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Objective: We introduce the comprehensive inflammatory prognostic index 
(CIPI), a novel prognostic tool for critically ill cerebral infarction patients, 
designed to meet the urgent need for timely and convenient clinical decision-
making in this high-risk patient group.

Methods: Using exploratory factor analysis on selected indices—neutrophil 
to lymphocyte ratio (NLR), systemic inflammation response index (SIRI), 
and systemic immune inflammation index (SIII)—we derived CIPI, a latent 
variable capturing their combined predictive power. Data from 1,022 patients 
in the Medical Information Mart for Intensive Care (MIMIC)-IV database were 
used to develop CIPI-based survival models, with the robustness and area 
under the receiver operating characteristic curve (AUC) performance of CIPI 
validated against an independent dataset of 326 patients from the MIMIC-III 
CareVue subset. The CIPI’s predictive power for in-hospital and intensive care 
unit (ICU) mortality was assessed through Kaplan–Meier analysis, univariate 
and multivariate Cox regression models, and time-dependent AUC analysis. 
Linearity, subgroup sensitivity analyses and interaction effects with CIPI were 
also evaluated.

Results: CIPI was an independent prognostic factor, demonstrating a statistically 
significant association with in-hospital and ICU mortality, when assessed as 
a continuous and a categorical variable. It showed a linear relationship with 
mortality rates and demonstrated stability across most subgroups, with no 
significant interactions observed. Its predictive capabilities for in-hospital and 
ICU mortality among critically ill cerebral infarction patients matched those of 
established prognostic indices in the MIMIC database.

Conclusion: Our study indicates that CIPI is a reliable and effective prognostic 
tool for critically ill cerebral infarction patients in predicting in-hospital and ICU 
mortality. Its straightforward calculation, rooted in routine blood tests, enhances 
its practicality, promising significant utility in clinical settings.
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Introduction

Critically ill patients suffering from cerebral infarction, a distinct 
and severe form of ischemic stroke, constitute a subgroup with 
substantial healthcare needs (1). Marked by significant neurological 
deficits and prone to multi-system complications and comorbidities, 
these individuals often require intensive care unit (ICU) management 
(2, 3). The seriousness of their condition is mirrored in the elevated 
mortality rates observed during their hospital stays (4, 5), 
underscoring the pressing need for enhanced prognostic tools. 
Precisely and timely predicting which patients in the ICU with 
cerebral infarction are most at risk of adverse outcomes is a critical 
clinical imperative; it is a key determinant that can profoundly 
influence the direction of therapeutic strategies and patient care (6). 
Building on previous research, our study is committed to identifying 
an independent and comprehensive prognostic index that is not only 
effective but also accessible in predicting in-hospital and ICU 
mortality for this at-risk patient group.

Increasingly, prognostic significance in critically ill patients with 
cerebral infarction is being assigned to inflammation-related 
composite hematological indices (7–9). Indices such as the neutrophil 
to lymphocyte ratio (NLR), systemic inflammation response index 
(SIRI), and the systemic immune inflammation index (SIII) have all 
been independently associated with in-hospital mortality in critically 
ill patients with cerebral infarction (8–10). However, including these 
highly correlated composite hematological indices in survival analysis 
models simultaneously can lead to common issues like 
multicollinearity, complicating their interpretation and potentially 
weakening the model’s overall predictive accuracy (11–13). To 
overcome this issue, our study implemented a novel, data-driven 
approach. Initially, we performed a preliminary screening of various 
composite inflammatory indices to select those with the best 
predictive capabilities. After that NLR, SIRI, and SIII were selected 
based on their superior predictive abilities. Subsequently, we applied 
exploratory factor analysis (EFA) to these chosen indices, leading to 
the identification of a latent variable, which we  have named the 
comprehensive inflammatory prognostic index (CIPI). CIPI 
encapsulates the predictive capacities of each of the three individual 
indices, enhancing their combined utility and potentially addressing 
the inherent limitations by integrating highly correlated and collinear 
variables into a single model.

The aim of our study was to identify and confirm CIPI as an 
independent prognostic factor for critically ill patients with cerebral 
infarction, with a specific focus on in-hospital and ICU mortality, and 
to evaluate its predictive performance. This endeavor seeks to equip 
clinicians with a more effective and convenient tool, thereby 
enhancing their decision-making capabilities in patient care and 
potentially improving treatment outcomes.

Methods

Data source

In our study, we predominantly used the Medical Information 
Mart for Intensive Care (MIMIC)-IV (v2.2) database, a valuable and 
comprehensive resource for critical care research (14, 15). To enhance 
the robustness of our findings, we performed an external validation 

using the CareVue subset of the MIMIC-III (v1.4) database (15, 16). 
This subset supplied an independent collection of patient data not 
found in MIMIC-IV, enabling us to circumvent any duplication due 
to overlapping admissions. The first author, after completing the 
National Institutes of Health’s Protecting Human Research Participants 
web course, secured permission to access these datasets. The research 
committees at the Massachusetts Institute of Technology and Beth 
Israel Deaconess Medical Center approved their use for research, and 
a waiver of informed consent was granted.

Data extraction and variables selection

Data extraction was executed using Python’s SQLAlchemy and 
pandas libraries, connected to a PostgreSQL (version 13.7.2) database, 
and leveraging Structured Query Language (SQL) for the necessary 
queries. Critically ill patients diagnosed with cerebral infarction were 
identified in the database by the following International Classification 
of Diseases, Ninth Revision (ICD-9) codes: 43,301, 43,311, 43,321, 
43,331, 43,381, 43,391, 43,401, 43,411, and 43,491; as well as the Tenth 
Revision (ICD-10) code I63. The deduplication process was conducted 
based on clinical rationale, prioritizing the initial cerebral infarction 
diagnosis for each unique ICU stay. In cases of multiple ICU stays 
within a single hospital admission, any occurrence of death was 
considered a single mortality event. If no death occurred, the record 
corresponding to the patient’s first ICU stay was selected. 
We eliminated all patients with primary blood diseases by using ICD 
codes, as well as patients for whom records of lymphocytes, 
monocytes, neutrophils or platelet were absent (Figure 1).

In the selection of covariates from the MIMIC-IV database, 
we prioritized those with no missing values or those where less than 20% 
of the data was missing, with missing values for relevant variables filled 
in using the KNNImputer method (17). Notably, initial post-admission 
results were used for laboratory indicators. Averages for vital signs were 
taken from the first 24 h in the ICU, during which time established and 
widely-recognized prognostic scores were also assessed; these scores 
were later compared with the CIPI to evaluate predictive accuracy.

For external validation of CIPI, the same extraction, deduplication, 
and data processing methods were applied to the MIMIC-III CareVue 
subset, following the exact standards used with the MIMIC-IV database. 
The data processing included outlier exclusion, data transformation, 
standardization, and latent variable weight extraction. The MIMIC-III 
CareVue subset was employed to validate univariate Cox regression 
analysis of CIPI, SIRI, SIII, and NLR, as well as the time-dependent area 
under the receiver operating characteristic curve (AUC) analysis for 
predicting in-hospital and ICU mortality using CIPI.

