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Introduction: Because adult-onset leukoencephalopathy with axonal spheroids 
and pigmented glia (ALSP) is a rare, rapidly progressive, debilitating, and 
ultimately fatal neurodegenerative disease, a rapid and accurate diagnosis is 
critical. This analysis examined the frequency of initial misdiagnosis of ALSP via 
comprehensive review of peer-reviewed published cases.

Methods: Data were extracted from a MEDLINE search via PubMed (January 
1, 1980, through March 22, 2022) from eligible published case reports/series 
for patients with an ALSP diagnosis that had been confirmed by testing for 
the colony-stimulating factor-1 receptor gene (CSF1R) mutation. Patient 
demographics, clinical symptoms, brain imaging, and initial diagnosis data 
were summarized descriptively. Categorical data for patient demographics, 
symptoms, and brain imaging were stratified by initial diagnosis category to test 
for differences in initial diagnosis based on each variable.

Results: Data were extracted from a cohort of 291 patients with ALSP from 
93 published case reports and case series. Mean (standard deviation) age of 
symptom onset was 43.2 (11.6) years. A family history of ALSP was observed in 
59.1% of patients. Cognitive impairment (47.1%) and behavioral and psychiatric 
abnormalities (26.8%) were the most frequently reported initial symptoms. Of 
291 total cases, an accurate initial diagnosis of ALSP was made in 72 cases (24.7%) 
and the most frequent initial misdiagnosis categories were frontotemporal 
dementia (28 [9.6%]) and multiple sclerosis (21 [7.2%]). Of the 219 cases (75.3%) 
that were initially mis- or undiagnosed, 206 cases (94.1%) were later confirmed 
as ALSP by immunohistology, imaging, and/or genetic testing; for the remaining 
13 cases, no final diagnosis was reported. Initial diagnosis category varied based 
on age, family history, geographic region, mode of inheritance, and presenting 
symptoms of pyramidal or extrapyramidal motor dysfunction, behavioral 
and psychiatric abnormalities, cognitive impairment, and speech difficulty. 
Brain imaging abnormalities were common, and initial diagnosis category 
was significantly associated with white matter hyperintensities, white matter 
calcifications, and ventricular enlargement.

Discussion: In this literature analysis, ALSP was frequently misdiagnosed. 
Improving awareness of this condition and distinguishing it from other conditions 
with overlapping presenting symptoms is important for timely management of a 
rapidly progressive disease such as ALSP.
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1 Introduction

Adult-onset leukoencephalopathy with axonal spheroids and 
pigmented glia (ALSP) is a rare, hereditary, autosomal dominant 
neurodegenerative disorder with typical onset between 40 and 50 years 
of age (mean age, 43 years [range: 18–78 years]) (1, 2). Loss-of-
function mutations in the colony-stimulating factor-1 receptor gene 
(CSF1R) cause the morphologic abnormalities that are characteristic 
of ALSP, including distended neuronal axons, pigmented glial cells, 
and demyelination of cerebral white matter (3, 4). The treatment of 
ALSP remains an unmet medical need, as no symptomatic or disease-
modifying therapies are currently approved to reverse, delay, or stop 
the progression of this disabling disorder (3, 4). The natural course of 
ALSP is marked by rapidly progressive and debilitating cognitive 
impairment, moderate to severe motor dysfunction, and 
neuropsychiatric complications, leading to impaired quality of life and 
death within approximately 6–8 years from symptom onset (1, 4, 5).

Symptom onset and progression among patients with ALSP is 
variable, even within the same family, and differential diagnosis of 
ALSP can be  challenging due to the overlapping presentation of 
symptoms and radiologic features that can mimic other 
neurodegenerative and white matter diseases (inflammatory, vascular, 
or genetic) (4–6). A previously conducted comprehensive review of 
the literature examined disorders with clinical symptoms that overlap 
with ALSP (3), highlighting that the differential diagnosis of ALSP 
should include Alzheimer’s disease, cerebral autosomal dominant 
arteriopathy with subcortical infarcts and leukoencephalopathy 
(CADASIL), atypical Parkinson’s disease, other leukodystrophies, 
frontotemporal dementia, progressive multiple sclerosis, and vascular 
dementia (3–5).

