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Background: Speech changes are an early symptom of Huntington disease (HD) 
and may occur prior to other motor and cognitive symptoms. Assessment of 
HD commonly uses clinician-rated outcome measures, which can be  limited 
by observer variability and episodic administration. Speech symptoms are well 
suited for evaluation by digital measures which can enable sensitive, frequent, 
passive, and remote administration.

Methods: We collected audio recordings using an external microphone of 36 (18 
HD, 7 prodromal HD, and 11 control) participants completing passage reading, 
counting forward, and counting backwards speech tasks. Motor and cognitive 
assessments were also administered. Features including pausing, pitch, and 
accuracy were automatically extracted from recordings using the BioDigit 
Speech software and compared between the three groups. Speech features 
were also analyzed by the Unified Huntington Disease Rating Scale (UHDRS) 
dysarthria score. Random forest machine learning models were implemented to 
predict clinical status and clinical scores from speech features.

Results: Significant differences in pausing, intelligibility, and accuracy features 
were observed between HD, prodromal HD, and control groups for the passage 
reading task (e.g., p < 0.001 with Cohen’d = −2 between HD and control groups for 
pause ratio). A few parameters were significantly different between the HD and 
control groups for the counting forward and backwards speech tasks. A random 
forest classifier predicted clinical status from speech tasks with a balanced 
accuracy of 73% and an AUC of 0.92. Random forest regressors predicted 
clinical outcomes from speech features with mean absolute error ranging from 
2.43–9.64 for UHDRS total functional capacity, motor and dysarthria scores, 
and explained variance ranging from 14 to 65%. Montreal Cognitive Assessment 
scores were predicted with mean absolute error of 2.3 and explained variance 
of 30%.

Conclusion: Speech data have the potential to be a valuable digital measure 
of HD progression, and can also enable remote, frequent disease assessment 
in prodromal HD and HD. Clinical status and disease severity were predicted 
from extracted speech features using random forest machine learning models. 
Speech measurements could be leveraged as sensitive marker of clinical onset 
and disease progression in future clinical trials.
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1 Introduction

Huntington disease (HD) is an inherited neurodegenerative 
disease characterized by complex motor, cognitive, and behavioral 
symptoms. The onset of HD features typically occurs in midlife and 
symptoms progressively worsen (1). Prior to meeting criteria for 
clinical diagnosis of HD, individuals who carry the huntingtin gene 
can be classified as having Prodromal HD and may experience 
some symptoms of HD (2). Presently, there are no disease-
modifying therapies to halt or slow HD progression, and clinical 
care largely focuses on symptomatic management (3). However, 
longitudinal studies found that HD develops over many years since 
the onset of neurodegeneration and that some symptoms may 
be present years before clinical diagnosis (4, 5). Early intervention 
in disease progression may be  critical in identifying disease 
modifying agents.

Speech changes often occur early in HD progression and may 
be  observed prior to other motor, cognitive, and psychiatric 
symptoms, and may also be detected during the prodromal HD stage 
(6). Individuals with HD may exhibit alterations in speech clarity, 
articulation, or phonation, and experience a decline in syntactic 
complexity and speech rate (7, 8). HD can also disrupt the pitch, 
rhythm, and stress of speech (“prosodic features”) which can lead to 
abnormalities in the melody and timing of speech, causing irregular 
pausing and intensity patterns (6, 9). Since speech symptoms can 
present early in HD, tracking changes in speech may be a valuable 
marker of early disease and disease progression (6).

Assessment of HD commonly uses standardized clinician-rated 
outcome measures that are often administered in a clinic setting. 
These rating scales are limited by high inter-observer variability, 
insensitivity, and episodic administration (10). Digital measures can 
enable quantitative, remote, and passive assessment of various diseases 
and disease-specific features. Digital measures have become 
increasingly popular with a rise in the ubiquity of sensing technologies 
(11). In HD research, smartwatches (12), smartphone apps (13), and 
wearable sensors (14) have been leveraged to collect measurements of 
gait, finger tapping, chorea, and global activity (15, 16).

While digital measures have been most well studied to capture 
motor symptoms of HD (17), digital measures for speech symptoms 
of HD are a promising area of research given the early presence of 
speech features in HD progression. Speech measurements are also 
easy to collect and can be recorded in clinic or remote settings using 
simple, accessible devices (18). Different types of speech tasks can 
be  performed to capture different features of speech, such as 
spontaneous free-flowing speech, passage reading, and syllable 
repetition (19), and features derived from phonetic, articulatory and 
prosodic characteristic of the speech can be  used to detect and 
monitor neuromotor dysfunction (20). To test the sensitivity of speech 
features in differentiating individuals with HD, prodromal HD (pHD), 
and control participants, and in capturing disease severity, three 
speech tasks were performed. Speech feature outcomes were used to 

test for group differences, correlations with clinical scores, and to train 
machine learning models to classify groups and predict clinical scores.