Clinical outcomes

The primary outcome measure in the present study was in-hospital 
mortality, with ICU mortality as the secondary outcome.

Statistical analysis

Initially, we applied time-dependent AUC analysis to the raw data 
from the MIMIC-IV database, aiming to identify appropriate manifest 
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variables for EFA (Figure  1). This analysis focused on a broad 
spectrum of composite hematological indices. These selected manifest 
variables (SIRI, SIII, and NLR) underwent correlation and 
multicollinearity analyses, outlier removal, and normality testing via 
the Shapiro–Wilk test, histograms, and Q-Q plots. To enhance their 
normality, we  applied a Box-Cox transformation. Following the 
standardization of these variables, they were subjected to Kaiser-
Meyer-Olkin and Bartlett’s Test of Sphericity to assess their suitability 
for EFA. Subsequently, we conducted EFA, generating a factor scoring 
coefficient equation that enabled us to calculate the latent variable 
score and evaluate its contribution (Figure 1).

We treated CIPI both as a continuous variable and divided it into 
four groups based on quartiles (Q1, Q2, Q3, Q4). Furthermore, all 
other variables were similarly divided into quartile-based groups 
corresponding to the CIPI quartiles for subsequent analyses and 
comparisons. Continuous variables are reported as the median and 
interquartile range. Categorical variables are represented as frequency 
counts and percentages. The quartile groups were compared using the 
Kruskal-Wallis test for continuous variables due to their 
non-parametric distribution, and the Chi-square test was employed 
for categorical variables.

Kaplan–Meier analysis evaluated in-hospital and ICU mortality 
across CIPI quartiles (Q1–Q4), with survival differences tested using 
log-rank tests. We assessed the linearity of CIPI using a restricted 

cubic spline with default knots. This was followed by a comparison 
between linear and non-linear Cox models via the Akaike Information 
Criterion (AIC) and an ANOVA test. We applied Cox proportional 
hazards models to compute the hazard ratios (HR) and 95% 
confidence intervals (CI) associated with the CIPI, using both its 
continuous form and quartile divisions (Q1–Q4), with reference to 
Q1. Model covariates were chosen based on clinical relevance, 
prognostic value from literature, and expert opinion. Trend p-values 
across quartiles were additionally computed to assess the dose–
response relationship. We conducted sensitivity analyses to further 
evaluate the robustness of our findings. In these analyses, CIPI’s 
predictive value was assessed across different patient subgroups, 
including factors such as sex, age, marital status, whether cerebral 
infarction was the first diagnosis, and the presence of comorbidities 
like diabetes, heart failure, kidney disease, and sepsis. Separate Cox 
proportional hazards models were utilized for each subgroup, and the 
value of p for interaction was assessed to determine the existence of a 
significant interaction effect. Time-dependent AUC analysis was 
employed to assess the predictive accuracy of the CIPI in comparison 
with other established ICU patient prognosis scores available in the 
MIMIC database. Detailed information on these scores can be found 
at: https://github.com/MIT-LCP/mimic-code/tree/main/mimic-iv/
concepts_postgres/score. The Delong method was used to ascertain 
the statistical significance of AUC differences.

FIGURE 1

Computation process of the latent variable for survival analysis. We conducted a thorough evaluation of multiple inflammation-related composite 
hematological indices, using time-dependent AUC analysis as the criterion to identify suitable manifest variables for exploratory factor analysis. 
Ultimately, NLR, SIRI, and SIII were selected for the factor analysis. The initial inflammation-related composite hematological indices evaluated were as 
follows: SIRI (systemic inflammation response index)  =  (neutrophil * monocyte)/lymphocyte; SIII (systemic immune inflammation index)  =  (platelet * 
neutrophil)/lymphocyte; NLR (neutrophil to lymphocyte ratio)  =  neutrophil/ lymphocyte; LMR (lymphocyte to monocyte ratio)  =  lymphocyte/
monocyte; PWR (platelet to white blood cell ratio)  =  platelet /white blood cell; PNR (platelet to neutrophil ratio)  =  platelet /neutrophil; PLR (platelet to 
lymphocyte ratio)  =  platelet/lymphocyte.
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Statistical significance was set at a two-tailed p-value < 0.05. A 
variance inflation factor (VIF) greater than 10 was taken to indicate 
the presence of multicollinearity. We conducted a power analysis for 
determining the minimum effective sample size required for our 
multivariate Cox regression analysis, following the method proposed 
by Riley et al. and utilizing the “pmsampsize” R package (18, 19). The 
key parameters selected for our analysis included: an event rate of 
12%, representing the lowest integer value for in-hospital and ICU 
mortality rates observed in our cohort; a maximum of 17 candidate 
predictors, which was the highest number included in any of our 
constructed Cox regression models; and a Cox and Snell R-squared 
value set at 0.15. Our conservative estimate yielded a minimum 
effective sample size of 933, which is surpassed by the size of our 
actual sample. Analyses were executed using R software (version 4.2.3) 
and Python (version 3.9.13).

Results

CIPI and baseline characteristics

The selected manifest variables for EFA, NLR, SIRI, and SIII, 
exhibiting higher AUC across various time points, demonstrated 
strong correlations and multicollinearity, as shown by their high 
Pearson coefficients and variance inflation factors (VIFs; Figure 1). 
Following outlier removal, normality checks, and Box-Cox 
transformations, our data met the criteria for EFA (Figure 1). The 
resulting CIPI, derived from our EFA, is as follows: CIPI = 0.896 *SIII 
+0.797 *SIRI +0.923 *NLR. A total of 1,022 patients from the 
MIMIC-IV database were ultimately enrolled for analysis. The median 
age of the enrolled patients was 69 [59, 80] years, and 530 (51.9%) 
were men. The in-hospital mortality and ICU mortality rate were 
17.4% and 12.8%, respectively. A total of 326 patients were selected 
from the MIMIC-III CareVue subset. The median age of the enrolled 
patients was 75 [59, 83] years, and 156 (47.9%) were men. The 
in-hospital mortality and ICU mortality rate were 30.4% and 19%, 
respectively.

Table 1 presents a comprehensive analysis of the variables in the 
study cohort, based on the CIPI quartiles. A progressive trend was 
observed across the quartiles for a wide array of variables. Specifically, 
the rates of congestive heart failure, sepsis3, RDW, PT, BUN, glucose, 
heart rate, respiratory rate, SAPSII, APSIII, hospital expire time, 
WBC, neutrophils, NLR, PLR, SIII, and SIRI increased incrementally 
from Q1 to Q4. Conversely, the median values of PPT, eosinophils, 
lymphocytes, LMR, PNR, and PWR showed a significant decrease 
from Q1 to Q4. The mortality rates within the hospital and ICU 
settings also escalated with higher CIPI scores, with in-hospital 
mortality rates rising from 10.5% in Q1 to 27.7% in Q4 and ICU 
mortality rates increasing from 8.2% in Q1 to 18.8% in Q4. These 
findings highlight the stepwise changes in clinical parameters across 
CIPI quartiles and underscore the potential role of CIPI scores in risk 
stratification among critically ill patients with cerebral infarction.

