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Purpose: Evidence suggests that transcranial direct current stimulation (tDCS) 
can enhance motor performance and learning of hand tasks in persons with 
chronic stroke (PCS). However, the effects of tDCS on the locomotor tasks 
in PCS are unclear. This pilot study aimed to: (1) determine aggregate effects 
of anodal tDCS combined with step training on improvements of the neural 
and biomechanical attributes of stepping initiation in a small cohort of persons 
with chronic stroke (PCS) over a 4-week training program; and (2) assess the 
feasibility and efficacy of this novel approach for improving voluntary stepping 
initiation in PCS.

Methods: A total of 10 PCS were randomly assigned to one of two training 
groups, consisting of either 12 sessions of VST paired with a-tDCS (n  =  6) or 
sham tDCS (s-tDCS, n  =  4) over 4 weeks, with step initiation (SI) tests at pre-
training, post-training, 1-week and 1-month follow-ups. Primary outcomes 
were: baseline vertical ground reaction force (B-vGRF), response time (RT) to 
initiate anticipatory postural adjustment (APA), and the retention of B-VGRF and 
RT.

Results: a-tDCS paired with a 4-week VST program results in a significant 
increase in paretic weight loading at 1-week follow up. Furthermore, a-tDCS 
in combination with VST led to significantly greater retention of paretic BWB 
compared with the sham group at 1 week post-training.

Clinical implications: The preliminary findings suggest a 4-week VST results 
in improved paretic limb weight bearing (WB) during SI in PCS. Furthermore, 
VST combined with a-tDCS may lead to better retention of gait improvements 
(NCT04437251) (https://classic.clinicaltrials.gov/ct2/show/NCT04437251).
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1 Introduction

Persons with chronic stroke (PCS) often exhibit reduced body 
weight bearing (BWB) on the paretic leg, which further limits their 
ability to shift weight actively during activities of daily living such as 
standing, rising from sit-to-stand, and walking (1–4). The impaired 
ability of active weight shifting, coupled with restricted loading onto 
the paretic leg, leads to postural instability and asymmetrical gait 
patterns (5–8). Persistent gait deficits in PCS can also lead to a more 
sedentary lifestyle (9, 10). This sedentary behavior may elevate the risk 
of recurrent stroke and cardiovascular diseases (9, 11).

Gait initiation (GI) or step initiation (SI) is a useful paradigm 
for studying the control strategies of human locomotion from the 
perspective of the transition from upright stance posture to steady-
state walking (12, 13). Prior to executing the first step, an automatic 
postural adjustment known as anticipatory postural adjustments 
(APA) is triggered in response to the destabilizing postural balance 
while standing, ensuring postural stability and a stable whole-body 
progression (12–14). Biomechanically, the APA consists of a series 
of postural adjustments. Initially, there is a backward shift of center 
of pressure (CoP) relative to the center of mass (CoM) position, 
which serves to break the static balance while standing. To quickly 
reestablish postural balance, there is an active weight shifting onto 
the stepping (or swing) leg, coupled with a simultaneous backward 
movement. This is followed by a rapid unloading of weight from 
the swing leg, shifting the body weight back to the standing leg 
(mediolateral CoP shift) for the step execution. The backward shift 
of CoP provides the initial propulsive forces to effectively progress 
the body forward and the active weight shifting helps disengage the 
stepping leg for step execution and is crucial for maintaining 
stability (12, 13, 15–17). Stroke commonly disrupts the automatic 
postural responses which contribute to standing balance (18–20). 
This can lead to difficulty walking and increased risk of falling 
(21–26).

An important motor learning and control principle underlying 
post-stroke gait rehabilitation is task-specific training. Stepping 
training practice is one of the locomotor tasks commonly implemented 
in standard clinical care as well as research studies for post-stroke gait 
intervention (1, 27, 28). We have developed a visuomotor stepping 
task (VST) which uses real-time, augmented visual feedback (VF) to 
enhance the individual’s kinesthetic sense of the paretic leg for 
improving forward stepping control (29). VST uses real-time visual 
feedback to guide the paretic leg stepping forward onto a specific 
visual target. Additionally, at the end of each stepping trial, visual 
feedback regarding the final stepping foot position in relation to the 
visual target location (i.e., movement error) is provided to increase the 
individual’s awareness of stepping control deficits and acts as a 
powerful motivator to improve stepping accuracy by reducing the 
movement errors on a trial-by-trial basis.

