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Latest advances in mechanisms of 
epileptic activity in Alzheimer’s 
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Alzheimer’s disease (AD) and dementia with Lewy bodies (DLB) stand as the 
prevailing sources of neurodegenerative dementia, impacting over 55 million 
individuals across the globe. Patients with AD and DLB exhibit a higher prevalence 
of epileptic activity compared to those with other forms of dementia. Seizures can 
accompany AD and DLB in early stages, and the associated epileptic activity can 
contribute to cognitive symptoms and exacerbate cognitive decline. Aberrant 
neuronal activity in AD and DLB may be caused by several mechanisms that are 
not yet understood. Hyperexcitability could be a biomarker for early detection 
of AD or DLB before the onset of dementia. In this review, we compare and 
contrast mechanisms of network hyperexcitability in AD and DLB. We examine 
the contributions of genetic risk factors, Ca2+ dysregulation, glutamate, AMPA 
and NMDA receptors, mTOR, pathological amyloid beta, tau and α-synuclein, 
altered microglial and astrocytic activity, and impaired inhibitory interneuron 
function. By gaining a deeper understanding of the molecular mechanisms that 
cause neuronal hyperexcitability, we might uncover therapeutic approaches to 
effectively ease symptoms and slow down the advancement of AD and DLB.
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Introduction

Hyperexcitability can be defined as an increased likelihood of firing at the level of the 
neuron from certain stimuli and/or due to decreased firing thresholds (1). This heightened 
excitability can clinically present itself as epilepsy. As per the official definition by the 
International League Against Epilepsy (2), “Epilepsy is characterized by repeated spontaneous 
bursts of neuronal hyperactivity and high synchronization in the brain.” Epilepsy has emerged 
as a significant global health issue, impacting approximately 70 million individuals worldwide 
(3–6). Hyperactivity occurs in neuronal populations or brain regions when the frequency of 
activity is above normal rates. Brain activity is normally regulated with precise timing and 
regional specificity, however, high synchronization or hypersynchrony denotes an increase in 
neuronal coordination and cellular firing (7, 8). While epilepsy can manifest in any stage of 
life, it is notably more common among individuals aged 65 years and older, reaching a 
prevalence of 5.7% in the Cardiovascular Health Study (9). Increasingly, there is a growing 
recognition that late-onset epilepsy, starting after age 55, is often not an isolated condition but 

OPEN ACCESS

EDITED BY

Helen E. Scharfman,  
Nathan Kline Institute for Psychiatric 
Research, United States

REVIEWED BY

Melissa Barker-Haliski,  
University of Washington, United States
Holly Hunsberger,  
Rosalind Franklin University of Medicine and 
Science, United States

*CORRESPONDENCE

Keith Vossel  
 kvossel@mednet.ucla.edu

RECEIVED 14 August 2023
ACCEPTED 12 January 2024
PUBLISHED 08 February 2024

CITATION

Vicente M, Addo-Osafo K and Vossel K (2024) 
Latest advances in mechanisms of epileptic 
activity in Alzheimer’s disease and dementia 
with Lewy Bodies.
Front. Neurol. 15:1277613.
doi: 10.3389/fneur.2024.1277613

COPYRIGHT

© 2024 Vicente, Addo-Osafo and Vossel. This 
is an open-access article distributed under 
the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Review
PUBLISHED 08 February 2024
DOI 10.3389/fneur.2024.1277613

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2024.1277613﻿&domain=pdf&date_stamp=2024-02-08
https://www.frontiersin.org/articles/10.3389/fneur.2024.1277613/full
https://www.frontiersin.org/articles/10.3389/fneur.2024.1277613/full
https://www.frontiersin.org/articles/10.3389/fneur.2024.1277613/full
https://www.frontiersin.org/articles/10.3389/fneur.2024.1277613/full
mailto:kvossel@mednet.ucla.edu
https://doi.org/10.3389/fneur.2024.1277613
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2024.1277613


Vicente et al. 10.3389/fneur.2024.1277613

Frontiers in Neurology 02 frontiersin.org

is frequently linked to neurodegenerative diseases like Alzheimer’s 
disease (AD) and dementia with Lewy bodies (DLB) (10–12).

AD constitutes 60–70% of all dementia cases and is characterized 
by a gradual decline in memory and other cognitive functions. At 
present, there are more than 57 million people globally living with 
dementia, and this figure is predicted to double every two decades, 
reaching 74.7 million by 2030 (Alzheimer’s Disease International). The 
buildup of extracellular clusters of amyloid beta (Aβ) plaques and 
intracellular neurofibrillary tangles (NFTs) consisting of 
hyperphosphorylated tau protein in the cortical and limbic regions of 
the human brain signifies the disease’s pathological features (13–17). 
The accumulation of Aβ plaques and NFTs is connected with notable 
loss of neurons and synapses, along with neuroinflammation (18). In 
this context, there is a growing number of studies showing that 
patients with AD exhibit epilepsy, which may be  a harbinger or 
indicator of the disease (11, 19–24). The prevalence of epilepsy in 
patients with AD is around 10 to 22% (21, 25, 26), while epileptiform 
activity, with varying characteristics, can be detected in patients with 
AD and with or without diagnosed epilepsy (23, 27–34). Seizures can 
begin in preclinical or clinical stages of AD (20, 23, 35, 36). The 
preponderance of seizures in AD lacks motor characteristics, 
rendering their diagnosis complex and potentially leading to an 
underreporting of seizures (23, 36, 37). Some studies suggest seizures 
can increase the production and deposition of Aβ and 
hyperphosphorylated tau in the brain and cause a decline in cognition 
in patients with AD (24, 38–41). Late-onset epilepsy increases risk of 
AD by around three-fold (12, 42). Notably, AD predisposes patients 
to develop epilepsy and late-onset epilepsy predisposes patients to 
develop AD highlighting the bidirectionality between diseases 
(11, 19).