Survival curves and linearity assessment

Kaplan–Meier survival curves were plotted for the four groups 
defined by CIPI quartiles and compared using the log-rank test. The 

p-values of 0.00011 and 0.012, displayed on the survival plots 
(Supplementary Figures  1A,B), denote statistically significant 
differences in survival distributions across these quartiles. This 
highlights the impact of CIPI on both patient in-hospital mortality 
and ICU mortality. According to the restricted cubic spline plots and 
AIC comparisons (p = 0.051 and p = 0.132), CIPI appears to have a 
linear relationship with both in-hospital and ICU mortality rates 
(Supplementary Figures 1C,D).

Univariate Cox regression analysis

In the MIMIC-IV dataset (Table 2), all four indices (CIPI, SIRI, 
SIII, and NLR) showed significant HR with both in-hospital and 
ICU mortality when treated as continuous variables. In quartile 
analysis, all indices, excluding SIII, exhibited significant HR 
differences between Q1 and Q4, along with a significant increasing 
trend from Q1 to Q4. Notably, CIPI also revealed a significant HR 
difference between Q1 and Q3. When we applied the same methods 
used in the MIMIC-IV dataset to the MIMIC-III CareVue subset 
(Table 2), only CIPI demonstrated statistically significant HR in 
predicting both in-hospital and ICU mortality when treated as a 
continuous variable. Analyzed as quartiles, all indices lacked 
significant trends from Q1 to Q4, likely due to the smaller sample 
size. For in-hospital mortality, only CIPI demonstrated a significant 
HR difference between Q1 and Q4. For ICU mortality, such a 
significant HR difference was seen only in CIPI and SIII between 
Q1 and Q3. The results consistently emphasized the superior 
predictive performance and robustness of CIPI over its individual 
manifest variables used in the EFA, in both the original dataset and 
external validation, thus underscoring the value of consolidating 
these variables into a single index.

Multivariate Cox regression analysis

As seen in Table  3, our results indicate that the CIPI, as a 
continuous variable, consistently exerted significant predictive power 
for both in-hospital and ICU mortality across all four models, 
emphasizing its independence and robustness as a prognostic factor. 
Upon categorization into quartiles, a significant trend in CIPI signaled 
a dose–response relationship with mortality risk. Particularly for 
in-hospital mortality, higher CIPI quartiles were significantly 
correlated with increased risk across all models. This, however, was 
not mirrored in ICU mortality, where interquartile comparisons did 
not consistently show statistical significance. This suggests that the 
CIPI quartiles might not be  able to capture the nuances of ICU 
mortality risk effectively. To address this, we transformed CIPI into a 
trichotomy, which revealed that higher CIPI values were indeed 
significantly associated with elevated ICU mortality risk. These 
findings underscore the potential utility of CIPI as a nuanced 
prognostic tool for critically ill patients with cerebral infarction.

Utilizing all independent prognostic factors identified in above 
models, and corroborated through VIF analysis to avoid 
multicollinearity with well-recognized ICU prognostic indicators, 
we  formulated our final model, as demonstrated in Figure 2. The 
results showed that, for in-hospital mortality prediction, only CIPI 
and SAPSII surfaced as independent prognostic factors. On the other 
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TABLE 1 Baseline characteristics of the study population in MIMIC-IV v 2.2.

Characteristic Total (n  =  1,022) Q1 (n  =  256) Q2 (n  =  255) Q3 (n  =  255) Q4 (n  =  256) P-value

Demographics

Age (years) 69.30 [59.21,80.05] 68.74 [59.66,78.70] 70.67 [60.53,81.81] 68.62 [57.87,78.87] 70.15 [59.31,81.05] 0.371

Male, n(%) 530 (51.9) 119 (46.5) 131 (51.4) 139 (54.5) 141 (55.1) 0.190

Married, n(%) 412 (40.3) 111 (43.4) 104 (40.8) 106 (41.6) 91 (35.5) 0.309

Race, n(%) 0.553

White 638 (62.4) 162 (63.3) 154 (60.4) 153 (60.0) 169 (66.0)

Black 136 (13.3) 39 (15.2) 36 (14.1) 34 (13.3) 27 (10.5)

Other 248 (24.3) 55 (21.5) 65 (25.5) 68 (26.7) 60 (23.4)

Insurance, n(%) 0.086

Medicaid 67 (6.6) 15 (5.9) 12 (4.7) 17 (6.7) 23 (9.0)

Medicare 480 (47.0) 115 (44.9) 121 (47.5) 110 (43.1) 134 (52.3)

Other 475 (46.5) 126 (49.2) 122 (47.8) 128 (50.2) 99 (38.7)

LOS hospital, (days) 9.97 [4.97,18.70] 7.60 [3.53,15.19] 10.73 [5.16,19.55] 10.92 [5.11,19.66] 11.68 [6.38,20.52] <0.001

hospital mortality, n(%) 178 (17.4) 27 (10.5) 27 (10.6) 53 (20.8) 71 (27.7) <0.001

LOS ICU, (days) 4.20 [1.89,9.95] 3.30 [0.69,7.64] 4.15 [1.80,10.62] 4.85 [2.34,11.70] 4.84 [2.17,10.86] 0.001

ICU mortality, n(%) 131 (12.8) 21 (8.2) 20 (7.8) 42 (16.5) 48 (18.8) <0.001

Vital signs

Heart rate (bpm) 79.98 [70.64,90.96] 78.03 [68.73,87.76] 79.04 [71.04,89.38] 79.81 [69.94,92.75] 82.92 [73.29,94.08] 0.001

Respiratory rate (bpm) 18.88 [16.91,21.38] 18.22 [16.46,20.58] 18.63 [16.99,21.01] 19.13 [16.94,21.82] 19.45 [17.80,21.92] <0.001

SBP (mmHg) 127.17 [113.09,141.82] 126.12 

[113.89,141.76]

129.20 

[116.42,141.79]

123.56 [110.37,140.83] 127.99 [112.30,143.43] 0.174

DBP (mmHg) 67.22 [58.70,76.36] 68.36 [61.19,78.00] 67.88 [58.97,76.25] 65.39 [57.71,74.88] 66.73 [58.46,75.62] 0.024

MBP (mmHg) 84.04 [74.93,93.42] 85.91 [76.02,94.70] 85.71 [75.36,94.57] 82.20 [72.83,92.41] 83.29 [74.85,92.88] 0.042

Temperature (°C) 36.87 [36.66,37.12] 36.79 [36.63,37.03] 36.86 [36.68,37.09] 36.94 [36.67,37.16] 36.91 [36.68,37.21] 0.002

SpO2 (%) 97.18 [95.88,98.57] 97.18 [96.07,98.61] 97.28 [95.90,98.66] 96.99 [95.75,98.43] 97.29 [95.79,98.56] 0.745