Validated diagnostic criteria for ALSP that were developed 
through a retrospective case study combine specific core features, 
exclusionary findings, and supportive findings to generate the 
diagnosis of ALSP as definite, probable, or possible (7); however, 
independent analyses have suggested that these criteria demonstrate 
poor specificity (8, 9), which may be because they were designed to 
avoid missing atypical ALSP cases (8). Genetic testing for 
confirmation of a CSF1R mutation is required for a definitive 
diagnosis, but limited accessibility to genetic testing may delay 
diagnosis. Another diagnostic model for ALSP has been evaluated, 
but its applicability is limited by a restrictive neuroimaging and 
neuropathologic approach (10).

Because no regulatory-approved disease-modifying therapies are 
currently available for ALSP (3), rapid and accurate diagnosis of ALSP 
is critical for initiating clinical care as well as for the design of future 
studies to test experimental and interventional therapies. Thus, the 
objective of this retrospective literature analysis was to leverage a 
comprehensive review of published cases from the peer-reviewed 
literature (3) to examine the frequency of misdiagnosis among a 
cohort of patients with ALSP. Discussion of therapies that are 

commonly used to temporarily relieve the motor, mood, and behavior 
symptoms of ALSP as well as experimental approaches, such as 
hematopoietic stem cell transplantation and others, are outside the 
scope of this current work but are covered in detail elsewhere in the 
literature (3, 4, 11).

2 Methods

A cohort of patients with ALSP was collated from individual case 
reports and series identified by a literature search. Limited findings 
from this analysis have been reported elsewhere (3), but this is the first 
report of the full methodology.

2.1 Search strategy

ALSP case series and case reports were identified via a PubMed 
search using the following search terms: “adult-onset leukodystrophy 
with neuroaxonal spheroids and pigmented glia,” “adult-onset 
leukoencephalopathy with axonal spheroids and pigmented glia,” 
“ALSP,” “hereditary diffuse leukoencephalopathy with spheroids,” 
“HDLS,” “pigmentary orthochromatic leukodystrophy,” “POLD,” and 
“CSF1R-related leukoencephalopathy.” Search results were limited to 
English-language articles published between January 1, 1980, and 
March 22, 2022. Abstracts of the identified articles were manually 
curated for eligible publications that clearly delineated clinical details 
in case reports and case series, after which the remaining publications 
were reviewed in detail by 4 reviewers (employees of and consultants 
to Vigil Neuroscience, Inc.) to confirm eligibility.

2.2 Eligibility criteria for case reports and 
series

Articles eligible for inclusion in this analysis were case series and 
case reports with clearly delineated clinical details of adults aged 
≥ 18 years (living or deceased) with a diagnosis of ALSP, pigmentary 
orthochromatic leukodystrophy, or hereditary diffuse 
leukoencephalopathy with spheroids (HDLS) confirmed by genetic 
testing for the CSF1R mutation, brain imaging, and/or brain 
histopathology. Publications that did not have adequate clinical data, 
included data from non-case studies, or that confirmed the presence 
of mutation in the alanyl-tRNA synthetase gene (AARS) via genetic 
testing were excluded. Among the excluded cases were members from 
the Swedish family in which HDLS was originally identified, since 
genetic testing has recently shown the likely etiological cause in 
affected members of this family to be a genetic variant of AARS, rather 
than CSF1R (12).
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2.3 Data extraction

Individual patient data were extracted from a cohort of 291 
patients with ALSP from 93 published case reports and series. The 
reviewers entered the data into a master spreadsheet under the 
appropriate demographic and clinical characteristic headings. Prior to 
statistical analysis, all extracted data were independently reviewed and 
examined for accuracy. Disputes regarding data accuracy were 
resolved through consultation and consensus among reviewers. Data 
from the same patient in multiple case reports were extracted and 
entered only once into the master spreadsheet to avoid duplication.