DLB ranks as the second most frequent neurodegenerative 
dementia among individuals above the age of 65 (43–45). Clinical 
criteria encompass cognitive fluctuations, visual hallucinations, rapid 
eye movement sleep behavior disorder, and parkinsonism (45, 46). 
The neuropathology of DLB is marked by neuronal Lewy bodies and 
Lewy neurites, consisting of aggregates of α-synuclein that impact the 
brainstem along with extensive limbic and neocortical areas (47). This 
pathology also involves the loss of midbrain dopamine cells and 
cholinergic neurons in ventral forebrain nuclei, nucleus basalis of 
Meynert (48, 49). Furthermore, Aβ plaques and NFTs are present in a 
majority of DLB cases (50, 51). Analogous to AD, individuals with 
DLB also experience seizures (52). Marawar et al. (53) demonstrated 
a higher occurrence of seizures in DLB compared to the general 
population, with a rate of 3.8% in pathologically confirmed DLB 
across the United States. Meanwhile, Beagle et al. (52) identified a 
cumulative probability of 14.7% for DLB patients to develop seizures 
and a 5.1% prevalence of new-onset seizures in a population from the 
Memory Aging Center at the University of California, San Francisco, 
while other studies observed a 2–3% seizure prevalence rate in cohorts 
from Italy, United States, and Sweden (53–55).

In spite of the presence of antiseizure medications, roughly a third 
of individuals with epilepsy are unable to manage their seizures or 
develop resistance to the impact of these medications (56–59). This 
underscores the urgent need to create novel and inventive treatment 
approaches for epilepsy. Beyond that, therapeutic interventions 
targeting the molecular mechanisms of neuronal hyperexcitability 
have promise for treating disorders linked to increased excitability, 
such as AD and DLB. For example, Vossel et al. (60) showed that low 
doses of levetiracetam can improve spatial memory and executive 

function in AD patients with detectable epileptic activity. 
Levetiracetam also improved attention, oral fluency, and overall 
cognition in AD patients in a case–control study (61). Also, the 
clinical trial HOPE4MCI (NCT03486938) uses low dose levetiracetam 
which has been shown to decrease hippocampal hyperexcitability and 
attenuate cognitive decline by improving task related memory 
performance in amnestic mild cognitive impairment (62, 63). These 
studies show that levetiracetam can improve diverse cognitive 
functions in various stages of AD, reflecting multiple cortical regions 
that exhibit hyperexcitability in the disease. As a potential marker of 
neurodegeneration and pathology progression in AD and DLB, the 
early detection of cortical hyperexcitability and its mechanistic 
understanding is instrumental. Hyperexcitability may begin or be a 
result of neuropathology and may arise due to a number of different 
factors at varying time points in AD and DLB. Though 
hyperexcitability has been previously explored in the context of AD 
(1, 24, 31, 60, 64, 65), the role and mechanisms of hyperexcitability in 
DLB (66–69), as well as its similarities and differences with AD 
requires more research. In this review, we explore shared and distinct 
molecular mechanisms associated with hyperexcitability in AD and 
DLB, encompassing factors such as genetic risk factors, Ca2 and 
glutamate contributions, cholinergic pathways, AMPA and NMDA 
receptors, mTOR, pathological Aβ, tau and α-synuclein, genetic risk 
factors, altered microglial and astrocytic activity, and impaired 
inhibitory interneuron function (Figure 1).

Genetic risk factors

APOE
The apolipoprotein E (APOE) ε4 allele is implicated in 

cerebrovascular, mental, and neurological disorders but stands as the 
primary genetic susceptibility factor for AD, and also increases the 
severity of neuropathology in DLB (70–75). In the context of 
hyperexcitability, APOE ε4 (APOE4) has not been associated with 
early-onset epilepsy, within 12 months of age, (76), but APOE4 has 
been linked to an increased risk of late-onset epilepsy, starting after 
age 60, and there exists an allele dose dependence on the incidence of 
late-onset epilepsy of 2.87, 4.13, and 7.05 per 1,000 person-years for 
0, 1, and 2 APOE ε4 alleles, respectively (42, 77). These results 
persisted when participants with strokes were censored, suggesting 
that APOE4 confers epilepsy risk through mechanisms beyond its 
effects on cerebrovascular disease (42). A meta-analysis demonstrated 
that individuals carrying the APOE4 allele and experiencing temporal 
lobe epilepsy exhibit seizure onset nearly 4 years earlier than those 
without the allele (78). Another investigation revealed that individuals 
with temporal lobe epilepsy and APOE4 have an elevated risk of 
experiencing verbal learning deficits, particularly among those with a 
longer epilepsy duration (79). Similarly, mice expressing the human 
APOE4 allele develop a seizure phenotype that is either absent or less 
pronounced in mice expressing human APOE2 or APOE3 (80).

The exact mechanisms by which APOE4 promotes heightened 
neural excitability remain to be fully elucidated. APOE is involved in 
cholesterol metabolism and transportation, stabilization and 
solubilization of lipoproteins, and maintaining lipid homeostasis. 
Additionally, it plays a role in synaptic plasticity, signal transduction, and 
immunomodulation (81–83). In vitro studies utilizing human induced 
pluripotent stem cell-derived neurons expressing APOE4 demonstrate 
increased excitability compared to APOE3 isogenic controls. This 
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heightened excitability might be attributed to an elevated expression of 
synaptic proteins like synaptophysin and PSD-95, the upregulation of 
genes involved in neuronal differentiation, and alterations in cholesterol 
metabolism (84). Due to the critical importance of APOE in shaping 
neuronal structure, establishing synapses, and regulating ion channels, 
changes in cholesterol and lipid concentrations can significantly impact 
neural excitability (85). For example, in rat hippocampal neurons, 
changed cholesterol levels differentially affect fast transient currents and 
delay rectifying currents modulating hyperexcitability (86). A clinical 
demonstration of importance is evident in Niemann-Pick type C (NPC) 
disease. In NPC, dysregulation of cholesterol transport and 
accumulation, can result in an AD-like phenotype, including cortical 
neurodegeneration, tau hyperphosphorylation, Aβ deposition, and 
hyperexcitability (87, 88). Vivas et al. (88) has shown that decreased 