Laboratory parameters

CIPI −0.02[−0.69,0.66] −1.11[−1.42,-0.86] −0.35[−0.51,-0.21] 0.31 [0.15,0.48] 1.20 [0.95,1.51] <0.001

PLR 144.69 [95.29,22.10] 89.44 [62.54,116.96] 128.76 [93.57,167.40] 170.69 [121.61,217.65] 259.46 [183.24,341.30] <0.001

SIRI 3.01 [1.54,6.02] 1.03 [0.57,1.52] 2.37 [1.73,3.27] 4.10 [2.87,5.78] 8.71 [5.96,11.32] <0.001

SIII 1077.84 

[560.90,1906.41]

337.66 

[245.34,515.87]

843.50 

[654.83,1022.53]

1411.87 

[1130.13,1721.11]

2830.39 

[2131.95,3637.40]

<0.001

LMR 2.47 [1.57,3.77] 4.07 [3.09,6.47] 2.75 [2.01,3.90] 2.06 [1.47,3.24] 1.37 [0.90,2.00] <0.001

PWR 20.38 [14.41,27.94] 25.08 [16.92,35.01] 21.57 [16.74,28.92] 19.03 [13.50,24.70] 17.25 [12.56,22.89] <0.001

PNR 27.21 [18.38,39.81] 41.63 [27.94,61.44] 30.13 [21.94,41.05] 24.15 [15.92,31.51] 19.94 [14.51,26.45] <0.001

NLR 5.54 [3.19,9.33] 2.17 [1.60,2.76] 4.18 [3.54,4.92] 7.08 [6.08,8.47] 12.95 [10.32,16.13] <0.001

WBC (109/L) 9.90 [7.62,13.10] 7.60 [5.70,9.43] 9.20 [7.10,11.80] 10.80 [8.35,13.55] 13.00 [10.40,15.83] <0.001

Neutrophils (109/L) 7.40 [5.27,10.64] 4.56 [3.28,5.98] 6.61 [5.12,8.24] 8.46 [6.66,11.02] 11.20 [8.90,13.71] <0.001

Lymphocytes (109/L) 1.39 [0.89,1.99] 2.07 [1.56,2.78] 1.58 [1.23,2.11] 1.23 [0.88,1.67] 0.85 [0.63,1.21] <0.001

Monocytes (109/L) 0.58 [0.38,0.83] 0.48 [0.34,0.67] 0.58 [0.40,0.84] 0.58 [0.39,0.89] 0.65 [0.43,0.91] <0.001

Basophils (109/L) 0.03 [0.01,0.05] 0.03 [0.02,0.05] 0.03 [0.02,0.05] 0.03 [0.01,0.05] 0.03 [0.01,0.04] 0.004

Eosinophils (109/L) 0.06 [0.02,0.15] 0.12 [0.05,0.22] 0.09 [0.03,0.18] 0.04 [0.01,0.09] 0.03 [0.01,0.09] <0.001

RBC (1012/L) 3.95 [3.33,4.48] 3.98 [3.26,4.49] 3.95 [3.38,4.52] 3.91 [3.37,4.46] 3.95 [3.39,4.46] 0.939

RDW (fL) 14.10 [13.20,15.40] 13.70 [13.00,14.90] 14.10 [13.20,15.40] 14.20 [13.30,15.70] 14.30 [13.30,15.60] 0.002

Hematocrit (%) 35.50 [30.33,39.90] 35.70 [29.78,40.12] 35.80 [30.40,40.15] 35.50 [30.35,39.50] 35.25 [30.60,39.80] 0.986

(Continued)
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hand, for ICU mortality, CIPI alone maintained its prognostic 
significance. The results of including CIPI as a four-category graded 
variable in the model align with those observed when it is treated as a 
continuous variable. These findings strongly underscore the unique 
clinical value of CIPI as an independent factor in predicting 
mortality outcomes.

Subgroup and interaction analysis

For in-hospital mortality (Supplementary Figure  2A), all 
subgroups (except those aged under 60) displayed statistically 
significant HR values. The risk change associated with each increase 
in CIPI varied among these subgroups. For instance, in patients where 

cerebral infarction was the first diagnosis, each increase in CIPI 
resulted in a 2.041-fold higher death risk [HR (95% CI) 2.041 (1.501–
2.776)]. However, when cerebral infarction was not the first diagnosis, 
the risk was 1.237-fold [HR (95% CI) 1.237 (1.026–1.491)]. For 
patients with severe infections, the risk was 1.226-fold [HR (95% CI) 
1.226 (1.023–1.470)]. Without severe infections, the risk more than 
doubled to 2.092-fold [HR (95% CI) 2.092 (1.517–2.886)]. These 
results reaffirm the CIPI’s robust independent prognostic power, given 
that the interaction p-values were above 0.05 for all variables, except 
sepsis (p = 0.002). For ICU mortality (Supplementary Figure 2B), the 
HR values for CIPI were not statistically significant in several 
subgroups. However, in all other subgroups, the HR values were 
significant, proving that the CIPI remains a strong prognostic tool 
even after controlling for these factors. The absence of significant 

TABLE 1 (Continued)

Characteristic Total (n  =  1,022) Q1 (n  =  256) Q2 (n  =  255) Q3 (n  =  255) Q4 (n  =  256) P-value

Hemoglobin (g/dL) 11.60 [9.90,13.30] 11.65 [9.75,13.40] 11.60 [10.00,13.40] 11.70 [9.70,13.25] 11.60 [9.90,13.33] 0.997

Platelet (109/L) 200.50 [151.00,260.00] 183.00 

[134.00,231.25]

206.00 

[154.50,251.50]

200.00 [149.00,258.50] 215.50 [167.00,284.25] <0.001

INR 1.20 [1.10,1.38] 1.10 [1.00,1.30] 1.10 [1.00,1.30] 1.20 [1.10,1.40] 1.20 [1.10,1.40] <0.001

PT(s) 12.80 [11.70,14.80] 12.32 [11.40,14.50] 12.60 [11.40,14.50] 13.20 [11.95,15.80] 13.30 [12.10,14.93] <0.001

PTT(s) 29.10 [26.20,33.40] 29.60 [26.92,34.42] 29.30 [25.75,33.10] 29.00 [26.40,34.10] 28.25 [26.00,31.95] 0.031

Aniongap (mEq/L) 15 [13.00,17.00] 14 [13.00,16.00] 15 [13.00,17.00] 15 [13.00,17.00] 15 [13.35,18.00] <0.001

Bicarbonate (mmol/L) 23.00 [21.00,25.60] 24.00 [22.00,26.00] 23.20 [21.00,26.00] 23.00 [21.00,25.00] 23.00 [21.00,25.00] 0.02

BUN (mg/dL) 19.00 [13.00,28.00] 17.00 [12.00,24.05] 18.00 [13.00,26.00] 20.00 [14.00,30.00] 22.00 [15.00,32.00] <0.001

Creatinine (mg/dL) 1.00 [0.80,1.40] 0.90 [0.70,1.20] 1.00 [0.80,1.30] 1.00 [0.80,1.60] 1.10 [0.80,1.60] 0.001

Glucose (mg/dL) 123.00 [130.00,158.00] 111.00 

[94.00,132.55]

121.00 

[101.00,152.50]

126.00 [106.00,158.90] 139.50 [115.00,197.00] <0.001

Comorbidities, n (%)

