(6.64) 17(8.54)

Leg_Pain_

NRS

<0.001

  0–2 19(4.04) 9(3.32) 10(5.03)

  3–4 116(24.68) 47(17.34) 69(34.67)

  5–6 291(61.91) 193(71.22) 98(49.25)

  7–8 44(9.36) 22(8.12) 22(11.06)

High risk 

occupation

<0.001

  No 148(31.49) 47(17.34) 101(50.75)

  Yes 322(68.51) 224(82.66) 98(49.25)

Numbness 

after

0.4124

  No 315(67.02) 177(65.31) 138(69.35)

  Yes 155(32.98) 94(34.69) 61(30.65)

Reduction of 

lumbago

<0.001

  No 339(72.13) 148(54.61) 191(95.98)

  Yes 131(27.87) 123(45.39) 8(4.02)

Reduction of 

leg

<0.001

  No 349(74.26) 151(55.72) 198(99.50)

  Yes 121(25.74) 120(44.28) 1(0.50)

JOA 

improvement

<0.001

(Continued)
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those below 25% are classified as ineffective. To process the data, 
patients with an improvement rate of lumbar JOA score > 60% 
(significant efficacy or cure) 1 year after TMD were recorded as 1, 
while patients with an improvement rate of lumbar JOA 
score ≤ 60% (effective but not significant or ineffective) were 
recorded as 0.

Feature engineering

Feature engineering is a process that involves transforming 
raw data into features that are more suitable for modeling. By 
doing so, the resulting features are able to capture relevant 
patterns, thereby improving the predictive accuracy of machine 
learning and deep learning models on unseen  
data (15).

In this study, the feature engineering process began by 
transforming raw data into more suitable features for modeling 
through data preprocessing and feature selection. Missing values 
were addressed using mean interpolation (16, 17), and the data 
were standardized using Z-score normalization to ensure 
uniformity, with all features having a mean of 0 and a standard 
deviation of 1. Further, before applying the features to eight 
different predictive algorithms, feature selection was carried out 
using the Mann–Whitney U test, retaining only those features with 
p values less than 0.05. To reduce redundancy, a Spearman 
correlation matrix heatmap was used to identify highly correlated 
features (|ρ| > 0.9), which were eliminated, except for one retained 
to maintain descriptive power. The final selection utilized LASSO 
regression with 10-fold cross-validation to identify features with 
non-zero coefficients essential for modeling.

Spearman ρ correlation matrix heat map

We conducted a correlation analysis of the data using a Spearman 
ρ correlation matrix heat map (18). The Spearman correlation matrix 
heat map is suitable for analyzing data that do not conform to a 
normal distribution, as well as data that contain categorical variables. 
It can measure the correlation between any two variables, with a value 
of +1 indicating a total positive correlation, −1 indicating a total 
negative correlation, and 0 indicating no correlation. The results of the 
correlation analysis can be visually represented using a heat map, 
which uses color to indicate the magnitude of the correlation, making 
it easier and more intuitive to interpret the results.

Machine learning and deep learning

We employed a systematic framework based on machine learning 
and deep learning to construct prognostic models. To this end, 
we  divided the data into a training dataset for developing the 
predictive model and a test dataset for evaluating the accuracy of the 
model (19). The data were randomly divided into two groups in a ratio 
of 70:30, with 70% (n = 329) of the samples designated as the training 
set for developing the predictive model, and 30% (n = 141) of the 
samples designated as the test set for evaluating the accuracy of the 
model. Once the training set was defined, an optimal model was 
developed using eight different machine learning algorithms, 
including Random Forests, Extreme Gradient Boosting, Support 
Vector Machines, Extra Trees, K-Nearest Neighbors, Logistic 
Regression, Light Gradient Boosting Machine, and MLP (Artificial 
Neural Networks) from scikit-learning (version: 0.18) in python.