2 Methods

2.1 Experimental design

Participants provided written informed consent and were enrolled 
in an investigator-initiated observational cohort study performed at 
the University of Rochester. The study was reviewed and approved by 
the University of Rochester institutional review board. The 
longitudinal study included visits every three to 6 months, for up to 
3 years of total follow-up. At the baseline visit, the Montreal Cognitive 
Assessment (MoCA) (21) was performed, and demographics, 
concomitant medications, and health history were collected. At each 
visit the Unified Huntington Disease Rating Scale (UHDRS) (22), 
Timed Up and Go (23), activities of daily living, and speech tasks were 
performed. Activities of daily living tasks included writing a name, 
drinking water from a glass, unfolding a sheet and making a bed. 
Speech tasks included passage reading and counting forwards and 
backwards. Following each visit participants wore a wrist and pendant 
sensor for 1 week. This publication focuses solely on speech 
assessments from cross-sectional analyses.

2.2 Participants

Eighteen individuals with HD, 7 individuals with prodromal HD, 
and 11 controls had speech data available for analysis (Table 1). HD 
status was confirmed clinically by a movement disorders specialist 
investigator and either a self-reported first degree relative with HD or 
self-reported genetic test indicating a CAG expansion of >36 in the 
huntingtin gene (1). Prodromal HD participants were individuals with 
a self-reported CAG expansion of >36  in the huntingtin gene (1) 
without a self-reported clinical diagnosis of HD. Control participants 
were individuals in good health with no evidence of neurological 
disorder likely to cause involuntary movements or gait disturbance, as 
determined by the investigator. Exclusion criteria included pregnancy 
and any neurological, medical, or psychiatric conditions that would 
preclude participation in the activities in the investigator’s judgment. 
The study was approved by the Rochester ethics board.

2.3 Digital speech assessments

Digital Speech Assessments involved three tasks each with a 40 s 
time limit. The first task was a passage reading exercise, specifically 
the initial paragraph of the standardized “Rainbow Passage” (24), 
which is commonly used to analyze the production of connected 
speech. The participants were instructed to read it at their regular 
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pace and volume. The second task required the participants to count 
forward from 1 to 20. They were instructed to count comfortably, 
without rushing, and to continue counting even if they made a 
mistake. The third task involved counting backward from 50 to 30, 
but in increments of 3. Participants were instructed to keep counting 
by 3 s even if they made a mistake and not to stop. Throughout all the 
tasks, participants were situated in a quiet environment, and efforts 
were made to minimize external noise interference. The same 
instructions were read by the examiner for all participants, all the 
tasks were recorded with a same setup where the recorder was placed 
in the same position at the desk with a similar distance across tasks 
and participants.

2.4 Speech data analysis

To analyze the collected speech data, BioDigit Speech (BioSensics 
LLC, Newton, MA United States) was utilized (25). Prior to analyzing 
the data for each speech assessment, such as the Rainbow Passage, 
BioDigit Speech automatically identified and removed irrelevant 
audio segments. This process was facilitated by automated speech 
recognition (ASR), which transcribed the speech with an accuracy at 
the human-level performance and provided segment timestamps 
rather than word-level timestamps. BioDigit Speech inserted markers 
on the cross-attention layers, allowing retrieval of attention weights to 
obtain word-level timestamps. Optimal alignment was achieved using 
dynamic time warping (26), and the indexes of the optimal alignment 
were used to determine the beginning and end timestamps of the 
words. The pre-processed audio was then analyzed to extract 

phonatory, articulatory, prosody, and intelligibility features specific to 
each assessment, as described below.

2.4.1 Passage Reading features
Several features were calculated for the passage reading task. 

These included the total pause time, total voiced time, and their 
summation in total signal time, which were treated as separate features. 
The articulatory rate, representing the number of words articulated 
per second, was obtained by dividing the number of uttered words by 
the total voiced time. The mean pause length and the total number of 
pauses were calculated to assess the individual’s tendency to make 
longer or shorter pauses. Another feature, the speech-to-pause ratio, 
normalized the voiced time by the pause time, providing the 
proportion of speech relative to pauses or silence, regardless of the 
total signal duration. Additionally, three acoustic features were 
extracted, namely, the average loudness (measured in sone units), 
which quantified the sum of the root mean squared frequency signals 
on the Bark scale, the mean pitch (mean fundamental frequency), and 
the pitch standard deviation (SD). These features were considered 
important as decreased pulmonary capacity could impact loudness, 
and neuromotor difficulties in vocal fold regulation could result in 
pitch alterations and increased pitch variability (27, 28).