Myocardial infarction 193 (18.9) 42 (16.4) 39 (15.3) 46 (18.0) 66 (25.8) 0.01

Congestive heart failure 292 (28.6) 55 (21.5) 68 (26.7) 75 (29.4) 94 (36.7) 0.002

Diabetes mellitus 359 (35.1) 85 (33.2) 89 (34.9) 90 (35.3) 95 (37.1) 0.834

Renal disease 227 (22.2) 48 (18.8) 54 (21.2) 60 (23.5) 65 (25.4) 0.297

Liver disease 23 (2.3) 8 (3.1) 4 (1.6) 6 (2.4) 5 (2.0) 0.672

Malignancy 93 (9.1) 23 (9.0) 19 (7.5) 25 (9.8) 26 (10.2) 0.72

CCI 6.00 [4.00,8.00] 6.00 [4.00,8.00] 6.00 [5.00,9.00] 6.00 [4.00,9.00] 7.00 [5.00,9.00] 0.451

Sepsis3, n (%) 490 (47.9) 97 (37.9) 117 (45.9) 120 (47.1) 156 (60.9) <0.001

Prognosis scores

GCS 15.00 [14.00,15.00] 15.00 [14.75,15.00] 15.00 [14.00,15.00] 15.00 [14.00,15.00] 15.00 [14.00,15.00] 0.067

SIRS 2.00 [2.00,3.00] 2.00 [1.00,3.00] 2.00 [2.00,3.00] 2.00 [2.00,3.00] 2.00 [2.00,3.00] <0.001

SOFA 4.00 [2.00,6.00] 3.00 [1.00,6.00] 4.00 [2.00,6.00] 4.00 [2.00,7.00] 4.00 [2.00,6.00] <0.001

SAPSII 35.00 [27.00,43.75] 31.00 [24.00,41.00] 34.00 [25.00,43.00] 36.00 [28.00,45.00] 38.00 [29.75,45.00] <0.001

OASIS 32.00 [26.00,38.00] 29.00 [24.00,35.00] 32.00 [26.00,37.00] 33.00 [28.00,40.00] 33.00 [28.00,40.00] <0.001

LODS 4.00 [2.00,6.00] 3.00 [1.00,5.00] 3.00 [2.00,6.00] 4.00 [2.00,7.00] 4.00 [2.00,7.00] <0.001

APSIII 38.00 [29.00,54.00] 34.00 [24.75,48.25] 37.00 [28.00,51.00] 43.00 [31.50,59.00] 44.00 [32.00,57.00] <0.001

LOS, length of stay; CIPI, comprehensive inflammatory prognostic index; PLR, platelet to lymphocyte ratio; SIRI, systemic inflammation response index; SIII, systemic immune inflammation 
index; LMR, lymphocyte to monocyte ratio; PWR, platelet to white blood cell ratio; PNR, platelet to neutrophil ratio; NLR, platelet to lymphocyte ratio; WBC, white blood cells; RBC, red 
blood cells; RDW, red blood cell distribution width; INR, international normalized ratio; PT, prothrombin time; PTT, partial thromboplastin time; BUN, blood urea nitrogen; CCI, Charlson 
comorbidity index; GCS, Glasgow coma score; SIRS, systemic inflammatory response syndrome; SOFA, sequential organ failure assessment; SAPSII, simplified acute physiology score II; 
OASIS, Oxford acute severity of illness score; LODS, logistic organ dysfunction score; APSIII, acute physiology score III.
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interaction with these subgroups confirms CIPI’s independent 
predictive value.

Time-dependent survival analysis

CIPI demonstrates superior predictive performance over 
several existing prognostic indicators for in-hospital mortality 
across various time points (Table 4). Notably, the CIPI consistently 
outperforms the GCS in terms of AUC at all analyzed time points 
except for the first day, and surpasses the SIRS and SOFA in AUC 
at day 8. In the context of ICU mortality, CIPI exceeds the GCS in 
AUC for mortality prediction at 2, 4, 6, and 8 days, but the OASIS 
performs better within the first day (Table 4). There is no significant 
difference in AUC between the CIPI and other established 
prognostic indicators at the remaining time points, for either 
in-hospital or ICU mortality.

Further, the CIPI underwent external validation, with results 
illustrated in Table  4. This validation strengthens the evidence of 
CIPI’s robustness and reliability as a prognostic tool.

Discussion

This study introduces CIPI and validates its role as an independent 
prognostic factor for critically ill patients with cerebral infarction. Its 
predictive capacity is comparable to that of established prognostic 
indicators. However, the CIPI offers notable advantages in terms of 
simplicity and operational ease. It relies solely on the results of routine 
blood tests. With a programmed calculation using these readily 
available values, clinicians can quickly and effortlessly obtain the CIPI, 
simplifying the prognostic process significantly.

In our study, we diligently improved our research methodology to 
ensure robust and accurate results. We used the MIMIC-III CareVue 

TABLE 2 Univariate Cox regression analysis for CIPI, SIRI, SIII, and NLR.

CIPI SIRI SIII NLR

HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value

In-hospital mortality (MIMIC-IV database)

Cont. 1.422 (1.213,1.668) <0.001 1.252 (1.124,1.395) <0.001 1.047 (1.021,1.074) <0.001 1.311 (1.158,1.485) <0.001

Quartile P for trend:<0.001 P for trend: <0.001 P for trend:0.001 P for trend:<0.001

Q1 Reference Reference Reference Reference

Q2 0.812 (0.479,1.394) 0.459 1.111 (0.664,1.858) 0.689 0.620 (0.367,1.047) 0.074 0.869 (0.504,1.499) 0.614

Q3 1.607 (1.008,2.561) 0.046 1.341 (0.828,2.172) 0.234 1.065 (0.690,1.644) 0.777 1.475 (0.896,2.428) 0.127

Q4 1.980 (1.270,3.089) 0.003 2.380 (1.532,3.696) <0.001 1.648 (1.105,2.457) 0.014 2.228 (1.396,3.556) <0.001

ICU mortality (MIMIC-IV database)

Cont. 1.369 (1.133,0.655) 0.001 1.203 (1.062,1.363) 0.004 1.036 (1.006,1.067) 0.019 1.304 (1.122,1.516) <0.001

Quartile P for trend:0.006 P for trend: 0.002 P for trend:0.076 P for trend:<0.001

Q1 Reference Reference Reference Reference

Q2 0.748 (0.405,1.382) 0.354 1.204 (0.668,2.169) 0.537 0.735 (0.417,1.297) 0.289 0.824 (0.346,1.556) 0.550

Q3 1.418 (0.838,2.397) 0.193 1.245 (0.711,2.178) 0.443 0.956 (0.579,1.578) 0.859 1.288 (0.723,2.292) 0.390

Q4 1.651 (1.002,2.762) 0.049 2.147 (1.282,3.595) 0.004 1.389 (0.871,2.217) 0.168 1.946 (1.125,3.367) 0.017

In-hospital mortality (MIMIC-III CareVue subset: external validation)

Cont. 1.232 (1.004,1.511) 0.045 1.189 (0.997,1.417) 0.054 1.021 (0.998,1.044) 0.071 1.153 (0.999,1.329) 0.051