Transcranial direct current stimulation (tDCS) is a non-invasive, 
low-intensity brain stimulation technique to modulate neural 
excitability and enhance motor performance and learning of motor 
tasks in humans (30–34). Depending on the stimulation polarity, 
tDCS can upregulate or downregulate cortical excitability, facilitating 
or impeding skill performance and learning (35–38). tDCS can 
enhance motor learning and recovery of arm and hand functions in 
healthy and stroke populations (30, 33, 39–48). However, the 
additive effects of tDCS on lower limb motor recovery and gait 

improvements in PCS remain inconclusive (49–54). For example, 
Groin et al. investigated the additive effects of anodal tDCS (a-tDCS) 
on robot-assisted gait training in PCS and showed there were no 
differences in six-minute walking and 10-meter walking 
performances between a-tDCS and sham tDCS (s-tDCS) groups 
after robot-assisted gait training combined with anodal/sham tDCS 
(53). In contrast, another study showed that a-tDCS combined with 
conventional physical therapy enhanced the recovery of lower 
extremity motor function post stroke (49). Specifically, the a-tDCS 
group had greater improvements in Fugl-Meyer Lower Extremity 
(F-M LE) and lower limb Motricity Index (MI-LE) compared to the 
sham group; However, there were no significant differences between 
the anodal and sham groups for Berg balance Score and gait 
performance post training (49). More studies are needed to develop 
the optimal dose–response relationship between brain stimulation 
and gait training for PCS.

Taken together, PCS may benefit from a new training paradigm 
that pairs VST training with a-tDCS. Real-time visual feedback can 
be used to improve paretic stepping control while a-tDCS can enhance 
increase cortical excitation and thereby enhance learning of motor 
tasks (1, 27, 28, 30–34). While we  demonstrated that a-tDCS in 
conjunction with a visuomotor stepping task (VST) can enhance 
retention of the stepping skill for 30 min post-stimulation in healthy 
adults (29), no studies have examined the combined effects of a-tDCS 
with VST on the improvements of APA and weight shifting on the 
paretic leg during SI. Thus, the purpose of this pilot study was to 
investigate the effects of a 4-week VST on the improvements of APA 
and symmetry of limb loading in PCS, and (2) to determine the 
additive effects of a-tDCS when paired with VST on the improvements 
and retention of symmetry of limb loading in PCS. We hypothesized 
that the a-tDCS group would show greater improvements and longer 
retention of ground walking compared with the sham-tDCS (s-tDCS) 
group. A better understanding of whether a-tDCS enhances the ability 
to retain gait training improvements post stroke could guide the 
development of effective intervention strategies for stroke 
gait rehabilitation.

2 Methods

2.1 Participants

Ten individuals with a history of a single cerebrovascular accident 
who met the inclusion criteria were enrolled in this pilot study, but 
three participant’s pre-training data were unable be analyzed due to 
data loss caused by a hard drive crashed. The clinical and demographic 
characteristics of the participants are summarized in Table 1. The 
inclusion criteria were: (1) age of 18 to 85 years, (2) a history of 
unilateral, first-ever ischemic stroke more than 6 months before study 
enrollment, (3) presence of residual gait deficits (i.e., visible gait 
asymmetry) but ability to walk with/without assistive devices 
continuously for 5 min at self-selected speed, (4) Mini-Mental State 
Examination (MMSE) score > 21 in order to follow instructions. The 
exclusion criteria were: (1) existing medical conditions that restrict 
exercise training, (2) presence of malignant neoplasm or tumors, (3) 
receptive or global aphasia, and (4) contraindications to brain 
stimulation, including pregnancy, history of seizures, any metal 
implants, cardiac pacemakers, or use of medications that alter cortical 
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excitability. Participants gave informed consent prior to participation 
and the study was approved by the Texas Woman’s University 
Institutional Review Board.