transport of cholesterol from lysosomes disrupts ion channel activity and 
ultimately results in neuronal hyperexcitability. This mechanism is 
mediated by the reduction in phosphatidylinositol 4,5-bisphosphate in 
the plasma membrane resulting in a decrease in KCNQ2/3 current and 
increased excitability (88). Finally, microglia and astrocytes harboring 
APOE4 exhibit slowed uptake of extracellular Aβ (84). Consequently, 
elevated Aβ levels can also lead to increased neural activity. The plethora 
of physiological functions APOE is involved in results in numerous 
pathways by which APOE can contribute to hyperexcitability and 
targeted with therapeutics in AD and DLB (Table 1).

APP, PSEN1, and PSEN2
Early-onset familial AD, which constitutes less than 1% of cases, 

can be triggered by highly penetrant mutations in genes encoding 

FIGURE 1

Molecular mechanisms resulting in cellular hyperexcitability associated with Alzheimer’s disease and dementia with Lewy bodies in a glutamatergic 
neuron surrounded by a microglial cell (peach) and an astrocyte (purple). Pharmacological interventions (red) are displayed by their receptor or protein 
of action. Aβ, amyloid beta; AMPA-R, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; EAAT, excitatory amino acid transporters; mAbs, 
monoclonal antibodies; NMDA-R, N-methyl-D-aspartate receptor; TLR4, toll like receptor 4; TREM2, triggering receptor expressed on myeloid cells 2; 
mTOR, mechanistic target of rapamycin; SV2A, synaptic vesicle glycoprotein 2A; vGLUT, vesicular glutamate transporters. Created with BioRender.com.
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amyloid precursor protein (APP) on chromosome 21, presenilin 1 
(PSEN1) on chromosome 14, and presenilin 2 (PSEN2) on 
chromosome 1 (89–91). Among the roughly 35 distinct APP 
mutations associated with AD pathogenesis are gene locus 
duplications and point mutations in the coding region, leading to 
amino acid substitutions. Duplication of the entire gene or locus 
results in elevated APP and Aβ levels, favoring the formation of Aβ 
plaques (92, 93). PSEN1 and PSEN2 are not only involved in 
γ-secretase but also in cleaving other type I integral proteins like the 
Notch receptor (94). Likewise, mutations in PSEN1 and PSEN2 
hinder γ-secretase activity, causing an imbalance in the Aβ1–42 to 
Aβ1–40 ratio due to Aβ1–42 overproduction or Aβ1–40 underproduction, 
or a combination thereof. The Aβ1–42 to Aβ1–40 ratio is significant 
because an increase in this ratio increases the aggregation and 
neurotoxicity of the Aβ protein while a decrease in the ratio can 
decrease deposition (95–98). APP, PSEN1, and PSEN2 mutations 
contribute to neural excitability by activating the mentioned 
mechanisms via elevated Aβ levels and amyloid plaque formation. 
It is important to note that early-onset AD is not only related to 
APP, PSEN1, and PSEN2. Alterations in these three genes only 
account for 5–10% of early-onset AD with remaining genes and risk 
factors still to be discovered and studied (89, 99–101). Beyond these 
known genetic variants causing AD, individuals with Down 
syndrome possess an extra copy of chromosome 21, housing APP, 
and face an elevated risk of early-onset AD and seizures (102, 103). 
Estimates indicate that more than 50% of people with Down 
syndrome will develop Alzheimer’s with symptoms emerging in 
their 50s and 60s (104, 105).

SNCA
Mutations in the SNCA gene, which encodes α-synuclein, lead to 

parkinsonian disorders, notably including DLB (106–108). Among 
the numerous mutations, A30P, E46K, G51D, and duplications and 
triplications of the SNCA gene, of specific interest is the A53T point 
mutation (106, 109, 110). Recent investigations have uncovered that 
mice expressing human α-synuclein with the A53T mutation 
manifest a phenotype akin to the human condition (110). They 
exhibit deficits in long-term potentiation and learning and memory. 
Furthermore, these mice display a left shift in electroencephalography 
(EEG) spectral power, mirroring the EEG slowing observed in 
patients with DLB (110–112). The EEG slowing and shift in spectral 
power to more delta signifies network dysfunction, a loss of 
cholinergic neurons, and symptoms of DLB (66, 68). Similarly, Morris 
et al. (66) demonstrated that neuronal overexpression of wild-type 
α-synuclein in transgenic mice (Thy1-SYN line 61) also leads to EEG 
slowing. Both of these models experience seizures and present 
molecular alterations in the hippocampus that suggest abnormal 
network excitability, including a depletion of calbindin in the dentate 
gyrus. These collective findings suggest that higher levels or 
dysfunction of α-synuclein may contribute to the neuronal 
hyperactivity found in DLB.