Quartile P for trend:0.068 P for trend:0.132 P for trend:0.067 P for trend:0.116

Q1 Reference Reference Reference Reference

Q2 1.710 (0.921,3.178) 0.090 1.189 (0.997,1.417) 0.887 1.367 (0.737,2.535) 0.321 1.726 (0.921,3.235) 0.089

Q3 1.742 (0.927,3.272) 0.085 1.049 (0.575,1.912) 0.877 1.780 (0.983,3.222) 0.057 1.792 (0.947,3.390) 0.073

Q4 1.848 (1.010,3.381) 0.046 1.521 (0.872,2.653) 0.140 1.651 (0.919,2.996) 0.093 1.748 (0.939,3.254) 0.078

ICU mortality (MIMIC-III CareVue subset: external validation)

Cont. 1.305 (1.003,1.699) 0.047 1.214 (0.964,1.529) 0.099 1.026 (0.997,1.056) 0.078 1.205 (1.003,1.446) 0.046

Quartile P for trend:0.063 P for trend:0.309 P for trend:0.098 P for trend:0.078

Q1 Reference Reference Reference Reference

Q2 1.929 (0.792,4.697) 0.148 0.998 (0.456,2.186) 0.997 1.371 (0.586,3.210) 0.467 1.845 (0.758,4.488) 0.177

Q3 2.677 (1.108,6.467) 0.029 1.088 (0.491,2.411) 0.836 2.700 (1.234,5.910) 0.013 2.244 (0.924,5.451) 0.074

Q4 2.278 (0.961,5.402) 0.062 1.388 (0.667,2.886) 0.380 1.711 (0.764,3.831) 0.192 2.223 (0.942,5.246) 0.068
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subset as an independent validation set, unlike previous studies that 
combined unfiltered data from MIMIC-III and MIMIC-IV (20–24), 
which can lead to data duplication and affect the stability and accuracy 
of results. In most research on ischemic stroke patients using the 
MIMIC database, the selection of cases is overly broad. Many studies 
indiscriminately include all patients coded under ICD-9: 433, ICD-9: 
434, ICD-9: 436, and ICD-10: I63 (25–28). However, half of these 
specific sub-codes, such as 433.00: Occlusion and stenosis of the 
basilar artery without mention of cerebral infarction, 433.10: 
Occlusion and stenosis of the carotid artery without mention of 
cerebral infarction, 433.20: Occlusion and stenosis of the vertebral 
artery without mention of cerebral infarction, and 433.30: Occlusion 
and stenosis of multiple and bilateral precerebral arteries without 
mention of cerebral infarction, do not necessarily diagnose an 
ischemic stroke. Instead, they signify susceptibility factors for such a 
stroke. Consequently, this indiscriminate approach to case selection 
creates a significant selection bias. In statistical terms, this is 
problematic because it can lead to an overestimation of the associations 
between the supposed risk factors and ischemic stroke outcomes. Such 
overestimation can distort the true relationships under study and 
result in spurious conclusions. By strictly selecting records based on a 
cerebral infarction diagnosis, we minimized such selection bias, hence 
enhancing the accuracy and validity of our study. Due to the 
aforementioned bias in case selection, the independent prognostic 
utility of many indices warrants reevaluation. For instance, while 

numerous studies have validated NLR, SII, and SIRI as effective 
prognostic indicators, our stringent selection criteria and univariate 
Cox regression analysis results revealed that the performance of these 
indices individually was not as effective, particularly when compared 
with our newly proposed CIPI index in the MIMIC-III CareVue subset.

The robustness of CIPI as an independent prognostic indicator 
was extensively validated in our study. Following rigorous variable 
selection and multicollinearity tests, we  constructed a final 
multivariate Cox regression model that included several officially 
recognized prognostic indices from the MIMIC database, such as 
GCS, SIRS, SOFA, SAPSII, OASIS, LODS, and APSIII (16, 29), as 
illustrated in Figure 2. The results revealed that CIPI and SAPSII were 
the only independent predictors of in-hospital mortality. Moreover, 
CIPI emerged as the unique independent predictor for ICU mortality. 
This indicates that many prognostic indicators, although effective, may 
overlap in their predictive functions for critically ill cerebral infarction 
patients and lose their individual prognostic utility when combined. 
The CIPI we introduced is a latent variable derived from EFA of NLR, 
SIII, and SIRI, encapsulating their combined contributions to critically 
ill patient prognosis in cerebral infarction. The composition of NLR, 
SIII, and SIRI share common elements, such as neutrophils and 
lymphocytes, yet each has its focus: SIII on platelets, and SIRI on 
monocytes (9, 30, 31). This composition reflects their inherent high 
correlations and unique characteristics. Together, they capture various 
aspects of the systemic inflammatory response and coagulation 

TABLE 3 Performance of CIPI in multivariate Cox analysis.

Model 1 Model 2 Model 3 Model 4

HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value

In-hospital mortality

Cont. 1.432 (1.219,1.682) <0.001 1.419 (1.209,1.667) <0.001 1.337 (1.126,1,588) <0.001 1.357 (1.145,1.609) <0.001

Quartile P for trend:<0.001 P for trend: <0.001 P for trend:0.003 P for trend: 0.001

Q1 (256) Reference Reference Reference Reference

Q2 (255) 0.783 (0.457,1.339) 0.371 0.822 (0.477,1.416) 0.480 0.758 (0.436,1.318) 0.326 0.737 (0.430,1.261) 0.265

Q3 (255) 1.615 (1.012,2.579) 0.045 1.719 (1.069,2.763) 0.025 1.445 (0.886,2.358) 0.140 1.489 (0.926,2.393) 0.101

Q4 (256) 1.955 (1.248,3.064) 0.003 1.908 (1.202,3.027) 0.006 1.618 (1.002,2.611) 0.049 1.656 (1.042,2.631) 0.033

ICU mortality (Quartile)

Cont. 1.387 (1.145,1.679) <0.001 1.374 (1.132,1.666) 0.001 1.367 (1.112,1.679) 0.003 1.394 (1.148,1.693) <0.001

Quartile P for trend:0.005 P for trend: 0.008 P for trend:0.016 P for trend:0.005

Q1 (256) Reference Reference Reference Reference

Q2 (255) 0.699 (0.376,1.300) 0.258 0.754 (0.403,1.409) 0.376 0.711 (0.378,1.336) 0.289 0.673 (0.361,1.256) 0.214

Q3 (255) 1.421 (0.383,2.410) 0.192 1.567 (0.916,2.681) 0.101 1.476 (0.846,2.575) 0.170 1.468 (0.865,2.491) 0.155

Q4 (256) 1.630 (0.966,2.751) 0.067 1.602 (0.930,2.758) 0.089 1.542 (0.876,2.713) 0.133 1.580 (0.933,2.676) 0.089

ICU mortality (trichotomy)

Quartile P for trend:0.003 P for trend: 0.005 P for trend:0.009 P for trend:0.004

