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Background and purpose: A notable prevalence of subarachnoid hemorrhage 
is evident among patients with anterior choroidal artery aneurysms in clinical 
practice. To evaluate the risk of rupture in unruptured anterior choroidal 
artery aneurysms, we conducted a comprehensive analysis of risk factors and 
subsequently developed two nomograms.

Methods: A total of 120 cases of anterior choroidal artery aneurysms (66 
unruptured and 54 ruptured) from 4 medical institutions were assessed utilizing 
computational fluid dynamics (CFD) and digital subtraction angiography (DSA). 
The training set, consisting of 98 aneurysms from 3 hospitals, was established, 
with an additional 22 cases from the fourth hospital forming the external 
validation set. Statistical differences between the two data sets were thoroughly 
compared. The significance of 9 clinical baseline characteristics, 11 aneurysm 
morphology parameters, and 4 hemodynamic parameters concerning 
aneurysm rupture was evaluated within the training set. Candidate selection for 
constructing the nomogram models involved regression analysis and variance 
inflation factors. Discrimination, calibration, and clinical utility of the models 
in both training and validation sets were assessed using area under curves 
(AUC), calibration plots, and decision curve analysis (DCA). The DeLong test, 
net reclassification index (NRI), and integrated discrimination improvement (IDI) 
were employed to compare the effectiveness of classification across models.

Results: Two nomogram models were ultimately constructed: model 
1, incorporating clinical, morphological, and hemodynamic parameters 
(C  +  M  +  H), and model 2, relying primarily on clinical and morphological 
parameters (C  +  M). Multivariate analysis identified smoking, size ratio (SR), 
normalized wall shear stress (NWSS), and average oscillatory shear index (OSIave) 
as optimal candidates for model development. In the training set, model 1 
(C  +  M  +  H) achieved an AUC of 0.795 (95% CI: 0.706  ~  0.884), demonstrating 
a sensitivity of 95.6% and a specificity of 54.7%. Model 2 (C  +  M) had an AUC of 
0.706 (95% CI: 0.604  ~  0.808), with corresponding sensitivity and specificity of 
82.4 and 50.3%, respectively. Similarly, AUCs for models 1 and 2 in the external 
validation set were calculated to be 0.709 and 0.674, respectively. Calibration 
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plots illustrated a consistent correlation between model evaluations and real-
world observations in both sets. DCA demonstrated that the model incorporating 
hemodynamic parameters offered higher clinical benefits. In the training set, 
NRI (0.224, p  =  0.007), IDI (0.585, p  =  0.002), and DeLong test (change  =  0.089, 
p  =  0.008) were all significant. In the external validation set, NRI, IDI, and DeLong 
test statistics were 0.624 (p  =  0.063), 0.572 (p  =  0.044), and 0.035 (p  =  0.047), 
respectively.

Conclusion: Multidimensional nomograms have the potential to enhance 
risk assessment and patient-specific treatment of anterior choroidal artery 
aneurysms. Validated by an external cohort, the model incorporating clinical, 
morphological, and hemodynamic features may provide improved classification 
of rupture states.

KEYWORDS

anterior choroid artery aneurysm, hemodynamics, morphology, nomograms, rupture 
risk

Introduction

The occurrence of anterior choroidal artery (AChA) aneurysms is 
relatively low, constituting only 2–5% of all cerebral aneurysms (1). 
While the incidence of rupture in AChA aneurysms is elevated within 
the realm of medical care (2), the PHASES score scale (considering 
population, hypertension, age, size, prior subarachnoid hemorrhage, 
and location) indicated relatively lower scores for these small 
aneurysms (3–5). Furthermore, earlier research showed that the 
majority of ruptured intracranial aneurysms (IAs) exhibit a diameter 
of less than 7 mm (6), with approximately 35–47% of all IAs being 
small and ruptured (7, 8). Given these findings, a conservative 
monitoring approach for predominantly small AChA aneurysms may 
potentially expose patients to aneurysmal subarachnoid hemorrhage 
(SAH). This may suggest that the simple, all-position assessment 
models do not apply to AChA aneurysms characterized by small size. 
Simultaneously, a precise evaluation of unruptured AChA aneurysms 
holds the potential for significant socioeconomic benefits, mitigating 
the costs and hazards associated with unnecessary interventions.

Moreover, both endovascular and surgical interventions for 
unruptured intracranial aneurysms (UIAs) entail a risk of post-
procedural complications, encompassing ischemic events, 
hydrocephalus, and neurological deficits (9). Intensive therapy may 
not yield significant benefits for patients with unruptured IAs, 
especially those with a low probability of lesion rupture (10). 
Therefore, the timely identification of AChA aneurysms exhibiting an 
elevated risk of rupture, coupled with prompt intervention to forestall 
potential disastrous outcomes, assumes paramount importance in the 
realm of medical treatment.