Degeneration of cholinergic pathways

Acetylcholine is an ester of acetic acid and choline that is released 
by cholinergic neurons (113, 114). Acetylcholine plays a crucial role 
as one of the neurotransmitters implicated in cognitive functions like 

memory and executive function. In both DLB and AD, deficiencies in 
cholinergic activity are observable (115, 116). These deficiencies 
manifest as reduced acetylcholine levels and irregularities in the 
expression of nicotinic and muscarinic receptors. Notably, the extent 
of cholinergic deficits tends to be more pronounced in DLB when 
compared to AD, even though DLB typically exhibits less brain 
volume loss (49, 117). The decline of cholinergic neurons projecting 
to the cortex contributes to a deceleration of cortical oscillations as 
seen on EEG, resulting in a shift of spectral power from higher 
frequency bands (alpha, beta, gamma) to lower ones (delta, theta) 
(118, 119). DLB patients experience a more significant loss of 
cholinergic neurons, displaying more pronounced EEG slowing (49). 
Additionally, DLB patients demonstrate greater clinical improvement 
with the usage of common acetylcholinesterase inhibitors such as 
donepezil, rivastigmine, and galantamine compared to AD patients 
(120, 121). It is unknown whether neurodegeneration of cholinergic 
neurons contributes to hyperexcitability. However, animal models 
suggest that early changes in cholinergic tone could contribute to 
epilepsy in preclinical stages of AD. Interictal spikes have been 
observed during the rapid eye movement stage of sleep in Tg2576 
mice expressing human amyloid precursor protein (APP) at a very 
young age (5 weeks old), long before the deposition of Aβ (122). After 
administration of muscarinic cholinergic receptor antagonist, 
atropine, the investigators observed a reduction in interictal spikes, 
suggesting that there may be  a phase of high cholinergic tone, 
contributing to epilepsy, prior to reductions in acetylcholine (122). In 
contrast, donepezil, a cholinesterase inhibitor had no significant effect 
on interictal spikes (122). Another study using the APPswe/PS1dE9 
mouse model presenting with spike–wave discharges (SWDs), showed 
that donepezil does not have a significant effect on epileptic activity 
whereas atropine decreases SWDs and results in EEG slowing (123). 
This information suggests that before the degeneration of cholinergic 
neurons in AD and DLB, there could be  a phase of increased 
cholinergic tone that contributes to an increase in neuronal activity 
and epilepsy.

Glutamate

Glutamate, among the most extensively studied neurotransmitters 
within the central nervous system, is a non-essential amino acid 
synthesized within neurons and glial cells using glucose and 
α-ketoglutarate. It is ubiquitously distributed throughout the brain 
(124). Glutamate holds significance in cognitive functions like 
memory and learning, playing a pivotal role in neuronal excitability 
by expediting swift synaptic activity in neurons—a process regulated 
by astrocytes and other glial cells (125). The distribution of glutamate 
across distinct brain compartments is orchestrated by specific 
transporters and enzymes accountable for its metabolism. Surplus 
glutamate is eliminated by glial cells through excitatory amino acid 
transporters (EAAT1, EAAT2) (126). Notably, reduced expression 
levels of EAAT1 and EAAT2 have been observed in cases of epilepsy 
(127, 128), while mutations in the SLC1A3 and SLC1A2 genes that 
encodes EAAT1 and EAAT2, can result in episodic ataxia 6, 
characterized by symptoms of epilepsy, long lasting ataxia attacks and 
headaches, and epileptic encephalopathies, respectively (129, 130).

Inside astrocytes, glutamate undergoes a transformation into 
glutamine, subsequently being released and taken up by the neuronal 
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presynaptic compartment. There, it is converted back into glutamate, 
which then accumulates within synaptic vesicles via vesicular 
glutamate transporters (vGLUT1/vGLUT2). Although astrocytes are 
commonly discussed collectively, they are an extremely diverse cell 
population. A recently described subpopulation of astrocytes 
specifically mediates the release of glutamate (131). Ultimately, this 
intricate process facilitates highly efficient neurotransmission within 
tri or tetrapartite synapses (132, 133).

An imbalance in the expression of vGLUT1 was observed in post-
mortem human brain samples at the advanced stages of both AD and 
DLB (134). Similarly, Liraz et al. (135) discovered reduced levels of 
vGLUT in the hippocampal neurons of APOE4 mice. Previous 
research studies have pointed to a decline in the capacity and protein 
expression of glutamate transporters, as well as a specific loss of 
vGLUT in AD patients (136–138). A postmortem study showed 
increases in EAAT1 levels in a subset of pyramidal neurons exhibiting 
degeneration in the AD brain (139), whereas another postmortem 
study and in vitro assay showed impaired function of EAAT2 in the 
AD brain (140). Pharmacological administration of riluzole increases 

glutamate transporter expression, and in the P301L mouse model 
reverses glutamate related alterations and associated cognitive decline 
(141). Consequently, elevated levels of glutamate contribute to 
excitotoxicity and neuronal cell death (142). These findings collectively 
suggest that as the disease advances, the transporters responsible for 
glutamate reuptake become less effective, potentially leading to 
increased neuronal excitability.

Glutamate toxicity primarily arises from an excessive influx of 
Ca2+ (143, 144). Dubinsky (145) demonstrated that hippocampal 
neurons exposed to toxic levels of glutamate maintained elevated Ca2+ 
levels for around 1 h before returning to baseline levels. As calcium 
signaling governs a spectrum of cellular processes, the outcome of 
Ca2+ overload entails the activation of catabolic enzymes like calpain 
I (146), phospholipases, and the release of arachidonic acid (147). This 
cascade results in an escalation of reactive oxygen and nitrogen species 
and the eventual collapse of neuronal cells through cytoskeletal 
degradation and membrane deterioration. Clinically, this associates 
with the progressive decline in cognition and memory, as well as brain 
atrophy in AD patients (148, 149). This is further evident in epilepsy 

TABLE 1 Summary of molecular mechanisms cause hyperexcitability and intervention strategies associated with Alzheimer’s disease and dementia with 
Lewy Bodies.