To optimize the accuracy of the predictive models, a grid search 
was conducted on the hyperparameters for each of the eight ML 
algorithms used. A 10-fold cross-validation was employed, whereby 
the training data set was divided into 10 equally-sized folds, and the 
model was created using 90% of the data in each fold, with the 
remaining data used to evaluate the model’s accuracy. The process was 
repeated 10 times, with each fold being used for one of the 10 training 
steps (20, 21). The area under the receiver operating characteristic 
(ROC) curve, also known as area under the curve (AUC), was used as 
the primary accuracy metric during the grid search (22). The AUC is 
a performance measure that evaluates the strengths and weaknesses 
of the learner and is widely used in clinical settings to assess the 
performance of ML algorithms on test datasets (23). In addition to the 
AUC, Accuracy, AUC, Sensitivity, Specificity, PPV, NPV, Precision, 
Recall, and F1 values were also reported to provide a comprehensive 
picture of the algorithm’s performance (22).

The modeling and prediction process for deep learning is similar 
to traditional machine learning, with the main difference being that 
deep learning is end-to-end and can automatically extract high-level 
features, greatly reducing the reliance on feature engineering in 
traditional machine learning (7).

Statistical analysis

Continuous variables were presented as mean ± standard 
deviation, while categorical variables were presented as frequencies 
and percentages. Group comparisons for categorical variables were 
conducted using the chi-square test or Fisher’s exact test, whereas 

TABLE 1 (Continued)

Variables
Total 
(470)

JOA  ≤  60% 
(271)

JOA  >  60% 
(199)

p-
value

  No 25(5.32) 25(9.23) 0

  Yes 445(94.68) 246(90.77) 199(100.00)

ODI 

difference

<0.001

  No 81(17.23) 66(24.35) 15(7.54)

  Yes 389(82.77) 205(75.65) 184(92.46)

Reoperation 0.0012

  No 454(96.60) 255(94.10) 199(100.00)

  Yes 16(3.40) 16(5.90) 0

Recurrence <0.001

  No 442(94.04) 243(89.67) 199(100.00)

  Yes 28(5.96) 28(10.33) 0

CTT, Conservative treatment time; WLPT, Waist leg pain time, SLETA, Straight leg elevation 
test angle of affected limb, DOS, Disturbance of sensation; MS, Muscle strength; Number, 
Number of salient segments; SSN, Surgical segment number; Segment, Number of operative 
segments; Collapsa, Collapse of intervertebral space; LS, Lumbar spondylolisthesis; 
Calcification, Calcification of ligaments hyperplasia of bone; SD, Sagittal diameter; Position, 
Sagittal disk herniation horizontal position; Location, Transected herniated disk location; 
Grade, Grading of transected disk herniation; Numbness after, Numbness in the year after 
surgery; Reduction of lumbago, Reduction of lumbago NRS 1 year after surgery ≧2; 
Reduction of leg, Reduction of leg pain NRS 1 year after surgery>2; JOA improvement, JOA 
improvement rate 1 year after surgery ≧ 25; ODI difference, ODI difference 1 year after 
surgery>20; Proximal lumbar process, Proximal lumbar process within 1 year after surgery; 
Recurrence, Recurrence occurred within 1 year after surgery.
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differences between groups for quantitative variables were assessed 
using the t-test or Mann–Whitney U test. Statistical analyses were 
conducted at a significance level of 0.05 (two-tailed) using Python 
(version 3.9, http://www.python.org). A two-sided p value <0.05 was 
deemed statistically significant.

Results

General

A total of 470 patients meeting the inclusion and exclusion criteria 
were enrolled in this study. All patients underwent TMD surgery 
between January 2018 and January 2021 and were followed up for 1 year. 
In order to develop predictive models, 42 variables were collected, 
including gender, age, BMI, medical history, and preoperative indicators.

Correlation matrix heat map

Figure 1 presents the Spearman ρ correlation matrix heatmap, 
which is utilized to construct the model’s independent variables. This 

heatmap reveals that there is a medium to strong correlation between 
several pairs of variables: weight and gender ρ = 0.507, BMI and weight 
ρ = 0.662, Lumbago-NRS and Lumbago ρ = 0.474, Preop_JOA and 
leg_pain_NRS ρ = −0.439, and Preop_JOA and Preop_ODI ρ = −0.633. 
The absolute strength of all other correlations did not exceed 0.40 
(│ρ│ ≤ 0.40).