2.4 Statistical analysis

Categorical patient information collected from each case report 
included the following: demographics (sex, family history, geographic 
region), CSF1R mutation and its corresponding exon position (intron, 
within exons 18–21, outside of exons 18–21) and protein region 
(signal peptide, immunoglobulin-like domain, juxtamembrane 
domain, tyrosine kinase domain 1, kinase insertion domain, tyrosine 
kinase domain 2, carboxyl-terminal domain), initial diagnosis 
category (ALSP, frontotemporal dementia, multiple sclerosis, 
cardiovascular disease familial leukoencephalopathy, adult-onset 
leukodystrophy, Alzheimer’s disease, nonspecific neurodegeneration 
or dementia; Supplementary Table 1), clinical symptoms (cognitive 
impairment, pyramidal motor abnormalities, extrapyramidal motor 
abnormalities, behavioral and psychiatric dysfunction, speech 
dysfunction) at presentation and during progression, abnormal brain 
imaging (atrophy, corpus callosum abnormalities, ventricular 
enlargement, white matter hyperintensities, white matter calcification), 
concurrent medications, and clinical outcome assessment scores. Ages 
of onset and death, disease duration if alive, and survival time (years) 
were collected as numerical (continuous) variables. Concurrent 
medications and clinical outcome assessments were not analyzed due 
to a paucity of data.

Analyses were descriptive for continuous data (mean, standard 
deviation [SD], median, range) and categorical data (frequency, 
percentage). Categorical data for demographics, symptoms, and brain 
imaging were also stratified by initial diagnosis category. An analysis of 
variance model was used to evaluate whether initial diagnosis category 
varied based on the frequency distribution between categorical variables 
for patient demographics, exon position of CSF1R mutation, protein 
region of CSF1R mutation, symptoms, or brain imaging. Fisher’s exact 
test or Chi-square testing was used to test for statistical significance at 
an α level of 0.05 and marginal significance at a level of 0.10.

3 Results

Data for 291 patients with a confirmed diagnosis of ALSP were 
extracted from 93 eligible published case reports (1, 2, 11, 13–102). Of 
these, only 14 cases from 7 articles (39, 58, 64, 79, 85, 86, 94) were 
characterized prior to the identification of CSF1R mutation as the 
genetic basis of ALSP (published in 2011) (72).

Overall, the mean (SD) age of ALSP onset was 43.2 (11.6) years, 
cases were approximately evenly divided between females (48.1%) 
and males (42.6%), and a family history of ALSP was reported for 

more than half (59.1%) (Table 1). Approximately one-third of cases 
in this analysis were from Asia (36.1%), Europe (32.6%), and North 
America (24.4%). CSF1R mutations were most often located within 
exons 18–21 (55.7%) compared with elsewhere (outside of exons 
18–21, 24.1%; intronic, 7.9%) and most mapped to either tyrosine 
kinase domain 2 (67.7%) or domain 1 (15.1%) of the CSF1R protein. 
The most frequently reported initial symptoms were cognitive 
impairment (47.1%) and behavioral and psychiatric abnormalities 
(26.8%), followed by extrapyramidal motor symptoms (16.2%), 
pyramidal motor dysfunction (11.7%), and speech difficulty (11.3%).

Table  2 shows the distribution of initial diagnoses within this 
cohort. Within the cohort of 291 patients, 77 cases (26.5%) did not 
report an initial diagnosis and only 72 cases (24.7%) received an 
accurate initial diagnosis of ALSP. Initial misdiagnosis with several 
other neurodegenerative and white matter diseases was common, 
including frontotemporal dementia (9.6%), multiple sclerosis (7.2%), 
cerebrovascular disease (3.1%), familial leukoencephalopathy (2.7%), 
Alzheimer’s disease (2.4%), adult-onset leukodystrophy (1.7%), and 
other miscellaneous disorders (7.2%). In addition, 14.8% of cases were 
diagnosed nonspecifically with multiple disorders or using broader 
phenotypic terms (e.g., “leukodystrophy,” “leukoencephalopathy,” or 
“dementia”). Of the 219 cases (75.3%) that were initially mis- or 
undiagnosed (Figure 1), 206 cases (94.1%) were later confirmed as 
ALSP by immunohistology, imaging, and/or genetic testing, whereas a 
final diagnosis was not reported for 13 cases (5.9%). Of the 206 ALSP-
confirmed cases, only 13 cases were confirmed without genetic testing, 
11 of which were reported prior to the introduction of the genetic test.