The transcription of the reading was compared with the word 
content of the original passage (26). The ratio of extra words and the 
ratio of missing words were calculated as features. Dynamic time 
warping was employed to compare the transcribed reading with the 
original passage. Instead of encoding words, a numerical coding 
system was utilized for individual letters, as it has been suggested to 
better capture speech alterations (29). Two dynamic time warping 

TABLE 1 Participant characteristics.

HD (n  =  18) Prodromal HD (n  =  7) Control (n  =  11)

Age, mean (SD) 49.9 (11.0) 34.6 (12.9) 55.6 (14.4)

Female, n (%) 9 (50.0) 6 (85.7) 6 (54.5)

Education level, n (%)

Doctoral degree 1 (5.6) 0 (0.0) 0 (0.0)

Master’s degree 1 (5.6) 1 (14.2) 0 (0.0)

Some graduate school 0 (0.0) 0 (0.0) 2 (18.2)

Four-year college degree 4 (22.2) 0 (0.0) 3 (27.3)

Two-year college degree 2 (11.1) 1 (0.0) 4 (36.4)

Some college 3 (16.7) 2 (28.6) 1 (9.1)

High school diploma/GED 7 (38.9) 3 (42.9) 1 (9.1)

Race, n (%)

American Indian or Alaska Native 0 (0.0) 1 (14.3) 0 (0.0)

White 18 (100) 6 (85.7) 11 (100)

Ethnicity, n (%)

Not Hispanic or Latino 18 (100) 7 (100) 11 (100)

UHDRS

Dysarthria score, mean (SD) 1.22 (0.6) 0 (0) 0 (0)

Functional, mean (SD) 19.8 (3.1) 23.6 (1.1) 23.6 (1.2)

Motor, mean (SD) 41.1 (16.6) 1.7 (2.6) 0.7 (1.4)

MoCA, mean (SD) 23 (2.8) 27.3 (3) 27.9 (1.1)

HD, Huntington disease; UHDRS, Unified Huntington Disease Rating Scale.
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measures were extracted. The similarity dynamic time warping 
represented the reciprocal of the dynamic time warping distance plus 
one (1/(1 + dynamic time warping distance)), indicating the similarity 
between the original passage and the transcribed reading. Higher 
values indicated greater similarity between the two encoded signals. 
The intelligibility dynamic time warping represented the similarity 
between the transcription from a medium-sized automated speech 
recognition model and a small-sized model. The rationale behind 
using models of different complexities was that the smaller model 
would struggle to accurately transcribe unclear speech. Consequently, 
the less intelligible the speech, the lower the accuracy of the small 
speech recognition model, resulting in a smaller value for the 
intelligibility dynamic time warping.

2.4.2 Counting features
For counting tasks, the beginning of the speech task was 

determined automatically by the BioDigit Speech platform by 
excluding non-number words. In addition, automated speech 
recognition was applied to transcribe the speech, and computed the 
number of correct counts, incorrect counts, and the correct counts ratio 
(i.e., the ratio between the number of correct and total counts). As in 
passage, timing features were calculated (total voice, pause and signal 
times, and speech to pause ratio, number of pauses and mean pause 
length) as well as articulatory rate and the number of counts 
per second.

2.5 Statistical analysis

To evaluate the statistical significance of the null hypothesis, an 
independent pairwise t-test was employed to compare each 
extracted feature across the three groups. Cohen’s d was computed 
to estimate the effect size of the observed differences between the 
groups. To explore the associations between the speech features and 
the clinical scores (MoCA, UHDRS motor and functional, and 
dysarthria), correlation analyses were performed. Specifically, 
Pearson’s correlation coefficient was utilized for MoCA and 
UHDRS, which are traditionally treated as continuous scales, while 
Spearman’s correlation coefficient was applied for the UHDRS 
dysarthria score, which is a discrete scale with five values. 
We acknowledge the risk of Type I errors from multiple comparisons 
in our exploratory study. We chose not to use multiple corrections 
to avoid missing potentially significant findings. This decision may 
increase false positives but decreases the risk of overlooking 
meaningful results.

2.6 Machine learning

We developed a machine learning model to automate the 
detection of HD versus prodromal HD versus non-HD controls using 
speech. The passage reading task exhibited the most substantial 
differences between groups, compared to the counting tasks. The first 
machine learning model was trained using the significant speech 
features solely from the passage reading task. To assess if a multi-task 
model trained on the significant speech features from the three tasks 
would have more discriminative power, a second model was trained 
using the significant features from all speech tasks. Specifically, a 

random forest classifier was employed with balanced class weights, 
and its performance was evaluated using a weighted average and recall 
metrics for each group. Recall is particularly important as it measures 
the model’s ability to correctly identify positive instances, aiding in the 
detection of HD and early interventions. Recall is the “accuracy” per 
class, thus, for example, a 0.70 recall indicates that 70% of the class 
samples were correctly identified. In addition, a similar model was 
trained to classify dysarthria. Furthermore, to predict clinical scores 
of dysarthria, separate random forest regressors were trained for each 
of the four clinical scores. The performance of these regressors was 
assessed using metrics such as mean squared error, mean absolute 
error, and explained variance.