Machine learning and deep learning

After performing data preprocessing and segmenting the dataset 
into training and test sets, this study employed eight algorithms to 
develop the predictive model. Finally, 15 variables after Feature 
Engineering (Figure 2C) were used to input DL and ML algorithm, 
including high-risk occupation, preop_ODI, calcification, and other 
12 variables. Each algorithm was also subjected to a hyperparameter 
grid search based on a 10-fold cross-validation and after finding the 
optimal hyperparameters, the models were used to 
generate predictions.

As shown in Figure 2 and Table 2, MLP exhibits the highest AUC 
values (Train AUC = 0.872; Test AUC = 0.840), also demonstrating 
superior performance across other metrics such as an Accuracy of 

FIGURE 1

The Spearman ρ correlation matrix heat map used to construct the model independent variables. A large number of highly correlated features are 
eliminated.
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0.8380, Sensitivity of 0.8040, and Specificity of 0.8600 in test cohort 
(Figures 3A,B). Additionally, Figure 3C illustrates the superior clinical 
decision-making capability of MLP (represented by the blue curve) at 
thresholds greater than 40% (DCA), where it demonstrates a higher 
net benefit compared to other machine learning algorithms. The 
Probability Calibration Curve also supports our decision-making 
process (Figure 3D). Performance comparisons of each model are 
detailed in Table 2.

Discussion

In the field of surgical treatment for disk herniation, there have 
been numerous studies investigating the efficacy of different surgical 
approaches. Specifically, research has focused on the differences in 
treatment outcomes between TMD and other approaches, such as 
open microdiscectomy (OMD). Studies have demonstrated that 
TMD and OMD yield comparable treatment outcomes, but TMD 
has a significant advantage in reducing intraoperative bleeding (24). 
Additionally, research has shown that TMD and conventional 
microdiscectomy (CMD) produce similar outcomes 1 year after 

surgery, with TMD not having any advantage in preventing 
reoperation or dural tears (25). However, limited discussion has 
been dedicated to patient recovery 1 year after TMD. This study 
provides a novel approach to addressing the lack of research in this 
area by implementing machine learning and deep learning 
techniques to develop predictive models for patient recovery 1 year 
after TMD.

A limited amount of central data can also be  used for deep 
learning predictive analysis and may be useful for clinical decision 
making (26). Its comparison of logistic regression models with deep 
learning models shows the superiority of deep learning performance. 
Our prediction results demonstrate the advantages of MLP models, 
especially in terms of AUC values. Of course, close results were 
obtained for LR, RF, etc., which may be related to the small amount of 
data, coming from a single clinical study center.

Logistic regression without regularization may be criticized for 
underfitting, but L2-regularized logistic regression effectively mitigates 
the risk of overfitting by incorporating a regularization factor or 
penalty factor, denoted as λ, which multiplies the sum of the squares 
of all parameters. This reduces the impact of insignificant parameters 
on the predictive outcome.

FIGURE 2

The LASSO and MSE in feature engineering and the 15 variables used to input into eight algorithms. (A) The least absolute shrinkage and selection 
operator (LASSO); (B) A 10-fold-validated mean squared error (MSE); (C) feature weights: variables-score histogram derived from LASSO-selected 
features.
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TABLE 2 The performance of each model evaluated by accuracy, AUC, sensitivity, specificity, PPV, NPV, Precision, Recall, and F1.

Models Cohort Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Precision Recall F1

MLP Train 0.7840 0.8720 0.8347–0.9088 0.7550 0.8050 0.7500 0.8100 0.7500 0.7550 0.7530

RandomForest Train 0.7620 0.8450 0.8044–0.8854 0.6290 0.8650 0.7830 0.7510 0.7830 0.6290 0.6980

LR Train 0.7740 0.8350 0.7910–0.8783 0.7550 0.7890 0.7350 0.8070 0.7350 0.7550 0.7450

SVM Train 0.8690 0.9340 0.9064–0.9615 0.9160 0.8320 0.8090 0.9280 0.8090 0.9160 0.8590