2.2 Experimental design

This pilot study was a randomized-controlled, placebo-
controlled, and single-blind, intervention study. This study was a 
part of a larger research project that included a cross-sectional 
study (Phase I) followed by an exploratory, intervention study 
(Phase II). The researchers were not aware of trial registration 
during Phase I study; the study was later registered in ClinicalTrial.
gov (NCT04437251) prior to the first subject enrollment for Phase 
II study (Figure  1). Following enrollment, participants were 
randomly assigned to one of two groups (a-tDCS or sham tDCS; 
s-tDCS) based on a random series of binary numbers that was 
generated by a computer program (MatLAB, MathWorks Inc.) 
prior to the enrollment (Figure  2A). All participants then 
underwent a total of 12 training sessions over 4 weeks during 
which participants learned a novel visuomotor stepping task (VST) 
while 20-min of tDCS (a-tDCS or s-tDCS) was delivered over the 
leg area of the M1 (29, 54). The designated trainers administered 
the tDCS protocol to the participants according to their group 
assignments in each training session. However, all participants 
were blinded to the stimulation protocol. SI was measured before 
and 1 day after the 4-week stepping training. SI was then measured 
1 week and 1-month post-training to examine the effects of tDCS 
on the retention of locomotor skill training. Three designated 
trainers were involved in daily exercise training, but they were not 
involved in any functional or laboratory measures. Additional one 
assessor who was not involved in the exercise training was 
designated to conduct all tests; to minimize the measurement bias, 

the assessor had followed the standardized testing procedures, 
including the pre-written script for verbal instructions and the 
standardized experimental protocol of force plate setup for force 
measures. The assessor administered the same tests to all 
participants regardless of their group assignments.

2.2.1 VST
A camera system (OptiTrack Inc.) and Custom C++ program 

were used to record the real-time foot trajectory at a sampling rate 
of 100 Hz, and to create real-time visual animation displayed via a 
projector on the wall screen during stepping training (29). A 
reflective marker was attached to the stepping foot (i.e., either paretic 
or non-paretic foot) to indicate the real-time cursor’s location, and 
participants were given real-time visual feedback about their leg 
movements via a foot cursor displayed on the wall screen 3 meters 
(10 feet) away from the front view (Figure 2B). The task was to move 
the cursor from a start location to the target at a safe and fast speed. 
In each trial, the target (red square) was programmed to appear at a 
random time between 1 and 3 s after the trial was started. Participants 
were instructed to make two consecutive forward steps at the fastest 
speed, starting with the stepping foot followed by the trailing foot. 
The goal was to move the virtual cursor into a visual target as soon 
and as accurately as possible. At the end of each trial, participants 
were instructed to take two consecutive backward steps to return to 
the starting position. Thus, to complete a VST in each trial, 
participants were required to make two forward steps and two 
backward steps. Each training session took about 1 h and comprised 
140 trials, including 40 trials before brain stimulation (20 trials/leg), 
80 trials during tDCS brain stimulation (40 trials/leg), and 20 trials 
immediately after brain stimulation (10 trials/leg). Thus, in each 
training session, participants were trained to make 280 forward 
visually guided steps and 280 backward steps to resume the 
initial location.

TABLE 1 Subject characteristics.

Group Age Gender Weight (Kg) Height 
(cm)

Paretic leg Duration of 
injury (years)

MMSE F-M

a-tDCS

  1 62 F 86 180 R 8 27 26

  2 70 M 123 188 R 5 26 25

  3 40 M 82 185 R 2 29 14

  4 59 F 45 152 L 8 30 28

  5 58 M 75 180 L 5 30 27

  6 56 F 68 160 L 4 30 22

Mean 57.50 3F, 3 M 79.83 174.17 5.33 28.67 23.67

SD 9.87 25.62 14.62 2.34 1.75 5.16

s-tDCS

  1 30 M 95 185 L 12 30 34

  2 49 F 68 165 L 9 30 31

  3 45 F 54 160 L 2 28 23

  4 44 M 85 180 R 3 29 18

Mean 42.00 2F, 2 M 75.50 172.50 6.50 29.25 26.50

SD 8.29 18.16 11.90 4.80 0.96 7.33

a-tDCS, anodal transcranial direct current stimulation; s-tDCS, sham transcranial direct current stimulation. MMSE, mini-mental state examination; F-M, Fugl-Meyer Lower Extremity score.
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2.2.2 tDCS protocols
Twenty minutes of brain stimulation (either s-tDCS or a-tDCS) 