To ensure a robust evaluation of the models, a leave-one-
subject-out cross-validation strategy was employed, a common 
approach for evaluating machine learning models with small sample 
size. In each iteration, the training set comprised all the subjects’ 
visits, except for one subject’s visits that was used as the test set. The 
reported performance represents the average performance across all 
iterations of the cross-validation process. This approach allows for a 
comprehensive assessment of the models’ generalization capabilities 
and helps mitigate the risk of overfitting to specific 
subject characteristics.

3 Results

3.1 Group differences

In the analysis of passage reading features (Table  2), several 
significant group differences were observed. Individuals with HD 
exhibited distinct speech features compared to pHD and control 
groups. Figure 1 shows the boxplot for the most significant speech 
features. The mean speech-to-pause ratio was significantly lower in 
the HD group (0.92, SD = 0.51) compared to both pHD (1.84, 
SD = 0.64, p = 0.001) and control groups (1.91, SD = 0.46, p = 0.001), 
indicating a higher proportion of pauses or silence relative to speech. 
The similarity dynamic time warping, a measure of the similarity 
between the original passage and the transcribed reading, was 
significantly lower in HD (0.37, SD = 0.34) compared to pHD (0.74, 
SD = 0.19, p = 0.001) and control groups (0.92, SD = 0.14, p = 0.001), 
indicating greater dissimilarity in speech production. Additionally, 
mean total pause time and total signal time were significantly longer 
in the HD group (pause time: 15.91, SD = 6.94; signal time: 27.53, 
SD = 7.00) compared to pHD (pause time: 7.01, SD = 2.43, p = 0.003; 
signal time: 18.60; p = 0.003) and control (pause time: 6.01, SD = 1.63, 
p = 0.001; signal time:16.90, SD = 2.19, p = 0.001), indicating more 
frequent and prolonged pauses during speech production. Other 
features such as intelligibility dynamic time warping, mean pause 
length, ratio of extra words, and ratio of missing words also showed 
significant differences between HD and pHD and control groups. 
Conversely, attributes associated with loudness, pitch, articulatory 
rate, and total voiced time remained consistent across groups. 
Notably, the pHD group exhibited few significant deviations from the 
control group, with exceptions in pitch mean (pHD: 166.63, 
SD = 24.3; control: 136, SD = 30.2; p = 0.037), pitch standard deviation 
(pHD: 24.62, SD = 9.06; control: 22, SD = 12.1; p = 0.026), and 
similarity dynamic time warping (pHD: 0.74, SD = 0.19; control: 0.92, 
SD = 0.14; p = 0.033).
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When participants were grouped based on their UHDRS 
dysarthria scores in either no dysarthria, dysarthria score of 1, or 
dysarthria score of 2 (controls and pHD are negative, and HD either 
1 or 2 dysarthria), several passage reading features exhibited 
significant differences (Table 3). Total signal time, mean pause length, 
ratio of extra words, similarity dynamic time warping, and total pause 
time were significantly higher in participants with dysarthria 
compared to those with no dysarthria. There were no significant 
differences in speech features between dysarthria scores of 1 and 2. 
Figure 2 shows the boxplots for the most significant features. These 
findings suggest that dysarthria severity is associated with altered 
speech patterns characterized by longer pauses, increased disfluencies, 
and reduced similarity to the original passage. However, loudness did 
not show significant differences across the dysarthria groups, 
indicating that dysarthria severity may not directly influence loudness 
in this context.

Group differences from counting forward and backward were not 
highly pronounced, except for a few features. In the counting forward 
task (Supplementary Table S1), the significant differences between the 
HD group and the control group were found in variables related to 
timing, such as pauses per second (HD: 1.69, SD = 0.50; control: 2.42, 
SD = 0.44; p = 0.001), total pause time (HD: 15, SD = 7.95; control: 8.86, 
SD = 3.19; p = 0.022), total signal time (HD: 23.47, SD = 7.54; control: 
17.5, SD = 4.3; p = 0.024), mean pause length (HD: 0.44, SD = 0.31; 
control: 0.22, SD = 0.06; p = 0.024), and speech-to-pause ratio (HD: 
0.72, SD = 0.42; control: 1.05, SD = 0.29; p = 0.032). In the counting 
backward task (Supplementary Table S2), the significant differences 
between the HD group and the control group were observed in the 
number of correct counts (HD: 4.53, SD = 2.42; control: 6.55, 
SD = 0.52; p = 0.012) and the percentage of correct counts (HD: 0.69, 
SD = 0.30; control: 0.91, SD = 0.14; p = 0.039). This suggests that 
individuals with HD had lower accuracy in counting backward 
compared to the control group. The pitch mean was significantly 
different between pHD and controls for both the counting forwards 

(pHD: 180.03, SD = 29.4; control: 146, SD = 26; p = 0.022) and counting 
backwards tasks (pHD: 213.44, SD = 47.7; control: 157, SD = 33.6; 
p = 0.009) groups but not from HD, and there were no differences in 
errors made while counting.