Analysis of the influence of initial diagnosis category on 
demographic and disease characteristics is shown in Table 3. Initial 
diagnosis categories varied significantly based on age (< 42 vs. ≥ 42; 
p < 0.001), with initial diagnoses categorized as Alzheimer’s disease 
and frontotemporal dementia tending toward older ages (mean 
age ≥ 50 years) and as multiple sclerosis tending toward younger 
ages (mean age < 40 years). The initial diagnosis category also 
significantly differed based on having a family history of ALSP 
(p = 0.046); higher proportions of patients with a family history of 
ALSP received an initial diagnosis within the categories of familial 
leukoencephalopathy (87.5%) and cerebrovascular disease (77.8%) 
compared with multiple sclerosis (47.6%) and adult-onset 
leukoencephalopathy (20.0%). Initial diagnosis category was also 
significantly associated with geographical region (p < 0.001), mode 
of inheritance (p < 0.001), and presenting symptoms of pyramidal 
(p = 0.027) or extrapyramidal (p = 0.020) motor dysfunction, 
behavioral and psychiatric abnormalities (p = 0.047), cognitive 
impairment (p = 0.007), and speech difficulty (p = 0.003). Among 
the 34 cases with initial diagnoses categorized as Alzheimer’s 
disease or frontotemporal dementia, none were reported to have 
pyramidal motor symptoms and only 1 case had extrapyramidal 
motor dysfunction, compared with higher proportions of patients 
with motor symptoms (9.5–30.2%) across the other initial diagnosis 
categories. Behavioral and psychiatric abnormalities and cognitive 
impairment were each observed in only 1 patient with an initial 
diagnosis in the cerebrovascular disease category compared with 
higher proportions of patients across the other initial diagnosis 
categories (behavioral and psychiatric abnormalities, 12.5–52.4%; 
cognitive impairment, 41.9–87.5%). Initial diagnosis did not vary 
based on sex or location of CSF1R mutation (exon number, kinase 
domain, or protein region).
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Table 4 presents brain imaging abnormalities of patients stratified 
by all initial diagnosis categories. Initial diagnosis category varied 
significantly based on white matter hyperintensities, white matter 
calcification, and ventricular enlargement. No brain imaging 
abnormalities were reported for any cases with an initial diagnosis 
category of familial leukoencephalopathy, and those initially 
diagnosed with ALSP had the highest (corpus callosum irregularities, 
44.4% vs. 0–40.0%) or second highest (white matter hyperintensities, 
91.7% vs. 0–100%; white matter calcification, 38.9% vs. 0–44.4%; 
ventricular enlargement, 27.8% vs. 0–28.6%) proportions of brain 
imaging irregularities compared with the other initial 
diagnosis categories.

TABLE 2 Initial diagnosis categories of patients.

Initial diagnosis 
categorya

Patients, n (%)
(N  =  291)

Age of onset, 
years

Mean (min, 
max)

ALSP 72 (24.7) 44.1 (18.0, 86.0)

Frontotemporal dementia 28 (9.6) 50.2 (33.0, 71.0)d

Multiple sclerosis 21 (7.2) 33.5 (20.0, 47.0)

Cerebrovascular disease 9 (3.1) 38.2 (21.0, 57.0)

Familial leukoencephalopathy 8 (2.7) 48.6 (40.0, 60.0)

Alzheimer’s disease 7 (2.4) 54.0 (40.0, 78.0)

Adult-onset leukodystrophy 5 (1.7) 36.8 (25.0, 45.0)

Nonspecific neurodegeneration 

or dementiab

43 (14.8) 42.2 (18.0, 63.0)

Otherc 21 (7.2) 45.7 (22.0, 67.0)d

Missing 77 (26.5) 41.6 (22.9, 70.0)e

ALSP, adult-onset leukoencephalopathy with axonal spheroids and pigmented glia; 
CADASIL, cerebral autosomal dominant arteriopathy with subcortical infarcts and 
leukoencephalopathy; CNS, central nervous system.
aDiagnosis category reflects verbatim terminology from case reports 
(Supplementary Table 1).
bIncludes nonspecific (“leukodystrophy,” “leukoencephalopathy,” “dementia”) or multiple 
initial diagnoses.
cIncludes corticobasal syndrome (n = 7), CADASIL (n = 5), parkinsonism (n = 2), and 
Binswanger disease, cervical spondylotic myelopathy, CNS lesions related to celiac disease, 
lumbosacral spondylolisthesis, neuropsychiatric systemic lupus erythematosus, pulmonary 
tuberculosis, and spasticity (each n = 1).
dAge missing for 1 patient.
eAge missing for 10 patients.