To the best of our knowledge, AChA aneurysms have received 
limited consideration in existing aneurysm risk assessment models 
and scoring systems (11–16). Furthermore, there is a paucity of 
documented research on risk factors and assessment models 
specifically tailored for AChA aneurysm rupture. In recent years, 
nomograms have gained widespread acceptance as a predictive 
method for IAs (3, 13), meeting the criteria for integrated models and 

advancing personalized healthcare (17). In our pursuit of establishing 
patient-specific nomogram models for AChA aneurysms, our research 
group diligently explored rupture risk factors through the analysis of 
clinical, morphological, and hemodynamic parameters. Additionally, 
we sought to develop user-friendly and multidimensional nomograms 
that align with clinicians’ needs for high efficiency and accuracy in 
estimating the probability of AChA aneurysm rupture.

Materials and methods

Participants and study design

Our retrospective cohort study received approval from the ethical 
committee of the hospital; however, informed consent was waived. 
Before data collection, all patient information underwent anonymization.

We obtained cerebrovascular imaging and medical records of 120 
consecutive patients with AChA aneurysms admitted to 4 medical 
units between May 2017 and November 2022. Based on their 
admission status, we classified the aneurysms as either ruptured or 
unruptured. Inclusion criteria were as follows: (1) patients diagnosed 
with an AChA aneurysm through emergency computer tomography 
angiography (CTA) followed by digital subtraction angiography 
(DSA); and (2) availability of complete clinical data and traceable 
medical history. Exclusion criteria included the following: (1) patients 
with subarachnoid hemorrhage (SAH) lasting over 24 h where 
vasospasm of parent vessels could not be ruled out; (2) individuals 
with dissecting, fusiform, infectious, traumatic, or multiple 
aneurysms; (3) patients whose Digital Imaging and Communications 
in Medicine (DICOM) data did not permit morphological 
measurements and hemodynamic calculations; and (4) AChA 
aneurysms with insufficient information and data. Ultimately, 98 
AChA aneurysms (45 ruptured and 53 unruptured) from 3 hospitals 
contributed to the development of the nomograms, while an 
additional 22 cases (9 ruptured and 13 unruptured) from a fourth 
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hospital were included for external validation. For more detailed 
information, refer to the flowchart (Figure 1).

Acquisition, reconstruction, and analyses 
of AChA aneurysm images

User-friendliness hinges on a commitment to openness and 
transparency throughout the entire process. In the image acquisition 
phase, original DSA images are procured from the Artis zee biplane 
angiographic system (VC14, Siemens, Munich, Germany) as 490 files 
in DICOM format. The procedure using MIMICS 21.0 software 
(Materialise NV, Leuven, Belgium) unfolds as follows: Data are 
imported via “New Project,” settings are adjusted through “Threshold” 
until blood vessels are distinctly displayed, the region of interest is 
selected in “Crop Mask” for 3D image reconstruction, and the 
resultant file is exported in STereoLithography (STL) format. 
AneuFlow™ software (V1.1.4.1, ArteryFlow Technology, Hangzhou, 
China) for measuring aneurysm morphology and hemodynamics 

encompasses three steps (18). First, the STL file is imported into the 
AneuFlow™ software, allowing doctors to obtain additional 
morphological parameters by manually identifying the aneurysm 
neck. The vascular model is segmented into two regions: the parent 
artery and the aneurysm. Second, the computational fluid dynamics 
(CFD) simulation module initiates hemodynamic analysis. The 
maximum mesh size is set at 0.16 mm with three layers of wall prism 
elements. The aneurysm model comprises 1.8–2.3 million tetrahedral 
elements post-meshing (19). An implicit unsteady solver with a first-
order upwind numerical scheme is employed. By resolving the 
Navier–Stokes governmental equations and assuming solid walls, 
AneuFlow™ software conducts laminar and incompressible blood 
flow simulations (density = 1,056 kg/m3 and viscosity = 0.0035 poise). 
Pulsating velocity profiles from transcranial Doppler are imposed at 
the intake, and an open border with no dynamic pressure defines the 
outflow (20). Utilizing a time step of 0.001 s generates 800 solutions 
for 3 cardiac cycles. The last simulated cardiac cycle is utilized for 
post-processing hemodynamic parameters (4). Finally, morphological 
and hemodynamic outcomes are exported together.