Molecular mechanisms Cause of hyperexcitability Intervention strategies

Cholinergic pathways  • Increased cholinergic tone before symptom onset  • Cholinergic receptor antagonist during 

preclinical stages of AD or DLB

Excess glutamate  • Excessive Ca2+ influx

 • Overstimulation AMPA and NMDA receptors

 • Increase transporters (EAAT1, EAAT2, 

vGLUT1/vGLUT2)

(e.g., riluzole)

 • Antagonists of ionotropic and metabotropic 

glutamate receptors (e.g., perampanel)

 • Antiseizure medications – SV2A mechanism 

(e.g., leviteracetam, brivaracetam)

Overactive mTOR  • Reduced autophagy; buildup of epileptogenic disease proteins  • Inhibition of mTOR

(e.g., rapamycin)

Higher levels of α-synuclein  • Overactivation of astrocytes and microglia  • Inhibitors of aggregation (e.g., ENT-01)

 • Inactivation of astrocytes and microglia (e.g., 

minocycline)

Tau protein  • Enables seizures

 • Can facilitate presynaptic glutamate release

 • Tau reduction (e.g., BIIB080)

Amyloid beta (Aβ)  • Changes in voltage-dependent channels that maintain neuronal 

membrane potential

 • Stimulation of voltage-gated calcium channels

 • Formation of pores in the membrane thereby increasing 

Ca+ influx

 • Antibody-mediated clearance (e.g., anti-amyloid 

monoclonal antibodies)

 • Inhibitors of aggregation

 • Inhibitors of voltage-gated calcium channels

Over-stimulation of microglia and astrocytes  • Increases glutamate release

 • Decreases levels of the astrocytic glutamate transporter EAAT2

 • Endocytosis of neuronal ionotropic GABAA receptors

 • Activation of TLR4 receptors

 • Increases extracellular K+ levels by astrocytes

 • Glial inhibition (e.g., minocycline)

 • Increase glutamate transporters (e.g., 

ceftriaxone)

GABAergic neuron dysfunction  • Mutations in genes encoding GABA receptor subunits

 • Decreases voltage-gated sodium channels

 • Medications that increaese GABAergic tone

(e.g., gabapentin and pregabalin)

Genetic risk factors: APOE ε4, APP, PSEN1, 

PSEN2, Trisomy 21, SNCA

 • Elevated levels of APP and Aβ, and α-synuclein

 • Impairment in γ-secretase activity

 • Gene editing (e.g., CRISPR – in development 

for humans)

Aβ, amyloid beta; AD, Alzheimer’s Disease; AMPA, receptor, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; APOE, apolipoprotein E; APP, amyloid precursor protein; 
CRISPR, clustered regularly interspaced short palindromic repeats; DLB, dementia with Lewy Bodies; NMDA receptor, N-methyl-D-aspartate; PSEN, presenilin; SNCA, synuclein alpha; 
SV2A, synaptic vesicle glycoprotein 2A.
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where the seizures ultimately cause excitotoxicity by starting the 
aforementioned cascade and leading to neuronal cell death and loss 
(150, 151).

Upon release from synaptic vesicles, glutamate initiates the 
activation of diverse ionotropic (AMPA, kainate, NMDA) and 
metabotropic (mGluR1 and mGluR5  in group I, mGluR2 and 
mGluR3  in group II, and mGluR4,6,8  in group III) glutamate 
receptors, primarily located in the postsynaptic region (152). The 
overstimulation of these receptors contributes to the generation of free 
radicals, possibly as a result of the continued calcium influx, inducing 
oxidative stress and subsequently disrupting mitochondrial functions 
(152, 153). This mitochondrial dysfunction plays a role in initiating 
and advancing epilepsy by triggering sequences of apoptosis (154).

Recent research highlights NMDA receptors (NMDARs) as 
contributors to neuronal hyperexcitability, suggesting that abnormal 
activation of these receptors, particularly through Ca2+ influx, is 
implicated in hyperexcitability (155, 156). NMDARs possess a 
significantly higher permeability for calcium ions compared to other 
ionotropic glutamate receptors (iGluRs), thus facilitating hyperactivity 
through calcium influx (155, 156). Memantine, an NMDAR 
antagonist, has been found to reduce Ca2+ influx and improve 
cognition and behavior in moderate-to-advanced AD (157). On the 
other hand, direct links between AMPA receptors and epilepsy in AD 
and DLB are more limited. Elevated levels of AMPA receptors have 
been observed in the brains of various epilepsy types, in humans and 
animal models (158, 159), and there is evidence of changes in receptor 
function through increased levels of AMPA and NMDA receptor 
subunits in human and mouse epileptic brains (160, 161).

Studies such as that by Teravski et  al. (110) involving A53T 
α-synuclein-expressing neurons have indicated postsynaptic 
dysfunction, including reduced amplitude of miniature postsynaptic 
currents and a lower ratio of AMPA to NMDA receptor currents. Such 
changes coincide with the development of epileptic activity in this 
model. If the loss of AMPA receptors occurs in GABAergic inhibitory 
neurons, this could enhance the activity of neurons receiving their 
projections, potentially leading to neural network hyperactivity in 
DLB. Further exploration of the roles of NMDA and AMPA receptors 
in AD and DLB could yield valuable insights into potential treatments 
for epilepsy associated with these diseases.

Overactivation of mTOR Pathway

mTOR, mechanistic target of rapamycin, is a highly conserved 
serine/threonine protein kinase that forms two distinct complexes, 
mTORC1 and mTORC2. External triggers including energy, oxygen, 
DNA damage, and amino acids activate the mTOR complexes, and 
they are implicated in a breadth of physiological functions including 
cell survival, growth, proliferation, metabolism, protein synthesis and 
signaling (162). In the brain, mTOR expression is widespread, 
affecting many neuronal and glial cell types playing a role in axonal 
development, synaptic plasticity, and neuronal excitability (163). 
Another crucial role function of mTOR signaling is autophagy, the 
process of degrading and recycling components of dysfunctional cells 
and proteins (164). Recently however, the role of autophagy has been 
expanded and shown to affect neuronal excitability (165). An ATG5 
deficient mouse model shows impairment and decreases in protein 
kinase A (PKA) signaling from the lack of PKA subunit turnover 

(165). In addition to increased excitatory neurotransmission, 
alterations in synapses and disruption in AMPA receptor function, 
seizures also present as a common phenotype in these mice. This 
further highlights mTOR’s myriad functions and its contribution to 
hyperexcitability and warrants further investigation in the context 
of neurodegeneration.