XGBoost Train 0.8690 0.9380 0.9143–0.9619 0.9580 0.8000 0.7870 0.9610 0.7870 0.9580 0.8640

ExtraTrees Train 0.7560 0.8350 0.7920–0.8779 0.7970 0.7240 0.6910 0.8220 0.6910 0.7970 0.7400

KNN Train 0.7530 0.8900 0.8573–0.9223 0.5100 0.9410 0.8690 0.7130 0.8690 0.5100 0.6430

LightGBM Train 0.7800 0.8820 0.8476–0.9166 0.8740 0.7080 0.6980 0.8790 0.6980 0.8740 0.7760

MLP Test 0.8380 0.8400 0.7651–0.9143 0.8040 0.8600 0.7890 0.8710 0.7890 0.8040 0.7960

RandomForest Test 0.7750 0.8310 0.7649–0.8974 0.8040 0.7560 0.6820 0.8550 0.6820 0.8040 0.7380

LR Test 0.7960 0.8300 0.7550–0.9049 0.7860 0.8020 0.7210 0.8520 0.7210 0.7860 0.7520

SVM Test 0.7960 0.8160 0.7409–0.8912 0.8210 0.7790 0.7080 0.8700 0.7080 0.8210 0.7600

XGBoost Test 0.7180 0.8080 0.7381–0.8776 0.8390 0.6400 0.6030 0.8590 0.6030 0.8390 0.7010

ExtraTrees Test 0.7610 0.8050 0.7294–0.8808 0.8390 0.7090 0.6530 0.8710 0.6530 0.8390 0.7340

KNN Test 0.7320 0.7990 0.7266–0.8706 0.6610 0.7790 0.6610 0.7790 0.6610 0.6610 0.6610

LightGBM Test 0.7180 0.7970 0.7257–0.8681 0.6790 0.7440 0.6330 0.7800 0.6330 0.6790 0.6550
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Wang et al. (27) previously utilized a stepwise logistic analysis 
to filter parameters and select the optimal independent variable 
based on the minimum Akaike information criterion (AIC) as 
input for their machine-learning algorithm. Although this study 
did not utilize this particular machine-learning algorithm, 
we standardized our data through Z-score normalization. This will 
reduce the influence of outliers on the model fit. While the 
correlation matrix heat map is a valuable tool, we acknowledge that 
the screening process could lead to the exclusion of crucial 
independent variables. Moreover, the selection of the step 
probability directly influences the screening outcome. If the step 
probability is set too low, a substantial number of independent 
variables may be omitted. On the other hand, increasing the step 
probability could still result in the loss of important independent 
variables due to the limited amount of available data, thereby 
rendering the method meaningless.

Prognostic models offer clinicians an effective means of conveying 
quantitative risk predictions to patients, thus mitigating information 
asymmetry to some extent. Accurate determination of surgical 
indications using such models would enable clinicians to focus their 

attention on tasks that cannot be automated. Unfortunately, achieving 
this goal is currently challenging. The primary obstacle lies in the 
absence of external model validation, which is necessary to ensure its 
generalizability to other datasets. The solution may involve conducting 
multicenter studies to improve the predictive accuracy and 
generalizability of prognostic models.

In addition to the limitations of data volume, this study has several 
noteworthy shortcomings. (1) The retrospective nature of the study 
may have introduced selection bias, undermining the generalizability 
of the findings. (2) Despite our attempts to collect data on a wide range 
of variables that may impact the improvement rate of JOA 1 year after 
surgery, there is a possibility that important variables were overlooked. 
(3) Due to hardware constraints and the need for machine learning 
expertise, large-scale generalization of our findings is currently 
difficult to achieve. (4) The sample size in this study is relatively small, 
and as a single-center study, additional more data and more centers in 
the future might enhance our results. Finally, in this study, we used 
retrospective data for predictive modeling, and in the future, we need 
to add prospective data for further analysis, which will enhance our 
clinical evidence.

FIGURE 3

Relevant prediction results of the eight models. (A) ROC curve of the train cohort; (B) ROC curve of the test cohort; (C) DCA curve of the test cohort; 
and (D) Probability calibration curve of the test cohort.
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