3.2 Clinical scores correlations

Correlation analyses (Table 4) revealed significant associations 
between passage reading features and clinical scores. Figure 3 plots the 
most correlated speech feature for each clinical assessment. Several 
speech features showed significant correlations with clinical scores 
such as the Montreal Cognitive Assessment (MoCA), Unified 
Huntington’s Disease Rating Scale (UHDRS) Functional, UHDRS 
Motor, and UHDRS dysarthria score. Total pause time, speech-to-
pause ratio, mean pause length, ratio of extra words, similarity 
dynamic time warping, and total signal time exhibited significant 
correlations with one or more of these clinical scores. These findings 
suggest that specific speech features derived from passage reading 
tasks are related to the participants’ cognitive and motor abilities as 
well as their dysarthria severity. Longer pause durations, increased 
disfluencies, and lower similarity to the original passage were 
associated with poorer clinical scores.

3.3 Machine learning

The random forest classifier using passage reading features 
achieved an AUC of 0.89 and a weighted accuracy of 64% in 
differentiating between the HD, pHD, and control groups, and a 
recall of 94% for HD, 55% for pHD and 62% for control. Classification 
errors where more prevalent between adjacent groups, i.e., control 
and pHD, pHD and HD, as the differences between them are 
narrower. Better accuracy was achieved when using counting forward 

TABLE 2 Descriptive statistics and group comparisons for passage reading features.

Groups HD PHD CTR HD vs. PHD HD vs. CTR PHD vs. CTR

Rainbow passage Mean  ±  std Mean  ±  std Mean  ±  std D P-val D P-val D P-val

Speech to pause ratio 0.92 ± 0.51 1.84 ± 0.64 1.91 ± 0.46 −1.68 <0.001 −2 <0.001* 0.13 0.785

Similarity DTW 0.37 ± 0.24 0.74 ± 0.19 0.92 ± 0.14 −1.61 <0.001* −2.6 <0.001* 1.13 0.033

Articulatory rate (w/s) 1.73 ± 0.75 2.72 ± 0.44 3.16 ± 0.31 −1.46 0.003* −2.3 <0.001* 1.21 0.02

Total pause time (s) 15.91 ± 6.94 7.01 ± 2.43 6.01 ± 1.63 1.46 0.003* 1.77 <0.001* −0.5 0.312

Total signal time (s) 27.53 ± 7 18.6 ± 2.43 16.9 ± 2.19 1.45 0.003* 1.87 <0.001* −0.8 0.138

Intelligibility DTW 0.32 ± 0.19 0.59 ± 0.27 0.72 ± 0.19 −1.25 0.01* −2.1 <0.001* 0.57 0.252

Mean pause length (s) 0.6 ± 0.32 0.27 ± 0.04 0.26 ± 0.03 1.21 0.012* 1.32 0.002* −0 0.958

Ratio extra words 0.13 ± 0.1 0.03 ± 0.02 0.01 ± 0.02 1.15 0.017* 1.42 <0.001* −0.7 0.171

Ratio missing words 0.2 ± 0.18 0.04 ± 0.03 0.01 ± 0.03 1.08 0.024* 1.31 0.002* −0.8 0.137

Pitch SD (Hz) 26.42 ± 9.06 36.32 ± 12.1 22 ± 12.1 −1 0.036 0.43 0.27 −1.2 0.026

Loudness 79.44 ± 7.6 86.78 ± 14.7 86.7 ± 10.2 −0.74 0.111 −0.8 0.037 −0 0.989

Number of pauses 28.39 ± 9.11 26 ± 6.24 22.5 ± 3.91 0.28 0.532 0.78 0.051 −0.7 0.155

Pitch mean (Hz) 157.84 ± 33.82 166.63 ± 24.3 136 ± 30.2 −0.28 0.539 0.68 0.088 −1.1 0.037

Total voiced time (s) 11.62 ± 3.72 11.6 ± 1.41 10.9 ± 1.07 0.01 0.989 0.25 0.522 −0.6 0.23