was delivered through a pair of saline-soaked sponge electrodes after 
participants completed the first 40 trials in each session (29). The 
anodal or sham electrode was placed over the leg area of the lesioned 
motor cortex and the reference electrode was placed over the 
contralateral supraorbital ridge. For the a-tDCS (i.e., real brain 
stimulation) group, the stimulus intensity was set to 2 mA over a 
20-min period. For the s-tDCS (i.e., placebo stimulation) group, 2 mA 
current was delivered in the first 10 s and was turned off for the 
remainder of the 20-min period. Therefore, the participants in both 
stimulation groups felt a subtle tingling sensation in the first 20 s when 
the current was gradually increasing to 2 mA because the current 
intensity was very low. They became accustomed to the stimulation 
and no longer felt it throughout the rest of the session. This sensory 
adaptation meant that participants could not differentiate one 
stimulation protocol from the other (i.e., active vs. sham tDCS), and 
thereby blinding of the participants to the treatment assignments (29). 

During training, the trainers closely monitored the participant’s 
response to tDCS and the participants were asked any pain or 
discomfort due to the stimulation. tDCS would be  immediately 
terminated if any pain or discomfort was reported by the participants.

2.3 Data collection

2.3.1 Baseline cognitive and lower extremity 
motor function assessments

Before starting the training, the Mini-Mental State Examination 
(MMSE) and Fugl-Meyer LE motor test (F-M) were used to assess 
participants’ cognitive and LE motor functions (55, 56).

2.3.2 Ground reaction force
Four force plates (AMTI Inc.) were used to measure force exerted 

under the paretic and non-paretic legs during a voluntary SI (see 
Figure  2C). Ground reaction force (GRF) data were collected at 

FIGURE 1

Consolidated Standards of Reporting Trials (CONSORT) Flow Chart. A total of 10 participants were enrolled and randomly assigned into one of two 
intervention groups: anodal transcranial direct current stimulation (a-tDCS) or sham transcranial direct current stimulation (s-tDCS) groups. All 
participants completed a four-week visuomotor stepping training (VST) paired with the assigned tDCS and two follow-up tests after the completion of 
the intervention (one-week and one month follow-up tests). Data from ten participants were analyzed, including data loss of three participants’ pre-
training data caused by a hard drive crash.
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1,000 Hz. The participants maintained a quiet standing posture with 
each leg placing on two separate force plates. They were instructed to 
make a forward step onto the initiate as fast as possible once they 
sensed a small cutaneous electrical stimulation delivered to the 
popliteal fossa of the paretic leg. Three step trials were collected during 
pre-training, post-training, 1-week, and 1-month follow-up tests.

2.4 Data analyses

Force data and time events were calculated using custom MATLAB 
(Mathworks, Natick, MA) software. Offline, force data were filtered by a 
low-pass Butterworth filter with a cut-off frequency set at 10 Hz. Three 
time events were identified based on the changes in vertical GRF (vGRF) 
under the paretic and non-paretic leg: (1) paretic heel-off (H-Off; vGRF 
> = 20 N), (2) paretic heel-on (H-On; vGRF > = 20 N), and (3) the onset of 
APA (APA-On; vGRF under the non-paretic leg first decreased more than 
5% of its baseline mean value during quiet standing) (26, 57). The 
durations of the three movement phases were calculated based on these 
events within each step trial (see Figure 2D): response time (RTP), weight 
transfer (WTP), and stepping execution (SEP) phases (26, 57); RTP was 
the time duration from the electrical stimulation to APA-on; WTP was 
the time duration from the end of RTP to onset of heel-off on the stepping 
leg. The WTP encompasses the very well-characterized and stereotyped 
lateral weight shift, first toward the stepping side, then the supporting side, 
that rapidly unloads the stepping leg before SI. SEP was the time duration 
from the end of WTP to subsequent heel strike of the stepping leg onto 
the target. Three force variables were calculated to determined changes in 

WB and force production: (1) percent of BWB under the paretic leg 
during one-second quiet standing period (i.e., baseline) prior to the 
electrical stimulation (B-vGRF) and (2) peak vGRF developed under the 
paretic leg prior to SI (P-vGRF). All force data were normalized to 
individual body weight (N/Kg). The B-VGRF was then expressed as the 
percent of the sum of paretic and non-paretic vGRF.