FIGURE 1

Flowchart of study design. AChA aneurysms enrolled from May 2017 to November 2022 established both the training and validation cohorts, which 
were adopted to develop the nomogram models; 98 and 22 cases were adopted for nomogram construction and external testing. Discrimination, 
calibration, and clinical utility were illustrated by ROC, calibration plots, and DCA, respectively. Moreover, we performed the DeLong test, NRI, and IDI 
to compare the performance of two nomogram models. AChA, anterior choroid artery; CTA, computed tomographic angiography; DSA, digital 
subtraction angiography; SAH, subarachnoid hemorrhage; DICOM, digital imaging and communications in medicine; NRI, net reclassification index; 
IDI, integrated discrimination improvement; C  +  M  +  H, clinical, morphological, and hemodynamic features; C  +  M, clinical and morphological features, 
SR, size ratio; NWSS, normalized wall shear stress; OSIave, average oscillatory shear index.
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Clinical, morphological, and hemodynamic 
parameters of AChA aneurysms

Clinical features included gender, hypertension, hyperlipemia, 
smoking, alcohol, aneurysmal family history, earlier SAH, age, and 
body mass index (BMI). Two clinical research coordinators 
meticulously acquired data from the hospital information system, 
ensuring its accuracy through verification by a neurovascular 
interventionalist. Importantly, all personnel involved remained 
blinded to patients’ individual details.

Morphological parameters of aneurysms comprised the presence 
of a daughter sac, inflow angle, aspect ratio (AR), size ratio (SR), 
ellipticity index (EI), non-sphericity index (NSI), undulation index 
(UI), size, diameter of the parent vessel, surface area, and volume. An 
extensive description of morphological variables obtained for this 
study could be found in previous studies (21–23).

In this investigation, we meticulously recorded and computed 
four crucial hemodynamic parameters: normalized wall shear stress 
(NWSS), average oscillatory shear index (OSIave), low shear area 
(LSA), and relative residence time (RRT). Comprehensive insights 
into the calculation methods can be gleaned from the seminal works 
of Liu et al. (4) and Retarekar et al. (24).

The identification of the aneurysm neck was executed by two 
neurosurgeons, both uninformed about the patient’s particulars. Any 
disparities in their assessments were expertly resolved through the 
intervention of a third neurosurgeon boasting two decades of 
experience in the neuro-interventional domain.

Statistical analysis

Continuous variables were summarized as either median 
(interquartile range) or mean ± standard deviation, while categorical 
data were expressed as percentages. Normality tests were conducted on 
the continuous variables within the training set. Subsequently, our 
team explored group differences utilizing the Student’s t-test or Mann–
Whitney U test for continuous variables and the chi-square test or 
Fisher’s exact test for categorical data. Logistic regression models, 
encompassing both univariate and multivariate analyses, were executed 
to identify independent variables associated with AChA aneurysm 
rupture. A backward stepwise selection approach was employed, where 
univariate analysis parameters with a significance level of p < 0.2 were 
incorporated into the multivariate regression models. Following the 
exclusion of parameters exhibiting a variance inflation factor (VIF) 
exceeding 4.0, those with the minimum Akaike information criterion 
(AIC) were selected to formulate nomogram models. Additionally, 
additive and multiplicative interaction analyses were performed on 
these factors during model construction. Model 1 integrated clinical, 
morphological, and hemodynamic (C + M + H) characteristics, while 
Model 2 included solely clinical and morphological (C + M) variables. 
Homogeneity between the training and external validation sets was 
assessed with a significance threshold set at p = 0.05.

The discriminative efficacy of the nomograms and the external 
validation set was elucidated through the associated area under the 
curve (AUC) and the receiver operating characteristic curve (ROC). 
Calibration plots illustrated the congruence between the predicted 
rupture and the observed outcomes. Moreover, the clinical utility of the 
model was substantiated via decision curve analysis (DCA), 

quantifying the model’s net benefit (higher values indicative of greater 
therapeutic efficacy) (25). Internal validation involved resampling with 
1,000 bootstrap samples. The performance of model 1 was compared 
to that of model 2 in terms of AUC value, sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV), and accuracy. 
The DeLong test was employed to compare the AUC values of the two 
ROC curves. Additionally, integrated discrimination improvement 
(IDI) and net reclassification index (NRI) were computed to measure 
improvements in assessment and assess clinical utility.

A significance level of p < 0.05 (two-tailed) was deemed statistically 
significant in all conducted tests. Statistical analyses and graphical 
representations were conducted using R version 4.1.3.1 Adherence to 
the TRIPOD guidelines was observed in this research (26).