HD, Huntington’s disease; pHD, prodromal Huntington’s disease; CTR, control; D, Cohen’s D; DTW, dynamic time warping. *significant features after FDR correction.
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and backwards features in addition to passage reading features, with 
an AUC of 0.92 and an accuracy of 73%, and a recall of 94% for HD, 
53% for pHD and 79% for control. Model performance was not 
significantly correlated with age (r = −0.33, p-val = 0.21) nor 
significantly different between sex groups (t-statistic = 0.26, 
p-val = 0.79). Figure  4 shows the ROC AUC curvatures for both 

models and in Figure 5 the confusion matrices. A similar approach 
was used to classify subjects with dysarthria scores of 0, 1 and 2. The 
results presented in Supplementary Figure S1 shows that while the 
models can clearly differentiate between individuals without 
dysarthria, it is challenging to separate dysarthria scores between 
1 and 2.

FIGURE 1

Boxplots illustrating speech features stratified by group. Within each boxplot, three whiskers represent the data distribution for the Control (CTR), 
Prodromal (pHD), and Huntington Disease (HD) groups. The whiskers indicate the 95% confidence interval, while the box represents the interquartile 
range (25th to 75th percentile), and the middle line represents the mean value. DTW: dynamic time warping.

TABLE 3 Descriptive statistics and group comparisons for passage reading features grouping participants by their dysarthria score.

Dysarthria scores 2 (n  =  5) 1 (n  =  12) 0 (n  =  19) 2 vs. 1 2 vs. 0 1 vs. 0

Rainbow passage Mean ± std Mean ± std Mean ± std D Value of p D p-val D p-val

Total signal time (s) 28.49 ± 5.05 27.35 ± 8.08 17.9 ± 2.86 0.15 0.777 3.13 <0.001* 1.72 <0.001*

Mean pause length (s) 0.7 ± 0.28 0.58 ± 0.34 0.27 ± 0.04 0.39 0.480 3.53 <0.001* 1.44 <0.001*

Ratio extra words 0.16 ± 0.08 0.12 ± 0.12 0.02 ± 0.02 0.38 0.483 3.65 <0.001* 1.38 <0.001*

Similarity DTW 0.32 ± 0.17 0.38 ± 0.27 0.84 ± 0.19 −0.24 0.660 −2.9 <0.001* −2.1 <0.001*

Total pause time (s) 18.57 ± 8.25 15.28 ± 6.56 6.6 ± 2.11 0.47 0.395 2.99 <0.001* 1.99 <0.001*

Ratio missing words 0.25 ± 0.17 0.19 ± 0.18 0.02 ± 0.03 0.35 0.524 2.97 <0.001* 1.44 <0.001*

Speech to pause ratio 0.7 ± 0.51 0.96 ± 0.51 1.86 ± 0.52 −0.51 0.355 −2.2 <0.001* −1.8 <0.001*

Intelligibility DTW 0.2 ± 0.09 0.36 ± 0.21 0.66 ± 0.23 −0.9 0.113 −2.2 <0.001* −1.3 <0.001*

Loudness 78.08 ± 8.79 78.76 ± 6.27 87.1 ± 11.5 −0.1 0.859 −0.8 0.118 −0.9 0.029

Total voiced time (s) 9.92 ± 3.26 12.07 ± 3.89 11.3 ± 1.45 −0.57 0.298 −0.7 0.155 0.28 0.462

Articulatory rate 3.95 ± 1.63 4.17 ± 0.96 4.55 ± 0.54 −0.19 0.732 −0.7 0.175 −0.5 0.166

Number of pauses 26.4 ± 5.5 29.08 ± 10.7 24.2 ± 5.15 −0.28 0.607 0.43 0.401 0.64 0.095

Pitch SD (Hz) 24.35 ± 7.26 27.44 ± 10.2 27.4 ± 13.4 −0.32 0.551 −0.2 0.634 0 0.992

Pitch mean (Hz) 146.61 ± 29.29 160.95 ± 36.8 149 ± 31.2 −0.41 0.453 −0.1 0.864 0.35 0.353

0,1,2: Dysarthria scores, D: Cohen’s D, DTW: dynamic time warping. *significant features after FDR correction. Bold value indicates statistically significant features.

https://doi.org/10.3389/fneur.2024.1310548
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Nunes et al. 10.3389/fneur.2024.1310548

Frontiers in Neurology 07 frontiersin.org

The random forest regressors trained to predict clinical scores 
demonstrated varying performance metrics (Table  5). The mean 
squared error (MSE) values were 8.39 for MoCA, 11.07 for UHDRS 
Functional, 194.68 for UHDRS Motor, and 0.33 for dysarthria. The 

mean absolute error (MAE) values were 2.3 for MoCA, 2.43 for 
UHDRS Functional, 9.64 for UHDRS Motor, and 0.37 for dysarthria. 
The explained variance ranged from 0.3 for MoCA to 0.54 for 
dysarthria. Figure 6 shows the scatterplot of clinical and predicted 

FIGURE 2

Boxplots illustrating speech features stratified by dysarthria scores. Within each boxplot, three whiskers represent the data distribution for individuals 
with dysarthria scores of 0, 1, and 2. The whiskers indicate the 95% confidence interval, while the box represents the interquartile range (25th to 75th 
percentile), and the middle line represents the mean value.