TABLE 1 Demographics and initial symptoms of patients with ALSP.

Variablesa All patients (N =  291)

Age of onset

Mean (SD) 43.2 (11.6)

Median (min, max) 42.0 (18.0, 86.0)

≤42 years 143 (49.1)

>42 years 136 (46.7)

Missing 12 (4.1)

Sex

Female 140 (48.1)

Male 124 (42.6)

Missing 27 (9.3)

Family history

Yes 172 (59.1)

No 76 (26.1)

Missing 43 (14.8)

Geographic region

Asia 105 (36.1)

Europe 95 (32.6)

North America 71 (24.4)

Missing 20 (6.9)

Mode of inheritance

Autosomal dominant 103 (35.4)

De novo 62 (21.3)

Maternal 2 (0.7)

Unknown/missing 124 (42.6)

Exon position of mutation

Exon (within 18–21) 162 (55.7)

Exon (outside 18–21) 70 (24.1)

Intron 23 (7.9)

Missing 36 (12.4)

Kinase domain mutation

Yes 241 (82.8)

No 13 (4.5)

Missing 37 (12.7)

Protein region of mutation

Signal peptide 2 (0.7)

Ig-like domains 3 (1.0)

Juxtamembrane domain 3 (1.0)

Tyrosine kinase domain 1 44 (15.1)

Kinase insertion domain 2 (0.7)

Tyrosine kinase domain 2 197 (67.7)

C-terminal domain 3 (1.0)

Missing 37 (12.7)

(Continued)

Initial symptomsb

Cognitive impairment 137 (47.1)

Behavioral and psychiatric 78 (26.8)

Extrapyramidal motor 47 (16.2)

Pyramidal motor 34 (11.7)

Speech difficulty 33 (11.3)

Missing 69 (23.7)

ALSP, adult-onset leukoencephalopathy with axonal spheroids and pigmented glia; 
Ig, immunoglobulin; SD, standard deviation.
aData are expressed as n (%) unless otherwise indicated.
bInitial symptom categories do not add up to 100% because categories are not mutually exclusive.

TABLE 1 (Continued)
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4 Discussion

To our knowledge, the findings of this analysis of published cases 
represent the largest case series to date of patients with ALSP. Initial 
misdiagnosis of ALSP was common, with an accurate initial diagnosis 
achieved in only 24.7% of patients with ALSP. This is likely due in part 
to symptoms that overlap with other disorders, including early-onset 
Alzheimer’s disease (executive functioning, memory, language, and 
personality changes), frontotemporal dementia (problems with social 
behavior, personality, and language), familial leukoencephalopathy 
(behavioral or cognitive decline), multiple sclerosis (cognitive 
problems, language problems, or motor neuron impairment), and 
cerebrovascular diseases (speech difficulty, confusion, and memory 
derangement) (5, 103–107).

A rapid, accurate diagnosis of ALSP is critical in providing 
supportive symptom management and potentially allowing for early 
therapeutic intervention. Definitive diagnosis of ALSP can 
be confirmed with genetic testing for pathogenic CSF1R mutations in 
the clinical context of characteristic symptoms (cognitive impairment, 
moderate to severe motor dysfunction, and neuropsychiatric 
symptoms), typical brain imaging abnormalities, and in some cases 
with a supportive family history (as a subset of patients have de novo 
patterns of inheritance) (3, 7). Although genetic testing is crucial for 
a definitive diagnosis of ALSP, use in clinical practice may be limited 
due to cost and availability (7).

Examination of categorical data for patients stratified by initial 
diagnosis category suggested that age, family history, geographic 
region, and mode of inheritance were associated with the selection of 
initial diagnosis. Similarly, initial diagnoses appear to have been 

influenced by presenting symptoms such as pyramidal or 
extrapyramidal motor dysfunction, behavioral and psychiatric 
abnormalities, cognitive impairment, and speech difficulty. 
Stratification of brain imaging abnormalities by initial diagnosis 
category also demonstrated statistically significant associations 
between initial diagnosis category and the presence of white matter 
hyperintensities, ventricular enlargement, white matter calcification, 
and corpus callosum irregularities. Abnormal diffusion on brain MRI, 
which can persist for extended periods of time, has also been observed 
in patients with ALSP in recent literature (1, 7, 11, 20), but the 
presence of diffusion abnormalities was not systematically examined 
in this analysis.