To quantify the effects of tDCS on the skill retention of the paretic 
BWB and onset of APA during SI, we calculated the retention of paretic 
B-vGRF and RTP, relative to the post-training values, normalized to its 
mean values measured 1 day post-training (29, 58). This allowed us to 
account for differences among individuals, thereby comparing changes in 
paretic BWB and APA in the real world (i.e., home and community) after 
completion of the 4-week stepping training. A value of 100% indicated no 
change in paretic BWB at 1 week or 1 month post-training. Decreasing 
this percentage therefore reflects less retention of the training effect over 
time. Group means were calculated for two follow-up time points (1-week 
and 1-month post-training).

2.5 Statistics

Statistical comparisons between two groups (a-tDCS vs. s-tDCS) 
across four time points (pre- and post-training, 1-week and 1-month 
follow-up tests) were made using SAS software (SAS Inc., Cary, NC). A 
two-way mixed model analysis of variance (ANOVA) with repeated 
measures (groups × testing times) was used to compare differences in 
group reaction forces and movement phases between groups and across 
four testing times to quantify weight transfer and BWB improvement on 

FIGURE 2

Study Protocol (A) Study Design, (B) Set up for visuomotor stepping task (VST), (C) Set up for the ground reaction forces (GRF) measured during step 
initiation, and (D) Vertical ground reaction force (vGRF) recorded by four force plates during a step initiation trial. (A) Participants were randomly 
assigned to one of two tDCS groups (anodal or sham tDCS) and underwent twelve training sessions over a four-week period. GRF were measured 
before and one day after training, one week and one month after training. (B) Subjects learned to move the foot cursor to a visual target using real-
time visual feedback and were instructed to step onto the target as fast as possible and as accurate as possible without loss of the balance. This 
stepping training were paired with either either anodal or sham tDCS. (C) An overhead view of the experimental setup for GRF measures under the 
paretic leg and non-paretic leg during step initiation. In a step trial, the participant was instructed to take a forward step using his paretic leg onto the 
force plates (#3) in front of him, followed by taking another step forward using his non-paretic leg(#4). (D) An illustration of vGRF exerted under the 
paretic (Red lines) and the non-paretic leg (Blue lines) from four force plates during a step initiation trial. A cutaneous electrical stimulation (i.e. dash 
line) was used to cue the participant to make a voluntary step forward. The onset of the anticipatory postural adjustment (APA) was determined by first 
increasing vGRF under the paretic leg (i.e. upper panel, red line). The vGRF data under the stepping leg were used to determine the duration of three 
movement phases: response time (RT), weight transfer (WT), and step execution (SE) phases.
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the paretic leg associated with stepping training and brain stimulation. 
When ANOVA was significant, post-hoc analyses were performed using 
Tukey’s honestly significant difference (HSD) test. The level for statistical 
significance was set at p ≤ 0.05.

3 Results

Figure 2D illustrates the plots of vGRF exerted under the paretic (red 
lines) and non-paretic leg (blue lines) from a representative participant 

during SI. The paretic vGRF was increased during APA prior to paretic 
heel-off (Figure  2D, upper, red line). Table  2 provides statistical 
comparisons between groups at four time points for movement phases 
and GRF measures. The a-tDCS group significantly increased paretic 
B-vGRF from their pre-training and post-training values at 1 week post-
training (post hoc, p = 0.007 and 0.0007, respectively). After normalization 
to the post-training B-vGRF, the retention of paretic B-vGRF was 
significantly higher in the a-tDCS group compared with the s-tDCS group 
(main effect of group, p = 0.036). There was a significant interaction effect 
for the retention of paretic B-vGRF (p = 0.02). The retention of paretic 

TABLE 2 Outcome variables of the step initiation test (means ± standard deviations).