Overactivation and dysregulation of mTOR can result in severe 
pathological changes. mTOR association with hyperexcitability and 
seizures can be attenuated pharmacologically (125, 166, 167). mTOR 
hyperactivation is observed in Tuberous Sclerosis Complex (TSC) 
which presents with epileptic seizures and autism-like traits (162). 
Loss of the TSC gene in mouse models results in seizures and epilepsy 
that can be attenuated with the mTOR inhibitor, rapamycin (168). 
mTOR overactivation can also be activated by seizures evidenced by 
an increase in phospho-S6 expression in a kainic acid seizure mouse 
model (169). Inhibition of mTOR and restoration of the excitatory 
imbalance causing seizures and epilepsy may provide additional 
benefit for AD and DLB where hyperexcitability may participate in a 
positive feedback loop (40).

Pertaining to AD and DLB, postmortem examinations revealed 
increased mTOR activation in AD, DLB, and Parkinson’s disease and 
associations with deficits in autophagy (170–173). Seizures have been 
shown to both activate mTOR and worsen AD pathology and 
cognitive deficits. Rapamycin administration can attenuate cognitive 
deficits in AD models through an increase in autophagy and/or 
decrease in hyperexcitability, further linking overactivation of mTOR 
activity and its contribution to AD (174, 175). Within the context of 
hyperexcitability, mTOR in DLB may be  underappreciated and 
understudied. Since autophagy deficits have been implicated in DLB, 
hyperexcitability may be a mechanistic link with mTOR. A better 
understanding of these mechanisms and connection to 
hyperexcitability in AD and DLB may allow for more targeted 
therapeutics beyond rapamycin in lessening the overactivation of 
mTOR and burden of its wide-ranging effects.

Proteinopathies

Alpha-synuclein
Alpha-synuclein is a protein composed of 140 amino acids. It was 

initially identified in association with synaptic vesicles within the 
presynaptic nerve terminal and has demonstrated interactions with 
membranes (176, 177). This protein modulates synaptic transmission, 
influences the density of synaptic vesicles, and contributes to neuronal 
plasticity (178, 179).

Beyond its synaptic functions, extracellular alpha-synuclein has a 
pivotal impact on neuroinflammation, neurotoxicity, and the 
propagation of pathological changes (180). It is transported into the 
extracellular space following active secretion or release from dying 
neurons. The exact mechanism behind the secretion of alpha-
synuclein is unknown. However, research by Paillusson et al. (181) 
indicated that enteric neurons can release it via conventional 
endoplasmic reticulum/Golgi-dependent exocytosis, which is driven 
by neuronal activity.

Clinical and experimental studies demonstrate that α-synuclein 
expression participates in epilepsy (182–185). Tweedy et  al. (186) 
demonstrated hippocampal network hyperexcitability in young 
transgenic mice expressing human mutant alpha-synuclein. Yang et al. 
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(185) identified anomalous accumulations of this protein in 
hippocampal samples taken from individuals with mesial temporal 
lobe epilepsy (MTLE). These deposits were correlated with the loss of 
neuronal cells and reactive gliosis, indicating a potential link between 
the presence of the protein and the pathological changes seen in 
MTLE. Another clinical study in children with epilepsy showed that 
higher levels of serum α-synuclein correlated with disease severity 
(182). In the same way that α-synuclein levels are associated with 
seizures in epilepsy patients, it may also be associated with epileptic 
events in AD and DLB. A mechanism by which α-synuclein 
contributes to epilepsy could be activation of astrocytes and microglia, 
enhancing glial proinflammatory activity cytokines, nitric oxide, and 
reactive oxygen species (184, 187). More investigations are warranted 
to determine whether lowering α-synuclein levels or inhibiting its 
aggregation in the brain modulates epilepsy.

Tau protein
The microtubule-associated protein tau predominantly resides 

within axons, where it plays a vital role in assembling microtubules. 
Tau can also be located in various neuronal compartments, such as 
somatodendritic regions and nuclei, and it is even detectible within 
glial cells (188, 189). In cases of pathology, tau undergoes 
hyperphosphorylation within neurons, diminishing its affinity for 
tubulin. This leads to the aggregation of tau into neuropil filaments or 
NFTs, giving rise to tauopathies (190–192).

Brain aggregates of hyperphosphorylated tau have been noted in 
patients with epilepsy as well as various models of epilepsy (40, 68, 
193). This indicates that the abnormal aggregation of phosphorylated 
tau might play a role in the pathogenesis of epilepsy. Additionally, the 
tau protein seems to contribute to the development of epilepsy in the 
context of AD and DLB. Referencing Hwang et al. (40), endogenous 
tau acts as an enabler of hyperexcitability and seizures and, within the 
context of epilepsy and AD, a complex balance may occur in an 
attempt to decrease hyperexcitability. Total tau is reduced after 2 
months in a status epilepticus (SE) model of epilepsy (194). After 4 
months, tau levels return to normal while phosphorylation at tau sites 
S202/T205 is reduced by about 50%. This may highlight how tau 
changes in response to hyperexcitability over time in an attempt to 
reach homeostasis.