Results

Characteristics of patients and AChA 
aneurysms

In the study cohort, a total of 143 AChA aneurysms were initially 
included. Subsequently, 23 AChA aneurysms were excluded, resulting in 
a final analysis of 120 aneurysms. Among these, 54 were identified as 
ruptured, while 66 remained unruptured. It is noteworthy that the 
possibility of vasospasm in the parent vessel could not be ruled out in the 
four patients who experienced SAH lasting longer than 24 h. Additionally, 
nine aneurysms were deemed ineligible, comprising two distal AChA 
dissecting aneurysms and seven multiple aneurysms. Furthermore, 10 
patients with inadequate data were excluded from measurement and 
calculation (Figure 1). The multidimensional data for both the training 
and test sets are detailed in Supplementary Table S1. Statistically 
significant differences (p < 0.05) between the two groups were observed 
in parameters such as BMI (p = 0.01), NWSS × 10 (p = 0.03), OSIave × 10 
(p = 0.02), LSA (p = 0.01), and RRT (p = 0.01). Conversely, parameters 
such as gender (p = 0.70), hypertension (p = 0.52), hyperlipidemia 
(p = 0.37), smoking (p = 0.96), alcohol (p = 0.34), family history (p = 0.14), 
earlier SAH (p = 0.23), age (p = 0.37), AR (p = 0.01), presence of the 
daughter sac (p = 0.94), inflow angle (p = 0.44), SR (p = 0.30), EI × 10 
(p = 0.10), NSI × 10 (p = 0.30), UI × 10 (p = 0.69), diameter of the parent 
vessel (p = 0.30), size (p = 0.50), surface area (p = 0.24), and volume 
(p = 0.18) did not exhibit statistically significant differences. Table  1 
provides a detailed presentation of the results obtained from the Shapiro–
Wilk and VIF tests conducted on ruptured and unruptured aneurysms 
within the training set.

Nomogram variable screening

Following univariate logistic regression analysis (p < 0.2), 16 
variables were retained for further examination in the context of AChA 
aneurysm rupture assessment. These variables encompassed smoking, 
aneurysmal family history, the presence of a daughter sac, AR, SR, EI, 
NSI, UI, size, diameter of the parent vessel, surface area, volume, 

1  https://www.r-project.org/
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NWSS, OSIave, LSA, and RRT. Assessment of VIF was conducted, with 
values exceeding 4.0 indicating multicollinearity. Variables surpassing 
this threshold were systematically excluded from the final model 
analysis, as outlined in Table 1. In the subsequent multivariate logistic 
regression analysis, employing backward stepwise selection combined 
with AIC minimization, smoking (p = 0.033, OR = 3.83), SR (p = 0.031, 
OR = 2.40), NWSS (p = 0.034, OR = 0.83), and OSIave (p = 0.301, 
OR = 1.10) emerged as independent predictors for AChA aneurysm 
rupture, as detailed in Table 2.

Construction and performance of 
nomogram models

To assess the likelihood of rupture in AChA aneurysms, 
we developed two binary logistic regression models incorporating 

four independent risk variables. Model 1 was expressed as 
Log[p(An)/1 − p(An)] = 1.342 ∗ smoking +0.875 ∗ SR − 0.193 ∗ 
(NWSS * 10) + 0.086 ∗(OSIave * 10) − 1.029, where p(An) denotes the 
estimated rupture probability. The other model, denoted as model 2 
(C + M), was represented as Log[p(An)/1 − p(An)] = 1.239 ∗ smoking 
+1.018 ∗ SR − 1.683. Figure 2 provides a detailed visualization of 
both models using multidimensional nomograms.

In the training dataset, both model 1 (AUC = 0.795; 95% CI, 
0.706 ~ 0.884) and model 2 (AUC = 0.706; 95% CI, 0.604 ~ 0.808) 
demonstrated significant discriminatory capabilities (Figure  3A). 
Additionally, by setting the optimal cutoff at 0.346, model 1 (C + M + H) 
achieved sensitivity, specificity, PPV, and NPV values of 95.6, 54.7, 64.2, 
and 93.6%, respectively. Model 2 (C + M) exhibited corresponding values 
of 82.4, 50.3, 55.9, and 76.7%, respectively (Supplementary Table S2).

Based on the observations in the training set, the external 
validation set revealed that model 1 (AUC = 0.709; 95% CI, 

TABLE 1  Clinical, morphological, and hemodynamic features of AChA aneurysms in the training set.

Features Overall (n  =  98) Unruptured (n  =  53) Ruptured (n  =  45) Shapiro–Wilk  
(p-value)