Q1 (341) Reference Reference Reference Reference

Q2 (340) 1.150 (0.696,1.900) 0.586 1.244 (0.745,2.077) 0.403 1.204 (0.709,2.045) 0.492 1.114 (0.671,1.848) 0.676

Q3 (341) 1.882 (1.192,2.974) 0.007 1.898 (1.182,3.046) 0.008 1.866 (1.125,3.093) 0.016 1.859 (1.171,2.952) 0.009

Model 1: Adjusted for CIPI, age, gender, insurance, race, marital status. Model 2: Adjusted for myocardial infarction, congestive heart failure, chronic pulmonary disease, rheumatic disease, 
peptic ulcer disease, diabetes, renal disease, malignant cancer, severe liver disease, Charlson comorbidity index, sepsis3, and covariates with statistically significant HR from the previous 
model. Model 3: Adjusted for hematocrit, hemoglobin, platelet count, RDW, RBC, INR, PT, PTT, anion gap, bicarbonate, BUN, creatinine, glucose, and covariates with statistically significant 
HR from the previous model. Model 4: Adjusted for 24-h mean values of heart rate, systolic blood pressure, diastolic blood pressure, mean blood pressure, respiratory rate, body temperature, 
SpO2, and significant covariates from the previous model.
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process, key factors influencing outcomes in cerebral infarction 
patients (32). Inflammation is a key mechanism in stroke, and the 
post-stroke inflammatory response plays a vital role in secondary 
brain injury and activation of coagulation (33, 34). The disruption of 
normal coagulation processes after cerebral infarction can lead to 
exacerbated ischemic damage in the brain, and also activate multiple 
inflammatory pathways (35). The changes in peripheral blood 
indicators like neutrophils, lymphocytes, monocytes, and platelets are 
sensitive markers of the body’s cascade response to cerebral infarction, 
especially in the presence of severe complications and comorbidities 
(36, 37). By conducting EFA on NLR, SIII, and SIRI, CIPI maintains 
their common features while enhancing their unique contributions. 
This underpins CIPI’s independence compared to traditional ICU 
prognostic indicators. Furthermore, our confirmation of its linear 
relationship with mortality rates, along with its resilience to interaction 
effects, strengthens our belief in CIPI’s potential for clinical application 
as an independent prognostic tool.

In our time-dependent AUC analysis, we  observed that no 
existing prognostic indices from the MIMIC database, such as 
GCS, SIRS, SOFA, SAPSII, OASIS, LODS, and APSIII (16, 29), 
statistically significantly outperformed CIPI at all analyzed time 
points. This indicates that, overall, CIPI’s ability to predict 
in-hospital and ICU mortality among critically ill cerebral 
infarction patients is on par with these established indices. This 
equivalency in performance could be attributed to the fact that 
these indices, including CIPI, reflect patient prognosis from 
different perspectives, as supported by references (38–44). Given 
the complexity and rapid disease progression in ICU settings, it is 
challenging to identify a single prognostic indicator that completely 
surpasses others in all dimensions of patient care. This highlights 

the multifaceted nature of critical care prognosis, where each 
indicator provides unique insights without statistically 
outperforming the others. Hence, the deep research value of a 
prognostic indicator in such a context lies significantly in its 
accessibility and ease of evaluation. Recent studies have also been 
focused on finding simple indices for predicting outcomes in 
critically ill cerebral infarction patients. For instance, Zhao et al. 
reported AUC values of 0.552, 0.644, and 0.541 for NLR, neutrophil 
to albumin ratio, and red cell distribution width to albumin ratio, 
respectively, in predicting 30-day mortality in critical stroke 
patients (45). Jhou et al. found that plasma anion gap predicted 
in-hospital mortality in ICU acute ischemic stroke patients with an 
AUC of 0.631 (46). Chen et al. used the triglyceride glucose index 
to predict in-hospital mortality in critical cerebrovascular disease 
patients, achieving an AUC of 0.610 (47). Our CIPI showed AUC 
values greater than 0.6 for predicting both in-hospital and ICU 
mortality at multiple time points, with an AUC of 0.753 for 
predicting in-hospital mortality and 0.718 for ICU mortality on the 
second day of ICU admission. This predictive ability is, to a certain 
extent, superior to the aforementioned indices. Additionally, CIPI 
offers a significant advantage as it is derived entirely from a routine 
complete blood count test. This test, a routine blood draw 
performed for every critically ill patient upon admission, provides 
all the necessary data at once for the CIPI calculation. This method, 
complemented by a streamlined calculation process, makes CIPI a 
more convenient and rapid prognostic tool compared to most 
indices in the MIMIC database. Moreover, our study confirms that 
CIPI, exhibiting significant predictive value both as a continuous 
variable with a linear relationship and as a categorical variable with 
statistically significant trend p-values, holds promise for guiding 

FIGURE 2

Multivariate Cox analysis confirms that CIPI is an independent prognostic factor for both in-hospital mortality (A and C) and ICU mortality (B and D).
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TABLE 4 Comparison of time-dependent survival analysis AUC values.

In-hospital 
mortality

Day 1 Day 2 Day 4 Day 6

AUC 
(95% CI)

P AUC 
(95% CI)

P AUC 
(95% CI)

P-value AUC 
(95% CI)

P

CIPI 0.689 (0.569,0.809) 0.753 (0.674,0.827) 0.672 (0.586,0.746) 0.650 (0.574,0.712)

CIPI-EX 0.795 (0.697,0.888) 0.672 (0.529,0.817) 0.631 (0.519,0.723) 0.585 (0.484,0.659)

GCS 0.655 (0.641,0.670) 0.588 0.567 (0.474,0.666) 0.009 0.480 (0.401,0.560) <0.001 0.489 (0.424,0.552) 0.001

SIRS 0.443 (0.196,0.690) 0.124 0.701 (0.561,0.842) 0.552 0.623 (0.523,0.706) 0.426 0.599 (0.506,0.662) 0.283

SOFA 0.787 (0.632,0.943) 0.437 0.635 (0.479,0.784) 0.201 0.605 (0.492,0.694) 0.410 0.594 (0.490,0.654) 0.226

SAPSII 0.765 (0.610,0.921) 0.506 0.683 (0.545,0.814) 0.367 0.702 (0.620,0.766) 0.634 0.678 (0.600,0.733) 0.634

OASIS 0.786 (0.676,0.897) 0.293 0.776 (0.683,0.864) 0.721 0.770 (0.708,0.832) 0.064 0.729 (0.665,0.790) 0.074

LODS 0.810 (0.659,0.962) 0.338 0.693 (0.558,0.822) 0.468 0.686 (0.599,0.756) 0.850 0.654 (0.567,0.707) 0.915

APSIII 0.756 (0.589,0.922) 0.538 0.715 (0.585,0.840) 0.613 0.684 (0.586,0.764) 0.890 0.657 (0.570,0.722) 0.951

In-hospital 

mortality

Day 8 Day 12 Day 16 Day 20

AUC (95% CI) P AUC (95% CI) P AUC (95% CI) P-value AUC (95% CI) P

CIPI 0.663 (0.599,0.721) 0.609 (0.545,0.673) 0.593 (0.523,0.644) 0.584 (0.515,0.638)