TABLE 4 Correlations and p-values for speech features from passage reading and clinical scores.

Clinical scores MoCa UHDRS Functional UHDRS Motor Dysarthria

Rainbow passage Corr p-val Corr p-val Corr p-val Corr p-val

Total pause time (s) −0.564 <0.001* −0.475 0.003* 0.683 <0.001* 0.702 <0.001*

Speech to pause ratio 0.556 <0.001* 0.474 0.004* −0.687 <0.001* −0.71 <0.001*

Mean pause length (s) −0.624 <0.001* −0.502 0.002* 0.643 <0.001* 0.82 <0.001*

Ratio extra words −0.586 <0.001* −0.46 0.005* 0.696 <0.001* 0.715 <0.001*

Similarity DTW 0.536 0.001* 0.629 <0.001* −0.699 <0.001* −0.77 <0.001*

Total signal time (s) −0.519 0.001* −0.473 0.004* 0.675 <0.001* 0.661 <0.001*

Ratio missing words −0.503 0.002* −0.559 <0.001* 0.682 <0.001* 0.749 <0.001*

Intelligibility DTW 0.483 0.003* 0.453 0.006* −0.646 <0.001* −0.69 <0.001*

Loudness 0.453 0.005* 0.127 0.462 −0.362 0.03 −0.42 0.011*

Articulatory rate (w/s) 0.423 0.01* 0.322 0.055 −0.45 0.006* −0.32 0.058

Pitch mean (Hz) −0.236 0.166 −0.178 0.299 0.251 0.139 0.002 0.991

Number of pauses −0.114 0.509 −0.132 0.443 0.217 0.203 0.191 0.265

Total voiced time (s) 0.065 0.707 −0.039 0.821 0.041 0.811 −0.05 0.778

Pitch SD (Hz) −0.022 0.901 0.116 0.499 0.047 0.784 −0.02 0.926

MoCA, Montreal Cognitive Assessment; UHDRS Functional, Unified Huntington’s Disease Rating Scale–Functional; UHDRS Motor, Unified Huntington’s Disease Rating Scale – Motor; 
DTW, dynamic time warping. *significant features after FDR correction. Bold value indicates statistically significant features.
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scores. It can be  noted that controls and pHD tend to be  clearly 
separated from HD. When inspecting for the most contributing 
features to predict the clinical scores, as shown in Figure 7, timing 
variables such as total time, mean pause duration, are the most 
contributing, as well as intelligibility dynamic time warping, indicating 
that the higher the clinical severity the more time it takes to read aloud 
the passage and less clear it is.

4 Discussion

The present study investigated the utility of speech-based measures 
for assessing neurodegenerative movement disorders, focusing on 

HD. The study demonstrated the clinical potential significance of 
speech features obtained during passage reading and counting tasks. 
These assessments can be administered remotely and very frequently, 
allowing for a fine graded assessment of disease progression. The 
results demonstrated significant group differences in passage reading 
features between HD, pHD, and control groups. In general, a pattern 
can be seen where individuals in the HD and control groups differ the 
most across the passage reading features, while those with pHD are in 
between the two groups. However, while HD showed pronounced 
variations compared to pHD and control, the pHD group displayed 
minimal deviations from the control, likely attributable to their early 
disease stage’s subtle phenotypic shifts and perhaps their age, which 
was younger than the other groups. Additionally, correlations with 

FIGURE 3

Correlations between speech features and clinical scores. Each plot represents the association between a specific clinical score and a corresponding 
speech feature. Colored circles indicate the group membership of the data points, allowing for visual differentiation among the groups.
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clinical scores and successful machine learning models for group 
differentiation and prediction of clinical scores were observed.

In the analysis of passage reading features, HD participants 
exhibited distinct speech patterns compared to pHD and control 
groups. Notably, the speech-to-pause ratio was significantly lower in 
the HD group, indicating a higher proportion of pauses or silence 
relative to speech. Moreover, total pause time and total signal time 
were significantly longer in the HD group, suggesting more frequent 
and prolonged pauses during speech production. These differences in 
speech features may be indicative of dysarthria, a common symptom 
in HD, affecting motor speech control and articulation, and are in line 
with previous studies (30–32). However, features related to loudness, 
pitch, articulatory rate, and total voiced time did not demonstrate 
significant group differences. In the counting forwards task, there were 
minimal differences between groups in errors made while counting 
(See Supplementary Table S1 of the Supplementary materials). This is 
consistent with the results from our study in older adults with and 
without cognitive decline (33), where no differences in counting errors 
were observed between the two groups. However, the HD group had 

significantly higher counting errors on the counting backwards task 
compared to the prodromal and control groups (See 
Supplementary Table S2 of the Supplementary materials).