VIF

Clinical features

Gender (male), % 40 (40.82) 21 (39.62) 19 (42.22) / 1.36

Hypertension (yes), % 65 (66.33) 33 (62.26) 32 (71.11) / 1.85

Hyperlipemia (yes), % 11 (11.22) 6 (11.32) 5 (11.11) / 1.23

Smoking (yes), % 13 (13.27) 3 (5.66) 10 (22.22) / 1.56

Alcohol (yes), % 17 (17.35) 8 (15.09) 9 (20.00) / 1.54

Family history (yes), % 9 (9.18) 7 (13.21) 2 (4.44) / 1.34

Earlier SAH (yes), % 6 (6.12) 3 (5.66) 3 (6.67) / 1.45

Age, years 57 (47, 64) 58 (45, 66) 57 (48, 63) 0.019 1.67

BMI, kg/m2 24.11 ± 2.01 24.02 ± 1.76 24.21 ± 2.26 0.168 2.32

Morphological features

Daughter sac (yes), % 23 (23.47) 2 (3.77) 21 (46.67) / 1.90

Inflow angle, ° 95.50 ± 32.07 97.40 ± 35.35 93.25 ± 27.54 0.274 1.21

AR 1.14 (0.80, 1.54) 0.88 (0.71, 1.29) 1.34 (1.11, 1.77) < 0.001 4.54

SR 1.13 (0.88, 1.53) 1.04 (0.74, 1.33) 1.29 (1.06, 1.74) < 0.001 3.97

EI × 10 1.39 (0.64, 1.84) 0.77 (0.40, 1.48) 1.81 (1.56, 2.00) 0.001 31.67

NSI × 10 1.74 (0.82, 2.20) 0.94 (0.50, 1.72) 2.08 (1.91, 2.44) 0.005 28.04

UI × 10 0.73 (0.35, 1.20) 0.42 (0.24, 0.84) 1.00 (0.65, 1.51) < 0.001 2.47

Size, mm 3.15 (2.20, 4.10) 2.49 (1.87, 3.38) 3.67 (3.11, 5.00) 0.004 3.98

Diameter of parent vessel, 

mm
2.71 ± 0.63 2.62 ± 0.62 2.80 ± 0.61 0.238 2.49

Surface area, mm2 24.99 (15.52, 38.41) 21.78 (13.33, 28.11) 29.16 (21.60, 40.50) < 0.001 43.57

Volume, mm3 12.33 (6.64, 23.92) 9.27 (5.34, 15.12) 17.14 (9.33, 28.31) < 0.001 3.90

Hemodynamic features

NWSS × 10, Pa 2.83 (1.38, 5.78) 4.67 (2.18, 6.78) 1.95 (1.04, 4.08) < 0.001 2.00

OSIave × 10 1.60 (0.90, 2.50) 1.40 (0.80, 2.10) 1.90 (1.40, 2.60) < 0.001 1.38

LSA, % 23.15 (0.04, 62.86) 1.74 (0.02, 27.05) 49.55 (25.25, 79.67) < 0.001 4.37

RRT, s 1.03 (0.36, 4.30) 0.45 (0.25, 1.03) 3.28 (1.21, 11.57) < 0.001 2.36

Continuous variables were expressed in mean ± standard deviation (SD) or median (interquartile range). Categorical variables were expressed as number of patients (%). VIF, variance inflation 
factor; AChA, anterior choroidal artery; SAH, subarachnoid hemorrhage; AR, aspect ratio; SR, size ratio; EI, ellipticity index; NSI, non-sphericity index; UI, undulation index; NWSS, 
normalized wall shear stress; OSIave, average oscillatory shear index; LSA, low wall shear stress area; RRT, relative residence time.
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0.566 ~ 0.893) demonstrated superior discriminative capability than 
model 2 (AUC = 0.674; 95% CI, 0.520 ~ 0.827) (Figure 4). Moreover, 
utilizing 0.337 as the optimal cutoff value, model 1 (C + M + H) 
exhibited a sensitivity of 82.7%, specificity of 53.2%, NPV of 58.2%, 
and PPV of 80.5%. In contrast, model 2 (C + M) showed a sensitivity 
of 46.1%, specificity of 78.6%, NPV of 61.8%, and PPV of 64.7% 
(Supplementary Table S3).

The calibration plots for 2 models were generated based on 
1,000 iterations of bootstrap sampling. The results presented in 
Figures  3B,C, 5 illustrate a significant alignment between the 
observed state of instability and the predicted risk of rupture 
evaluated through nomograms. Notably, the calibration plots reveal 
a higher level of consistency in the external validation set than in 
the training set. Additionally, Figures 3D, 6 display DCA curves, 
indicating that model 1 (C + M + H) exhibited superior performance 
and was deemed suitable for guiding more advantageous 
clinical decisions.