a-tDCS s-tDCS Group Time Group × time interaction

Response Time Phase (RTP, millisecond) 0.67 0.17 0.83

  Pre-training 565.73 ± 433.18 514.75 ± 128.34

  Post-training 397.89 ± 292.75 311.25 ± 203.68

  One-week 288.45 ± 142.20 305.83 ± 233.56

  One-month 519.93 ± 456.09 405.92 ± 116.33

Weight Transfer Phase (WTP, millisecond) 0.18 0.31 0.54

  Pre-training 852.33 ± 523.86 676.25 ± 191.27

  Post-training 990.67 ± 333.43 762.58 ± 254.65

  One-week 1639.50 ± 1045.09 848.50 ± 314.28

  One-month 983.80 ± 456.30 859.67 ± 396.67

Step Execution Phase (WTP, millisecond) 0.22 0.68 0.34

  Pre-training 714.93 ± 253.63 531.25 ± 79.55

  Post-training 888.47 ± 570.28 467.96 ± 98.25

  One-week 604.94 ± 285.78 537.09 ± 120.16

  One-month 586.34 ± 243.51 500.67 ± 88.75

*Baseline Paretic Weight Bearing (B-vGRF, %) 0.82 0.03 0.009

  Pre-training 39.46 ± 6.85 44.59 ± 11.34

  Post-training 41.94 ± 14.77 45.57 ± 7.07

  One-week 53.63 ± 11.68 30.7 ± 5.02 1-wk > Post-T, p = 0.035

a-tDCS, 1-wk > Pre-T, p = 0.007

a-tDCS, 1-wk > Post-T, p = 0.0007

  One-month 48.51 ± 14.78 25.5 ± 3.39

Peak Paretic Weight Bearing (P-vGRF, N/Kg) 0.77 0.13 0.08

−5.21 ± 1.15 −5.49 ± 1.34

−4.37 ± 3.09 −5.96 ± 1.55

−6.73 ± 1.88 −5.82 ± 2.29

−5.99 ± 2.07 −6.25 ± 1.57

Retention of RTP (%) 0.26 0.08 0.53

  Post-training 0 0

  One-week −14.38 ± 41.58 4.35 ± 52.38

  One-month 18.59 ± 46.22 69.07 ± 95.83

**Retention of B-vGRF (%) 0.036 0.06 0.02

  Post-training 100 100

  One-week 132.89 ± 25.37 96.08 ± 11.50 a-tDCS > s-tDCS

1-wk: a-tDCS > s-tDCS; p = 0.008

a-tDCS: 1-wk > Post-T; p = 0.003

  One-month 115.03 ± 13.14 101.43 ± 12.33

*Significant effects of time and interaction of group by time. **Significant effects of group, and interaction of group by time. P, paretic; Post-T, post-training; Pre-T, pre-training; 1-wk, one-
week follow-up test; 1-mon, one-month follow-up test; B-vGRF, baseline vertical ground reaction force; P-vGRF, peak vertical ground reaction force.
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B-vGRF 1-week post-training was significantly higher in the a-tDCS 
group compared with the s-tDCS group (post hoc, p = 0.008), suggesting 
that a-tDCS may help retain the training-induced BWB improvement on 
the paretic leg up to 7 days post-training. Additionally, the a-tDCS group 
showed a significant increase in retaining paretic B-vGRF at 1 week post-
training compared with its post-training average (post hoc, p = 0.003).

There were no adverse effects (i.e., pain or discomfort) reported 
by the participants in this study. Although not formally documented 
in the training logs, approximately 50% of the participants in each 
group have reported the most common side effects (i.e., mild itching 
or tingling) during current ramp up (i.e., the first 20 s of stimulation) 
and this sensation started to fade within the first 2 mins of the 
stimulation; afterward, they no longer feel anything throughout the 
training session. These symptoms were mild and transient and did not 
affect their performance in each training session.

4 Discussion

In this pilot study, we investigated the combined effect of a-tDCS 
and VST training on the improvement of weight transfer and loading 
on the paretic leg during SI in PCS, and its retention over a one-month 
follow-up period. The study showed that a-tDCS paired with a 1-week 
VST program results in a significant increase in paretic weight loading 
at 1-week follow up. Furthermore, a-tDCS in combination with VST 
led to significantly greater retention of paretic BWB compared with 
the sham group at 1 week post-training.

4.1 a-tDCS combined with VST leads to 
significantly greater retention of paretic 
BWB 1-week post-training

The primary finding was that a-tDCS improved the retention of 
paretic BWB for PCS up to 7 days after completion of a 4-week VST 
program. The paretic BWB in the a-tDCS group was significantly 
increased at 1-week follow-up compared to its pre-training and post-
training values, suggesting a-tDCS may help with short-term 
retention of improved paretic limb loading. tDCS has been used as 
an adjuvant to motor skill learning and therapeutic interventions (or 
functional training) for enhancing learning and motor functions in 
health and disease. A general assumption is that the application of 
tDCS enhances motor cortical excitability, leading to improved 
motor performance and motor learning (59). Furthermore, the 
increased neural excitability persists even after cessation of 
stimulation, referred to as a long-lasting “after-effect” (60, 61). In 
humans, anodal tDCS can produce a persistent after-effect, which 
increased neural excitation to up to 150% of its baseline value; this 
excitatory effect can last for approximately 60–90 min after the end 
of stimulation (54, 61, 62). It has been postulated that this long-
lasting neural excitation may promote better skill retention after 
training (e.g., the retention of the paretic body weight bearing) (59). 
Thus, over the course of motor skill acquisition/training phases, the 
effects of a-tDCS-induced skill improvement (“skill gains”) can take 
place during the practice session (online learning) and between 
training sessions (offline learning). After completion of training, 
a-tDCS may help maintain the skill gains (“skill retention”) in the 
absence of skill practice or training (33, 59). In this pilot, we aimed 