Numerous investigations have demonstrated that genetically 
altering tau or diminishing tau levels can result in an increase or 
decrease in seizures and epileptic activity across different animal 
models. Ablating both tau and Fyn in a mouse model shows robust 
neuroprotection from pentylenetetrazol, including increased seizure 
latency, reduced seizure stage, and reduced gliosis (195). Roberson 
et  al. (196) demonstrated that reducing normal tau prevents the 
occurrence of spontaneous epileptiform activity across multiple lines 
of transgenic mice expressing human APP. Conversely, transgenic 
mice that overexpressed wild-type human tau or tau with an A152T 
mutation exhibit epileptiform activity and heightened susceptibility to 
seizures (197). The A152T tau mutation induces more pronounced 
network hyperexcitability compared to wild-type tau (197). In vitro 
studies using the rTg4510 mouse model, which features mutant 
(P301L) human tau, revealed increased neuronal excitability in the 
cortex’s layer 3 even before the formation of NFTs. In the CA1 region 
of the hippocampus, pyramidal neurons display heightened firing, 
while inhibitory interneurons exhibit reduced activity, indicating a 
breakdown in inhibitory synaptic transmission (198, 199).

Recent investigations involving mice expressing human 
α-synuclein with the A53T mutation highlighted that endogenous tau 
contributes to hyperexcitability and that epileptic activity diminishes 
in the absence of tau (68). Delving deeper into the pathways influenced 
by tau, Decker et al. (200) demonstrated that hyperphosphorylated tau 
could stimulate presynaptic glutamate release, resulting in 
hyperexcitability. The toxicity of glutamate has been linked to 
tau-mediated neuronal cell death and behavioral deficits in 
drosophila (201).

The observation that physiological endogenous tau levels in adult 
mice impact seizure susceptibility suggests that similar relationships 
might exist in humans, potentially influencing the risk of developing 
seizures. This supports the notion that reducing tau could contribute 
to preventing seizures (202) and offers an opportunity for 
pharmacological intervention targeting tau.

Amyloid beta (Aβ)
Amyloid precursor protein (APP) is a transmembrane protein 

encompassing a sizable extracellular domain and a smaller 
intracellular segment. Amyloid-beta (Aβ) peptides stem from the 
proteolytic cleavage of APP, sequentially catalyzed by β-secretase 
and γ-secretase. In pathological conditions, Aβ peptides amass into 
dense fibrillary plaques. Aβ has been demonstrated to incite 
network dysregulation, culminating in heightened synchronicity 
and seizures. This increased neuronal activity, in turn, exacerbates 
neurodegeneration (203). Recent investigations indicate that Aβ 
possesses epileptogenic properties and can significantly influence 
the trajectory of cognitive decline (12, 204). Ovsepian and O’Leary 
(205) proposed that seizures might foster the deposition of Aβ 
plaques. This epileptogenic potential of Aβ was validated in the 
APP/PS1 model, where neurons exhibiting epileptic discharges were 
found to colocalize with Aβ plaques (206). Evidence also suggests 
that Aβ could have epileptogenic effects even during pre-plaque 
stages. Hyperactivity among hippocampal neurons during the initial 
phases of Aβ pathology, when Aβ fibrils remain soluble, has been 
observed in APP/PS1 mice (122, 207). APP/PS1 mice also present 
with an increase in soluble and insoluble Aβ1-42 and an increase in 
seizure susceptibility with corneal kindling (208). Aβ oligomers, 
being synaptotoxic, might trigger epileptic discharges prior to 
plaque deposition (209). Exposure to Aβ oligomers can also lead to 
spontaneous neuronal firing in hippocampal neurons (210).

Studies indicate that Aβ-triggered neuronal epileptic activity is 
tied to alterations in voltage-dependent channels that regulate the 
neuronal membrane potential. In a drosophila model expressing 
human Aβ42, Ping et al. (211) demonstrated that fewer Kv4 channels 
in neurons promote hyperexcitability, while Kv2 and Kv3 channels 
remained unaffected. Other research has shown that Aβ can perturb 
calcium homeostasis by either stimulating voltage-gated calcium 
channels or creating membrane pores, thereby augmenting calcium 
influx (212). Additionally, Aβ can influence glutamate release. 
Talantova et al. (213) illustrated that Aβ interacts with α7 nicotinic 
acetylcholine receptors, leading to the release of astrocytic glutamate, 
which subsequently activates extrasynaptic NMDA receptors on 
neurons. Similarly, Zott et al. (214) employed Aβ-amyloidosis models 
to reveal that hyperactivity is initiated by dampening glutamate 
reuptake. Soluble Aβ oligomers hinder the uptake of glutamate and 
intensify extrasynaptic NMDAR activation. Thus, Aβ can trigger a 
sequence of molecular events culminating in neural hyperexcitability.
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Glia and neuroinflammation

Glial cells are brain defense cells comprising microglia, astrocytes, 
and oligodendrocytes. When stimulated, microglia and reactive 
astrocytes release modulators to facilitate the recovery of the tissue 
from damage (215, 216). However, the continuous stimulation of the 
glial network causes a cascade of molecular events leading to 
neuroinflammation (215, 217). Investigators have previously proposed 
that neuroinflammation stimulates heightened neuronal activity and 
seizures, and the disruption of glial immunoinflammatory function is 
considered a factor that could predispose to or play a role in the 
emergence of seizures (218, 219). Therefore, inflammatory mediators 
and epileptic seizures form a vicious positive feedback loop, 
reinforcing each other (220). This vicious cycle can be  found in 
diseases with neuroinflammatory conditions such as AD and DLB and 
to be responsible for epileptogenesis.