Correlation analyses further supported the significance of speech 
features as potential markers of disease severity. Several speech 
features showed significant moderate to strong correlations with 
clinical scores related to cognitive function, motor abilities, and 
dysarthria severity. Longer pause durations, increased disfluencies, 
and lower similarity to the original passage were associated with 
poorer clinical scores. Further research is needed to determine 
whether these specific speech measures could be used to monitor 
disease progression and assess functional decline.

The application of machine learning models for group 
differentiation and prediction of clinical scores showed promising 
results. A random forest classifier achieved relatively high recall values 
for HD and control groups based on passage reading features, however 
it was the least successful at classifying cases of pHD. The model’s 
performance was improved by incorporating counting tasks, 
suggesting that a combination of speech assessments could enhance 

FIGURE 4

ROC AUC plots for (A) passage reading features only and (B) passage reading, counting forward and backward features.

FIGURE 5

Confusion matrices showing number of correct and incorrect classifications. (A) Passage reading features only. (B) Passage reading, counting forward 
and backward features.
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the accuracy of group classification. However, the classification of 
dysarthria scores was challenging, especially distinguishing between 
scores of 1 and 2. This may be attributed to the limited number of 
recordings with dysarthria scores greater than 1. Prediction of clinical 

scores also showed promising results, with motor UHDRS and 
dysarthria scores explained variance over 50%, albeit only 14% of the 
variance was captured from functional UHDRS, suggesting that the 
model is more sensitive to specific assessments.

The findings of this study have important implications for the 
clinical application of remote monitoring systems and wearable 
sensors in neurodegenerative movement disorders, particularly in 
HD. While speech measurements were collected in clinic in this study, 
there is the potential to collect speech data remotely. Remote collection 
of speech data would allow for a quantitative assessment from the 
comfort of a patient’s home environment, however it may pose 
additional challenges such as a poorer recording quality and sources 
of ambient noise. Future research will be needed to determine the use 
and feasibility of remote speech data assessments in the 
HD population.

TABLE 5 Performance metrics for predicting clinical scores based on 
speech features.

Predicted 
clinical score

MSE MAE Explained 
variance

MoCa 8.39 2.3 0.3

UHDRS functional 11.07 2.43 0.14

UHDRS motor 194.68 9.64 0.64

Dysarthria 0.33 0.37 0.54

MSE, mean squared error; MAE, mean absolute error.

FIGURE 6

Scatterplot representing the original and the estimated clinical scores.
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Despite its promising results, this study is not without its 
limitations. Among them is the low sample size, particularly in the 
prodromal HD group, which may limit the generalizability of the 
findings. With only seven participants and a lack of age and sex 
matching in the prodromal HD group, our study’s statistical power 
may be limited, potentially missing some subtle but clinically relevant 
differences. Furthermore, while the study incorporated passage 
reading and counting as speech assessments, a more comprehensive 
array of speech evaluations and inclusion of spontaneous speech 
might have yielded nuanced insights into the specific speech deficits 
in HD and their evolution. There’s also the potential that the current 
speech tasks are better suited to capture motor-related speech 
impairment rather than cognitive-related speech impairment. Future 
studies would benefit from a larger sample size, especially in 

prodromal HD, age matching, and the inclusion of more diverse 
speech assessments to capture a broader spectrum of speech and 
cognitive impairments in HD.

In conclusion, this study demonstrates the potential of utilizing 
speech-based measures as tools for assessing disease progression and 
aiding in early detection and intervention strategies in HD. The 
significant group differences, correlations with clinical scores, and 
successful machine learning models provide evidence for the efficacy 
of digital measures in capturing HD symptoms. The integration of 
speech assessments into routine clinical practice can offer a 
non-invasive and objective approach to monitor disease progression 
and improve patient care in neurodegenerative movement disorders. 
Furthermore, changes in speech may precede the onset of motor 
symptoms and therefore digital speech assessments may be valuable 

FIGURE 7

Feature contributions in predicting clinical scores.
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in clinical trials as a marker of clinical onset and disease progression. 
This is especially important since most therapeutics under 
development are targeting prodromal and early-stages of HD to 
slowdown the progression of the disease. Future research should focus 
on further validating the proposed speech-based measures in larger 
and more diverse populations.
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