to investigate the immediate and short-term impacts of a-tDCS on 
paretic BWB in PCS at three time points: 1 day (skill gains primarily 
via online learning), 1 week and 1 month post training (skill 
retention via consolidation). The preliminary results suggest that 
both a-tDCS and s-tDCS groups showed similar degrees of paretic 
BWB improvement immediately after a 4-week VST program. The 
finding is consistent with previous studies suggesting that tDCS-
induced learning enhancement is task-specific (31, 50). In other 
words, tDCS augments motor skill learning restricted to the specific 
“trained” skill (stepping task) and can augment other locomotor skill 
performances (e.g., SI or GI). A study of hand pinch task learning in 
PCS showed that, when tDCS was added to a five-day training, hand 
pinch performance was significantly better relative to sham, mostly 
in online learning (i.e., during practice sessions) although additive 
effects of tDCS did not generalize to other “untrained” hand skills 
(e.g., Jebsen Taylor hand function test). The effect of this hand pinch 
task led to a significant increase in isometric pinch force on the 
paretic hand (50). Our pilot study suggested that a-tDCS may 
enhance short-term paretic BWB maintenance up to 7 days after the 
termination of stepping training. Compared with motor training 
alone (i.e., VST with s-tDCS), in the absence of skill practice, the 
a-tDCS group had a greater degree of skill retention for paretic BWB 
from its post-training values at 1 week follow-up; the s-tDCS group 
had a significant lower paretic BWB retention at 1-week follow-up 
compared to the a-tDCS group. Findings suggest that for PCS, 
a-tDCS enhances the short-term retention of paretic BWB 
improvements primarily via the offline effects – likely through 
consolidation. This short-term, a-tDCS-induced enhancement of 
skill retention has important scientific and practical implications for 
stroke rehabilitation.

4.2 a-tDCS does not improve APA during SI 
in PCS

The preliminary results suggest that there was no additive 
effect of a-tDCS on the improvements of APA during SI in 
PCS. Both a-tDCS and s-tDCS groups showed similar degrees of 
the RTP improvements immediately after a 4-week VST program. 
The RTPs post training for both a-tDCS and s-tDCS groups 
(397.89 and 311.25 ms respectively) were not different from their 
pre-training values (565.73 and 514.75 ms respectively). During 
GI or SI, PCS often presents impaired APA compared to healthy 
adults, characterized by abnormal APA patterns (no APA or 
multiple APAs), impaired muscle activations, slower APA 
initiation, longer APA duration, and lower GRF amplitudes (20, 
21, 63, 64). Consistent to previous studies in healthy adults and 
PCS, both a-tDCS and s-tDCS groups demonstrated impaired 
APA, characterized by slower RTPs (i.e., delayed initiation of 
APA) and longer WTPs (i.e., prolonged APA duration). A slower 
RTP and prolonged APA duration suggest a decreased ability to 
initiate and organize APA effectively, essential for maintaining 
postural stability and forward body progression prior to initiating 
a forward step. Furthermore, impaired APA in PCS has negative 
impacts on gait performance as research has shown that impaired 
APA is correlated with slower gait speed, shorter step length, 
greater motor impairment, less motor recovery, and poor balance 
(7, 20, 63).
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4.3 VST is feasible to be an effective 
intervention to facilitate APA during GI in 
PCS