These data are consistent with current evidence indicating the 
importance of brain imaging in accurately diagnosing ALSP (2–4). 
The diagnostic criteria developed for ALSP combine brain imaging 
with presenting characteristics such as patient age, symptoms 
(cognitive, psychiatric, and motor dysfunction), and inheritance 
patterns (autosomal dominant or sporadic) (7). Retrospective 
application of these criteria to more than 150 patients with ALSP and 
CSF1R-positive mutations, CSF1R-negative leukoencephalopathies, 
or CADASIL showed a sensitivity of 99% to accurately detect probable 
or possible cases and an adequate specificity of 88% to exclude 
non-ALSP cases (7).

This retrospective literature analysis is subject to several 
limitations. The development of this cohort and associated individual 
patient data was based entirely upon published case reports and case 
series, which are contingent upon the reporting standards associated 
with original patient medical records; thus, potential errors or 
omissions in the clinical descriptions may have resulted in inaccurate, 
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FIGURE 1

Summary of initial and final diagnosis categories. a14 cases from 7 publications were published prior to the identification of CSF1R mutation as the 
genetic basis of ALSP. bAll, c2, or d1 cases published prior to the identification of CSF1R mutation as the genetic basis of ALSP.
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TABLE 3 Demographics analyzed by initial diagnosis category.

Variablesa ALSP
(n  =  72)

Frontotemporal 
dementia
(n  =  27)b

Multiple 
sclerosis
(n  =  21)

Cerebrovascular 
disease
(n  =  9)

Familial 
leukoencephalopathy

(n  =  8)

Alzheimer’s 
disease
(n  =  7)

Adult-onset 
leukodystrophy

(n  =  5)

Nonspecific 
neurodegeneration

or dementia
(n  =  43)

Other
(n  =  20)b

Missing
(n  =  67)b

p value

Age of onset

Mean (SD) 44.1 (12.7) 50.3 (8.5) 33.4 (6.7) 38.2 (11.5) 48.6 (6.6) 54.0 (15.3) 36.8 (9.1) 42.2 (10.6) 45.7 (12.6) 41.5 (10.3) <0.001

Median (min, max) 42.5 (18.0, 
86.0)

50.0 (33.0, 71.0) 36.0 (20.0, 47.0) 40.0 (21.0, 57.0) 49.0 (40.0, 60.0) 52.0 (40.0, 78.0) 42.0 (25.0, 45.0) 43.0 (18.0, 63.0) 43.8 (22.0, 67.0) 40 (22.9, 70.0)

≤42 years 36 (50.0) 5 (18.5) 20 (95.2) 5 (55.6) 2 (25.0) 3 (42.9) 3 (60.0) 20 (46.5) 10 (50.0) 39 (58.2) <0.001

>42 years 36 (50.0) 22 (81.5) 1 (4.8) 4 (44.4) 6 (75.0) 4 (57.1) 2 (40.0) 23 (53.5) 10 (50.0) 28 (41.8)

Sex

Female 36 (50.0) 10 (37.0) 16 (76.2) 6 (66.7) 3 (37.5) 3 (42.9) 2 (40.0) 21 (48.8) 8 (40.0) 32 (47.8) 0.09

Male 36 (50.0) 14 (51.9) 2 (9.5) 3 (33.3) 5 (62.5) 3 (42.9) 1 (20.0) 16 (37.2) 9 (45.0) 35 (52.2)

Missing 0 3 (11.1) 3 (14.3) 0 0 1 (14.3) 2 (40.0) 6 (14.0) 3 (15.0) 0

Family history

Yes 39 (54.2) 20 (74.1) 10 (47.6) 7 (77.8) 7 (87.5) 4 (57.1) 1 (20.0) 27 (62.8) 14 (70.0) 40 (59.7) 0.046