Clinical value of two multidimensional 
models

In comparison with model 2 (AUC = 0.706; 95% CI, 0.604 ~ 0.808), 
model 1 (AUC = 0.795; 95% CI, 0.706 ~ 0.884) demonstrated superior 
discriminatory ability in the training set, as evidenced by the DeLong 
test (change = 0.089, p = 0.008) (Figure 3A; Supplementary Table S4). 
The DeLong test was employed to contrast model 1 (AUC = 0.709; 95% 
CI, 0.566 ~ 0.893) with model 2 (AUC = 0.674; 95% CI, 0.520 ~ 0.827) 
in the external validation set. The determined model improvement 
value was 0.035 (95% CI, 0.007 ~ 0.114, p = 0.047) (Figure  4; 
Supplementary Table S5). Importantly, the changes in NRI and IDI 
were utilized to assess the efficacy of the nomogram models, with NRI 
values of 0.224 (95% CI, 0.06 ~ 0.388, p = 0.007) and 0.624 (95% CI, 
0.168 ~ 1.107, p = 0.063) in the two cohorts, and IDI values of 0.572 
(95% CI, 0.173 ~ 0.811, p = 0.044) and 0.585 (95% CI, 0.208 ~ 0.963, 
p = 0.002), respectively (Supplementary Tables S5, S6). Overall, the 

TABLE 2  Univariate and multivariate regression analyses of the training set.

Features Univariate Multivariate

OR (95% CI) P-value OR (95% CI) P-value

Clinical features

Gender (male vs. female), % 1.11 (0.50, 2.50) 0.794 / /

Hypertension (yes vs. no), % 1.49 (0.64, 3.49) 0.357 / /

Hyperlipemia (yes vs. no), % 1.48 (0.42, 5.21) 0.544 / /

Smoking (yes vs. no), % 3.90 (1.27, 15.01) 0.017 3.83 (1.12, 13.11) 0.033

Alcohol (yes vs. no), % 1.41 (0.49, 4.01) 0.524 / /

Family history (yes vs. no), % 0.31 (0.06, 1.55) 0.153 / /

Earlier SAH (yes vs. no), % 1.19 (0.23, 6.21) 0.836 / /

Age, years 0.99 (0.96, 1.03) 0.640 / /

BMI, kg/m2 1.02 (0.98, 1.09) 0.657 / /

Morphological features

Daughter sac (yes vs. no), % 7.29 (1.51, 35.30) 0.014 / /

Inflow angle, ° 1.00 (0.98, 1.01) 0.535 / /

AR 1.21 (1.09, 1.54) <0.001 / /

SR 3.01 (1.37, 6.59) 0.006 2.40 (1.08, 5.32) 0.031

EI × 10 1.25 (1.14, 1.36) <0.001 / /

NSI × 10 1.20 (1.12, 1.30) <0.001 / /

UI × 10 3.12 (1.55, 6.28) 0.011 / /

Size, mm 2.29 (1.53, 3.41) 0.019 / /

Diameter of parent vessel, mm 2.12 (1.09, 4.38) 0.022 / /

Surface area, mm2 3.32 (1.45, 8.11) 0.031 / /

Volume, mm3 5.69 (1.76, 12.51) 0.029 / /

Hemodynamic features

NWSS × 10, Pa 0.82 (0.70, 0.96) 0.013 0.83 (0.69, 0.99) 0.034

OSIave × 10 1.15 (0.95, 1.39) 0.085 1.10 (0.93, 1.28) 0.301

LSA, % 1.03 (1.02, 1.05) 0.003 / /

RRT 1.01 (0.99, 1.03) 0.180 / /

OR, odds ratio; SAH, subarachnoid hemorrhage; AR, aspect ratio; SR, size ratio; EI, ellipticity index; NSI, non-sphericity index; UI, undulation index; NWSS, normalized wall shear stress; 
OSIave, average oscillatory shear index; LSA, low wall shear stress area; RRT, relative residence time.
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above-presented results indicate that model 1, incorporating 
hemodynamic features, may effectively discern the rupture status of 
AChA aneurysms compared to model 2. Additionally, DCA curves 
reveal that model 1 (C + M + H) yields greater net benefits than model 
2 (C + M) under both treat-all and treat-none strategies (Figures 3D, 6).

Discussion

Rupture risk assessment of AChA aneurysms plays a pivotal role 
in the medical management of those yet to rupture. Through a training 
set encompassing 98 cases, we identified 4 contributors (smoking, SR, 
NWSS, and OSIave) for constructing nomogram models. Subsequently, 
two models were devised and juxtaposed to discern the rupture 
probability of AChA aneurysms. Model 1 (C + M + H) showcased 
superior performance in both training and validation sets, excelling 

in discrimination, calibration, and clinical applicability in contrast to 
model 2 (C + M). The clinical and morphological parameters in model 
2 (C + M) were conveniently accessible, enabling interventionalists to 
swiftly make initial assessments. The precision of model 1 (C + M + H) 
and the accessibility of model 2(C + M) might yield distinct advantages.