Decreasing RTP after a 4-week VST program in PCS has 
important implications for stroke gait rehabilitation as VST can 
be used to target PCS who has impaired or no APA during GI. In this 
pilot study, each participant had completed a total of 1,680 stepping 
training trials within 4 weeks, including 840 trials with the use of the 
paretic leg as the leading leg and 840 trials with the use of the 
non-paretic leg as the leading leg during SI. Research has shown that 
decreased paretic tibialis anterior (TA) muscle activation is the main 
mechanism underlying impaired or absence of APA during GI in PCS 
(5, 8, 12, 18, 65). Furthermore, it has been reported that the paretic TA 
activation was increased by between 27% and 36% when initiating gait 
with the nonparetic limb in PCS (8). Therefore, the main mechanism 
underlying the improvement of RTP after a 4-week VST program is 
likely associated with the practice of using the nonparetic leg as a 
leading leg during stepping training, leading to improving paretic TA 
activation and APA during SI. Increasing paretic TA muscle activity 
during SI or GI serves to provide initial propulsive forces that shift the 
whole-body forward (5). This can lead to improving postural stability 
and propulsive force production; therefore, translate to a significant 
improvement in gait performances for PCS.

The results from this pilot study also suggest that VST combined 
with a-tDCS may enhance the excitation of the lesioned primary motor 
cortex (M1), leading to improvements of paretic locomotor control for 
PCS. It is known that motor skill learning is accompanied by a transient 
increase in corticospinal excitability as quantified by increased motor 
evoked potential (MEP) amplitudes after training (66–69). Furthermore, 
motor skill training accompanied by motor priming strategies such as 
noninvasive brain stimulation (i.e., tDCS) can increase M1 excitation 
and enhance skill learning. The premise is that tDCS-induced increases 
in cortical excitation will be further augmented when accompanied by 
learning a goal-directed task (i.e., VST). For stroke gait rehabilitation, a 
relatively new motor priming strategy—a combination of tDCS and 
motor skill training—has been proposed for maximum motor priming 
benefit as both modalities (i.e., skill training and tDCS) result in 
increased corticospinal excitation (58, 70–74). The findings from this 
pilot study suggest that VST combined with a-tDCS may increase 
cortical excitation of the lesioned M1which in turns improves paretic 
weight bearing during gait initiation in PCS.

tDCS appears to be safe and feasible for inpatient and outpatient 
rehabilitation settings as well as home-based applications (75–78). The 
safety, technical parameters, and application guidelines of tDCS have been 
investigated and recommended to minimize adverse effects and ensure 
safety of the participants in research (78–81). A recent systematic review 
from 18,000 research sessions in about 8,000 subjects found no evidence 
of serious adverse events or neuronal damages in a variety of populations, 
including the stroke population (79). The most common side effects 
include itching (a-tDCS vs. s-tDCS group: 39.3% vs. 32.9%), tingling 
(22.2% vs. 18.3%), headache (14.8% vs. 16.2%), burning sensations (8.7% 
vs. 10%) and discomfort (10.4% vs. 13.4%), with no significant differences 
between active and control groups (78, 82). Consistent with previous 
studies in healthy adults and PCS, the participants in this study reported 
the most common side effects including itching or tingling during current 
ramp up or ramp down (78, 83, 84). These symptoms were mild and 
transient and did not affect their performance in each training session, 

Overall, the findings from this pilot study consistent with previous 
research supporting the safety of tDCS (79, 83).

Taken together, the findings from this pilot study suggest that VST 
may be feasible for improving the paretic BWB, leading to improving 
postural stability during GI and overall gait performances in 
PCS. Moreover, a-tDCS paired with stepping training can Improve the 
short-term retention of paretic BWB post stepping training.

4.4 Limitations

There are two major limitations in this study that could 
be  addressed in future research, The first limitation is the 
generalization of these results to the chronic stroke population due to 
small sample size. The second limitation concerns the baseline group 
differences which may result in different capabilities for GRF 
productions during SI. The participants in the s-tDCS group are 
younger with higher baseline lower-extremity motor function and 
may have a greater potential for GRF improvements following a 
4-week VST compared to those in the a-tDCS group. This pilot study 
took the first step to explore the feasibility of combing stepping 
training and tDCS on the retention of paretic BWB and weight 
transfer in PCS. Future research studies with larger samples or clinical 
trials are needed to gain insights of neurological mechanisms 
underlying tDCS on the APA improvement and paretic BWB 
retention in PCS.

4.5 Clinical implications

Findings from this pilot study may have important clinical 
implications for geriatric population and individuals with neurological 
disorders, who have decreased ability to initiate and organize APA 
during GI, leading to postural instability and poor gait performance.
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