No 29 (40.3) 4 (14.8) 8 (38.1) 2 (22.2) 1 (12.5) 2 (28.6) 4 (80.0) 8 (18.6) 2 (10.0) 16 (23.9)

Missing 4 (5.6) 3 (11.1) 3 (14.3) 0 0 1 (14.3) 0 8 (18.6) 4 (20.0) 11 (16.4)

Geographical region

Asia 38 (52.8) 4 (14.8) 5 (23.8) 3 (33.3) 5 (62.5) 4 (57.1) 0 5 (11.6) 4 (20.0) 36 (53.7) <0.001

Europe 9 (12.5) 14 (51.9) 9 (42.9) 1 (11.1) 3 (37.5) 0 5 (100) 18 (41.9) 8 (40.0) 27 (40.3)

North America 25 (34.7) 9 (33.3) 7 (33.3) 5 (55.6) 0 3 (42.9) 0 20 (46.5) 8 (40.0) 4 (6.0)

Mode of inheritance

Autosomal 
dominant

32 (44.4) 13 (48.1) 8 (38.1) 6 (66.7) 5 (62.5) 4 (57.1) 1 (20.0) 14 (32.6) 9 (45.0) 9 (13.4)
<0.001

De novo 34 (47.2) 2 (7.4) 6 (28.6) 1 (11.1) 0 2 (28.6) 4 (80.0) 7 (16.3) 1 (5.0) 5 (7.5)

Maternal 0 0 0 0 0 0 0 0 0 2 (3.0)

Unknown/missing 6 (8.3) 12 (44.4) 7 (33.3) 2 (22.2) 3 (37.5) 1 (14.3) 0 22 (51.2) 10 (50.0) 51 (76.1)

Exon number mutations

Exon (within 18–21) 38 (52.8) 16 (59.3) 10 (47.6) 5 (55.6) 6 (75.0) 3 (42.9) 1 (20.0) 25 (58.1) 11 (55.0) 42 (62.7) 0.246

Exon (outside 
18–21)

24 (33.3) 4 (14.8) 4 (19.0) 1 (11.1) 2 (25.0) 1 (14.3) 3 (60.0) 7 (16.3) 3 (15.0) 15 (22.4)

Intron 6 (8.3) 4 (14.8) 4 (19.0) 1 (11.1) 0 1 (14.3) 1 (20.0) 1 (2.3) 2 (10.0) 3 (4.5)

Missing 4 (5.6) 3 (11.1) 3 (14.3) 2 (22.2) 0 2 (28.6) 0 10 (23.3) 4 (20.0) 7 (10.4)

(Continued)
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Variablesa ALSP
(n  =  72)

Frontotemporal 
dementia
(n  =  27)b

Multiple 
sclerosis
(n  =  21)

Cerebrovascular 
disease
(n  =  9)

Familial 
leukoencephalopathy

(n  =  8)

Alzheimer’s 
disease
(n  =  7)

Adult-onset 
leukodystrophy

(n  =  5)

Nonspecific 
neurodegeneration

or dementia
(n  =  43)

Other
(n  =  20)b

Missing
(n  =  67)b

p value

Kinase domain mutation

Yes 60 (83.3) 24 (88.9) 17 (81.0) 7 (77.8) 8 (100) 4 (57.1) 5 (100) 31 (72.1) 16 (80.0) 60 (89.6) 0.056

No 8 (11.1) 0 1 (4.8) 0 0 1 (14.3) 0 1 (2.3) 0 0

Missing 4 (5.6) 3 (11.1) 3 (14.3) 2 (22.2) 0 2 (28.6) 0 11 (25.6) 4 (20.0) 7 (10.4)

Protein region mutations

Signal peptide 1 (1.4) 0 0 0 0 0 0 1 (2.3) 0 0 0.441

Ig-like domains 3 (4.2) 0 0 0 0 0 0 0 0 0

Juxtamembrane 
domain

1 (1.4) 0 1 (4.8) 0 0 0 0 0 0 0

Tyrosine kinase 
domain 1

12 (16.7) 3 (11.1) 6 (28.6) 2 (22.2) 1 (12.5) 0 2 (40.0) 2 (4.7) 3 (15.0) 9 (13.4)