In this study, clinical features independent of morphological and 
hemodynamic factors were identified as significant determinants of 
aneurysm rupture (27). Specifically, smoking emerged as a distinct 
risk factor for AChA aneurysm rupture. Notably, Juvela (28) integrated 
smoking into the PHASES rating scale, enhancing its efficacy in 
assessing long-term rupture risks in UIAs. Consistent with our 
findings, a case–control analysis of 4,701 individuals with 6,411 
aneurysms demonstrated that smokers faced a heightened risk of 
rupture compared to non-smokers (29). Additionally, while 
hypertension (30), earlier SAH (11), and familial history of aneurysm 
(31) were commonly recognized as risk factors for UIAs, our study did 

FIGURE 2

Nomograms for AChA aneurysms regarding clinical, morphological, and hemodynamic candidates. Model 1 (A) was constructed by four independent 
factors: smoking, SR, NWSS, and OSIave. Model 2 (B) was developed by two independent factors: smoking and SR. AChA, anterior choroid artery; SR, 
size ratio; NWSS, normalized wall shear stress; OSIave, average oscillatory shear index.
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FIGURE 3

ROC curves, calibration plots, DCA for model 1 (C  +  M  +  H) and model 2 (C  +  M) in the training set. In models 1 (C  +  M  +  H) and 2 (C  +  M), the AUC 
values were 0.795 (95% CI, 0.706  ~  0.884) and 0.706 (95% CI, 0.604  ~  0.808), respectively. (A) The horizontal and vertical axes illustrate, respectively, the 
evaluated and observed probabilities of aneurysmal rupture. The dashed lines reveal an ideal model’s flawless prediction. The green lines show inner 
validation by 1,000 bootstrap resampling. The red lines demonstrate the performance of the nomogram model. (B,C) The horizontal and vertical axes 
represent the threshold for determining great risk and clinical net benefit, respectively. The blue and red lines represent the net benefits of Models 1 
(C  +  M  +  H) and 2 (C  +  M), respectively. At Y  =  0, the horizontal line represents no treatment, while the gray curve means thorough intervention. 
(D) ROC, receiver operator characteristic; DCA, decision curve analysis; C  +  M  +  H, clinical, morphological, and hemodynamic features; C  +  M, clinical 
and morphological features; AUC, area under curve; CI, confidence interval.

FIGURE 4

ROC curves for model 1 (C  +  M  +  H) and model 2 (C  +  M) in the validation set. The AUCs for model 1 (C  +  M  +  H) and model 2 (C  +  M) were 0.709 (95% 
CI: 0.566  ~  0.893) and 0.674 (95% CI: 0.520  ~  0.827), respectively. ROC, receiver operator characteristic; C  +  M  +  H, clinical, morphological, and 
hemodynamic features; C  +  M, clinical and morphological features; AUC, area under curve; CI, confidence interval.
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not find these variables to be statistically significant, potentially due 
to the limitations of our sample size.

Notably, morphological parameters of aneurysms have been 
empirically linked to their propensity for rupture (32). SR encompasses 
the combined influence of the aneurysm and adjacent arteries, 
denoting the ratio of aneurysmal height to the average diameter of the 
parent artery (21). A substantial cohort, comprising 854 ruptured 
aneurysms and 180 UIAs, divulged that SR, rather than aneurysmal 
size, plays a pivotal role in predicting rupture status, especially in small 
aneurysms (<5 mm) (33). Furthermore, the investigations by Xiang 
et al. (34) and Yuan et al. (35) supported our findings, revealing a 
robust correlation between high SR and aneurysmal rupture. 
Interestingly, previous studies observed disparate cutoff values for SR, 
potentially attributable to variations in study design, particularly 

single-site methodologies. Our study evidenced that the ruptured 
group exhibited higher values for AR, EI, NSI, UI, size, and the 
presence of a daughter sac than the unruptured group, aligning with 
previous research (32). Despite SR being the sole morphological 
feature integrated into our models, it does not negate the significance 
of the seven other contributors in the rupture of AChA aneurysms.

The morphology and hemodynamics of aneurysms are intricately 
connected, with poor morphology exacerbating the process of 
aneurysmal growth and rupture by influencing hemodynamics (34). 
The impact of wall shear stress (WSS) on aneurysm growth and 
rupture remains a subject of debate. In a retrospective analysis of 210 
aneurysms, it was suggested that ruptured aneurysms exhibit an 
increased WSS (36). In contrast, Xiang et al. (34) and Leemans et al. 
(37), through morphological measurement and hemodynamic 

FIGURE 5

Calibration curves of model 1 (C  +  M  +  H) and model 2 (C  +  M) in the validation set. The calibration curve describes the calibration of the external 
validation set. The x-axis and y-axis represent the model estimated and actual values, respectively. The diagonal gray lines represent model-perfect 
assessments. The level of accuracy increases as the black line approaches the gray line. C  +  M  +  H, clinical, morphological, and hemodynamic features; 
C  +  M, clinical and morphological features.