Elevated concentrations of pro-inflammatory cytokines, notably 
interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), 
have been linked to epileptic seizures (221). The increased 
concentration of pro-inflammatory mediators can participate in 
hyperexcitability by increasing glutamate release via decreasing 
levels of the astrocytic glutamate transporter EAAT2 (excitatory 
amino acid transporter 2) (222, 223). Before and after seizures, there 
is an increase in the levels of pro-inflammatory cytokines and the 
expression of their receptors in both glial cells and neurons (221). In 
epileptic and AD patients, TNFα levels are elevated in the brain (224, 
225), and TNFα increases the sensitivity of AMPA and NMDA 
glutamatergic receptors in the postsynaptic neuron, leading to 
excitotoxicity (223, 226). TNFα also induces endocytosis of neuronal 
ionotropic GABAA receptors, so that neurotransmission becomes 
more excitatory, leading to epilepsy (227). Furthermore, Xiaoqin 
et al. (85) found that the intracerebroventricular injection of IL-1β 
in rats leads to a reduction in cortical and hippocampal GABA 
concentration, while simultaneously increasing glutamate release. 
This alteration in neurotransmitter balance enhances the brain’s 
vulnerability to seizures.

Another potential mechanism underlying seizure activation is the 
engagement of TLR4 receptors (228). TLR4 acts as the primary 
receptor for the proinflammatory mediator High Mobility Group Box 
1 (HMGB1). Activation of TLR4 via HMGB1 sets off seizures by 
initiating a Ca2+ influx subsequent to the phosphorylation of the NR2B 
subunit of the NMDAR. In support of this, Maroso et  al. (229) 
revealed an elevation in TLR4 expression in hippocampal samples 
from individuals with drug-resistant temporal lobe epilepsy compared 
to control subjects. Furthermore, inflammation triggers the release of 
reactive oxygen species and reactive nitrogen species, thereby 
heightening susceptibility to seizures and intensifying the 
inflammatory milieu in the brain (230). This inflammatory 
environment gives rise to mediators like pro-inflammatory cytokines, 
transforming growth factor-β, and prostaglandin E2 (231). These 
mediators stimulate astrocytes and impact glutamate release, 
culminating in hyperexcitability.

Triggering receptor expressed on myeloid cells 2 (TREM2) are 
primarily expressed by microglia and play a role in the immune 
response. TREM2 expression in the brain has been found to 
be increased in AD and thought to provide an adaptive response to 
AD pathology, while reduction in TREM2 and mutant variants 
increases susceptibility to hyperexcitability and epileptic activity (232, 
233). In regards to DLB, results are mixed as to whether soluble 

TREM2 is increased, and more research is needed to determine 
TREM2’s influence on DLB-related hyperexcitability (234–236).

In addition to releasing inflammatory mediators, glial cells, 
particularly astrocytes, play a role in maintaining ion balance by 
clearing extracellular potassium (K+) during neuronal repolarization. 
Wang et al. (237) demonstrated that the onset of seizures is linked to 
elevated extracellular K+ levels due to astrocytic activity. Notably, the 
protein expression of the astrocytic potassium channel Kir4.1 is 
diminished in both a mouse model of AD and in the brains of AD 
patients (238).

Astrocytes often undergo reactive changes, termed reactive 
astrocytosis, characterized by increased astrocyte size and number. 
These changes are frequently observed alongside neuronal loss and 
synaptic reorganization (239). Reactive astrocytosis is present in 
conditions such as epilepsy, AD, and DLB, and it might contribute to 
neural hyperexcitability by influencing the function of astrocytic 
membrane K+ channels (240–242). In light of these insights, 
understanding the underlying mechanisms of inflammation in the 
development of epilepsy could pave the way for the discovery of 
promising antiseizure medications.

GABAergic dysfunction

Gamma-aminobutyric acid (GABA) serves as the primary inhibitory 
neurotransmitter within the central nervous system. It is synthesized by 
the enzyme glutamic acid decarboxylase (240). This neurotransmitter is 
primarily found in interneurons that establish synapses on cell bodies 
and nearby axon segments. Released into the synaptic cleft, GABA exerts 
its influence through activation of GABAA and GABAB receptors. 
GABAA receptors function as ligand-gated ion channels, promptly 
inducing inhibition by enhancing chloride influx into cells. In the context 
of AD, studies have shown moderate reductions in GABAA receptors 
within the brain (243, 244). GABAB receptors, on the other hand, are G 
protein-coupled ion channels that augment extracellular potassium 
transport while concurrently decreasing calcium influx. Mutations in 
genes encoding GABA receptor subunits have been linked to a range of 
epileptic disorders (245).

Investigations point to a potential mechanism involving 
GABAergic dysfunction contributing to hyperexcitability by 
influencing voltage-gated sodium channels. Studies by Verret et al. 
(246) and Hamm et  al. (247) demonstrated variable decreases in 
Nav1.1 and Nav1.6 within hippocampus and somatosensory cortex 
mouse models of AD. These channels enhance gamma oscillations 
during exploration, which can help suppress epileptiform discharges. 
Consequently, Nav1.1 and Nav1.6 hold potential as targets for 
addressing epileptic seizures in the context of AD.

Conclusion

In conclusion, hyperexcitability in AD and DLB arises from a 
combination of multiple factors working together to disrupt regulation 
of neuronal excitability. In this context, we  observe that genetic 
predispositions, initial elevations in cholinergic activity, excessive 
calcium influx causing glutamate toxicity, heightened NMDA and 
AMPA receptor sensitivity, overactivation of mTOR, disruptions in 
calcium homeostasis due to Aβ, tau, and α-synuclein, hyperstimulation 
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of microglia and astrocytes, and GABA dysfunction collectively 
contribute to the promotion of hyperexcitability in AD and DLB. By 
understanding the specific dysfunctions within these pathways, it 
becomes possible to develop targeted therapeutic strategies aimed at 
restoring proper neuronal excitability. Such interventions hold the 
potential to alleviate the symptoms associated with these 
neurodegenerative disorders, offering hope for improved treatments 
and better quality of life for affected individuals.
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