CIPI-EX 0.570 (0.464,0.642) 0.563 (0.452,0.628) 0.544 (0.436,0.622) 0.588 (0.461,0.660)

GCS 0.486 (0.427,0.537) <0.001 0.462 (0.398,0.501) <0.001 0.502 (0.447,0.539) 0.014 0.495 (0.442,0.540) 0.027

SIRS 0.565 (0.477,0.612) 0.014 0.565 (0.484,0.603) 0.141 0.568 (0.495,0.607) 0.440 0.563 (0.493,0.608) 0.549

SOFA 0.574 (0.477,0.619) 0.032 0.573 (0.475,0.601) 0.140 0.569 (0.486,0.608) 0.436 0.572 (0.481,0.608) 0.501

SAPSII 0.648 (0.567,0.670) 0.493 0.662 (0.599,0.710) 0.311 0.643 (0.577,0.688) 0.247 0.641 (0.556,0.676) 0.368

OASIS 0.696 (0.631,0.747) 0.497 0.670 (0.598,0.713) 0.280 0.622 (0.549,0.667) 0.548 0.605 (0.520,0.645) 0.892

LODS 0.653 (0.576,0.697) 0.602 0.621 (0.530,0.651) 0.676 0.616 (0.538,0.652) 0.782 0.617 (0.525,0.647) 0.835

APSIII 0.644 (0.562,0.694) 0.498 0.624 (0.543,0.668) 0.939 0.607 (0.538,0.656) 0.761 0.601 (0.521,0.845) 0.889

ICU mortality Day 1 Day 2 Day 4 Day 6

AUC (95% CI) P AUC (95% CI) P AUC (95% CI) P AUC (95% CI) P

CIPI 0.651 (0.529,0.771) 0.718 (0.624,0.798) 0.609 (0.514,0.696) 0.601 (0.512,0.668)

CIPI-EX 0.771 (0.623,0.912) 0.622 (0.498,0.753) 0.559 (0.444,657) 0.561 (0.445,0.649)

GCS 0.532 (0.410,0.656) 0.111 0.527 (0.422,0.625) 0.003 0.454 (0.361,0.519) 0.004 0.485 (0.408,0.536) 0.015

SIRS 0.582 (0.403,0.762) 0.576 0.685 (0.570,0.806) 0.753 0.628 (0.540,0.710) 0.739 0.599 (0.513,0.671) 0.970

SOFA 0.783 (0.646,0.925) 0.181 0.649 (0.490,0.781) 0.434 0.571 (0.454,0.651) 0.444 0.579 (0.485,0.665) 0.809

SAPSII 0.764 (0.612,0.918) 0.222 0.696 (0.558,0.814) 0.763 0.685 (0.608,0.748) 0.213 0.682 (0.617,0.760) 0.066

OASIS 0.824 (0.745,0.909) 0.032 0.765 (0.668,0.845) 0.528 0.698 (0.621,0.773) 0.133 0.678 (0.610,0.761) 0.071

LODS 0.787 (0.634,0.947) 0.167 0.703 (0.564,0.813) 0.796 0.649 (0.548,0.706) 0.733 0.635 (0.549,0.705) 0.518

APSIII 0.776 (0.637,0.918) 0.175 0.723 (0.595,0.840) 0.937 0.638 (0.533,0.714) 0.777 0.628 (0.540,0.712) 0.559

ICU mortality Day 8 Day 12 Day 16 Day 20

AUC (95% CI) P AUC (95% CI) P AUC (95% CI) P AUC (95% CI) P

CIPI 0.604 (0.535,0.685) 0.561 (0.484,0.638) 0.577 (0.523,0.673) 0.563 (0.472,0.634)

CIPI-EX 0.588 (0.453,0.662) 0.608 (0.507,0.722) 0.547 (0.412,0.664) 0.576 (0.430,0.706)

GCS 0.495 (0.428,0.540) 0.008 0.503 (0.439,0.546) 0.143 0.519 (0.465,0.571) 0.076 0.506 (0.453,0.574) 0.413

SIRS 0.563 (0.490,0.634) 0.377 0.550 (0.454,0.592) 0.460 0.543 (0.462,0.606) 0.213 0.545 (0.427,0.580) 0.365

SOFA 0.565 (0.487,0.644) 0.462 0.563 (0.479,0.625) 0.873 0.556 (0.482,0.632) 0.474 0.552 (0.468,0.632) 0.969

SAPSII 0.643 (0.580,0.720) 0.461 0.646 (0.575,0.706) 0.135 0.628 (0.552,0.693) 0.648 0.620 (0.518,0.680) 0.434

OASIS 0.639 (0.584,0.726) 0.355 0.613 (0.545,0.685) 0.285 0.571 (0.511,0.664) 0.841 0.556 (0.476,0.645) 0.889

LODS 0.634 (0.579,0.714) 0.492 0.598 (0.509,0.653) 0.715 0.594 (0.511,0.655) 0.775 0.588 (0.497,0.661) 0.652

APSIII 0.615 (0.546,0.690) 0.878 0.590 (0.509,0.652) 0.720 0.580 (0.506,0.655) 0.739 0.573 (0.476,0.641) 0.912

https://doi.org/10.3389/fneur.2024.1287895
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Shu et al. 10.3389/fneur.2024.1287895

Frontiers in Neurology 11 frontiersin.org

more personalized treatment strategies. Patients with higher CIPI 
scores may benefit from more aggressive interventions due to their 
increased risk, whereas those with lower scores might be managed 
with less intensive treatments, reducing unnecessary medical 
interventions and associated risks. However, the integration of 
CIPI into clinical decision-making should be  approached with 
caution. Additional clinical trials are necessary, to further explore 
how CIPI’s application in clinical settings affects patient outcomes 
and treatment efficacy.

This study, while offering valuable insights, is subject to a few 
limitations. First, as a retrospective analysis, it inherently faces 
selection bias and potential unmeasured confounders that could 
influence the results. Second, due to its nature as a data mining study, 
the scope of data available was limited. We were unable to include 
comprehensive patient data such as imaging studies or genomics 
information as covariates in our CIPI survival analysis. This limitation 
may have led to an underestimation of the multifactorial nature of 
severe cerebral infarction prognosis, potentially affecting its predictive 
accuracy and generalizability to broader patient populations. Finally, 
the study utilized the MIMIC database, a single-center dataset with a 
large and diverse patient population. However, the outcomes observed 
may not be applicable to other clinical settings or patient populations. 
Therefore, multi-center studies are necessary to validate our findings 
and to further explore the predictive value of CIPI.

Conclusion

This study introduces the CIPI as a robust and enhanced 
independent prognostic factor for critically ill patients with cerebral 
infarction, demonstrating linear predictability and statistically 
significant prognostic effectiveness both as a continuous and 
categorical variable. The CIPI not only matches the predictive power 
of established prognostic indicators but also surpasses them in 
simplicity and operational ease. Its derivation solely from routine 
complete blood count data and the potential for quick computer 
algorithm processing make it a practical tool for clinical use. Further 
multi-center studies are needed to validate these findings and to 
deepen the exploration of the potential utility of CIPI.
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