FIGURE 6

DCA curves for model 1 (C  +  M  +  H) and model 2 (C  +  M) in the validation set. The green lines represent the net benefits of models 1 (C  +  M  +  H) and 2 
(C  +  M) in the validation set. The horizontal line (Y  =  0) and the gray curve indicate no treatment (treat-none) and radical intervention (treat-all), 
respectively. DCA, decision curve analysis; C  +  M  +  H, clinical, morphological, and hemodynamic features; C  +  M, clinical and morphological features.
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calculation of cerebral aneurysms at various sites, found that a lower 
WSS serves as an independent predictor of aneurysmal rupture. 
Variations in the anatomical characteristics of aneurysms at different 
locations may influence the hemodynamic pattern (38). Therefore, it 
is advisable to conduct hemodynamic evaluations on aneurysms in a 
single location for prudence. Both Duan et al. (19) and Yuan et al. 
(35) discovered an association between decreased WSS and rupture 
status in posterior communicating artery (PCoA) aneurysms. 
Extremely low WSS could prompt the endothelium to interface with 
adhesive molecules, activate proinflammatory cytokines, and 
inevitably lead to lesion wall deterioration and rupture (39). These 
site-specific investigations underscore the significance of low WSS in 
aneurysm rupture.

Alongside WSS, OSIave emerges as another pertinent 
hemodynamic parameter in aneurysm rupture dynamics (34). Despite 
our findings indicating non-statistical significance, OSIave found its 
place in the final models based on AIC minimum criteria. In a study 
focusing on PCoA aneurysms, OSIave demonstrated higher values in 
ruptured aneurysms than in unruptured counterparts, albeit lacking 
statistical significance (p > 0.05) (40). The patterns observed in AChA 
aneurysms mirror those in PCoA. Given our constrained sample size, 
leveraging extensive datasets for robust validation remains imperative 
in future investigations.

Similar to our findings, a retrospective study involving 119 IAs 
found that high SR, low WSS, and high OSIave were risk factors for the 
rupture of IAs. The derived regression equations yielded an AUC of 
0.89 for the comprehensive model, incorporating hemodynamic 
parameters, marking the highest predictive accuracy (41). Moreover, 
Liu et al. (4) categorized the rupture risk concerning the stability of 
IAs in the anterior circulation. The C-indices for the models 
(C + M + H), (C + M), and PHASES scores were 0.94, 0.89, and 0.68, 
respectively. Our current investigation identified similar risk factors 
as previous studies but exhibited variable efficacy, potentially 
attributable to the exclusive focus of our models on AChA aneurysms.

Machine learning has played a pivotal role in the extensive 
identification and assessment of rupture risk in IAs. Through a 
comprehensive analysis of various algorithms, Ou et  al. (14) and 
Xiong et al. (15) have substantiated that the predictive accuracy of 
machine learning significantly surpasses that of logistic regression 
models and scoring systems. Conversely, a multicenter study 
conducted in China revealed that traditional logistic regression is not 
inferior to machine learning algorithms in multidimensional models 
for predicting the rupture status of unruptured IAs (42). Therefore, it 
is essential to undertake a comparative analysis of several models for 
AChA aneurysms and carefully select the optimal model for 
subsequent external validation. This approach is indispensable for 
fostering continual improvement in predicting the rupture risk of 
AChA aneurysms in the future.

Limitations

In conducting this preliminary exploratory study on the 
assessment of AChA aneurysm risk, several limitations persist. First, 
the study is retrospective, and future endeavors should involve the 
advancement of predictive models through a multicenter prospective 
cohort to enable personalized evaluation of the rupture risk associated 
with AChA aneurysms. Second, the occurrence of instantaneous 

morphological and hemodynamic changes before aneurysm rupture 
poses a formidable challenge in capturing these changes at their 
pre-ruptured state in clinical practice. Additionally, a previous study 
indicated that morphological changes before and after the rupture of 
the majority of IAs were not statistically significant (43). Third, the 
absence of patient-specific data for CFD simulation with the software 
may hinder the widespread application of assessment models in real-
world scenarios. Fourth, the small sample size could introduce 
selection bias and result in low specificity. Although there were 98 
cases in the internal training set and 22  in the external test set, 
representing considerable numbers for AChA aneurysms, the sample 
sizes remained statistically small. Finally, the employed statistical 
methodologies lacked novelty, and machine learning algorithms were 
not incorporated. Collaborative efforts with artificial intelligence 
engineers are underway to develop interpretable algorithms suitable 
for application to small datasets.

Conclusion

We have developed and validated two assessment models to 
evaluate the risk of rupture in AChA aneurysms. Model 1 (C + M + H) 
exhibited superior accuracy, calibration, and clinical utility, whereas 
model 2 (C + M) possessed the advantage of time efficiency. These 
nomogram models represent valuable tools for conducting 
personalized risk assessments of unruptured AChA aneurysms.
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