Kinase insertion 
domain

1 (1.4) 0 0 0 0 1 (14.3) 0 0 0 0

Tyrosine kinase 
domain 2

48 (66.7) 21 (77.8) 11 (52.4) 5 (55.6) 7 (87.5) 4 (57.1) 3 (60.0) 29 (67.4) 13 (65.0) 51 (76.1)

C-terminal domain 2 (2.8) 0 0 0 0 0 0 0 0 0

Missing 4 (5.6) 3 (11.1) 3 (14.3) 2 (22.2) 0 2 (28.6) 0 11 (25.6) 4 (20.0) 7 (10.4)

Initial symptomsc

Cognitive 
impairment

49 (68.1) 16 (59.3) 11 (52.4) 1 (11.1) 7 (87.5) 6 (85.7) 4 (80.0) 18 (41.9) 11 (55.0) 13 (19.4) 0.007

Behavioral and 
psychiatric

26 (36.1) 8 (29.6) 11 (52.4) 1 (11.1) 1 (12.5) 3 (42.9) 2 (40.0) 18 (41.9) 3 (15.0) 5 (7.5) 0.047

Extrapyramidal 
motor

11 (15.3) 1 (3.7) 2 (9.5) 2 (22.2) 1 (12.5) 0 2 (40.0) 13 (30.2) 4 (20.0) 11 (16.4) 0.020

Pyramidal motor 7 (9.7) 0 6 (28.6) 2 (22.2) 0 0 0 8 (18.6) 5 (25.0) 6 (9.0) 0.027

Speech difficulty 5 (6.9) 1 (3.7) 2 (9.5) 2 (22.2) 0 1 (14.3) 0 6 (14.0) 3 (15.0) 13 (19.4) 0.003

Missing 0 8 (29.6) 2 (9.5) 1 (11.1) 0 0 0 6 (14.0) 3 (15.0) 40 (59.7) N/A

ALSP, adult-onset leukoencephalopathy with axonal spheroids and pigmented glia; Ig, immunoglobulin; SD, standard deviation.
aData are expressed as n (%) unless otherwise indicated.
bCases with missing age (n = 12) were not included in the analysis of variance.
cInitial symptom categories do not add up to 100% because categories are not mutually exclusive.

TABLE 3 (Continued)
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incomplete, or missing clinical assessments of some symptoms of 
ALSP. Further, the geographic locations of the authors and clinics 
providing each case report exhibited considerable variation, which 
may have generated heterogeneity in interpretation and reporting of 
clinical manifestations.

For this cohort, the initial diagnosis information extracted from 
the primary sources constituted an unavoidably heterogeneous 
dataset, with some imprecision in reporting in the published literature, 
that necessitated application of discrete categories for interpretation; 
this analysis is limited by the subjective nature and potential for 
overlap inherent in such categorization. This analysis also reflects the 
state of the ALSP literature over this time period. Initial diagnosis data 
were missing in 26.5% of cases, and the available data for another 
14.8% of cases necessitated a judgment be  made as to whether 
nonspecific or multiple initial diagnoses (i.e., “leukodystrophy” or 
“Alzheimer’s disease, atypical CADASIL, or atypical multiple 
sclerosis”) should be categorized as true misdiagnoses or as broad 
tentative phenotypic diagnoses that should be considered a correct 
initial diagnosis that was given with the intent for later revision. 
Furthermore, a handful of cases were reported prior to the 
introduction of genetic testing for a CSF1R mutation that is now 
necessary to confirm an ALSP diagnosis, which may also have added 
an additional, albeit small, element of uncertainty.

An analysis of the literature often includes measures to assess the 
risk of reporting bias arising from study design, conduct, or analyses; 
however, the individual patient-level data that comprise this dataset 
are derived from case series and case reports. Therefore, assessments 
of bias in study design, conduct, or analyses are not applicable to this 
cohort. Because the sampling procedure for this cohort was limited to 
cases published in peer-reviewed journals, these results are inherently 
subject to publication bias. Not all clinical cases are necessarily or 
systematically published in the peer-reviewed literature, and published 
case reports may sometimes tend to highlight unique or “interesting” 
clinical features. For these reasons, a cohort based entirely of published 
case reports may not represent the clinical experience of all patients 
living with ALSP, and the estimates obtained from this cohort may not 
be fully generalizable to all patients living with this disease. Absolute 
rates of ALSP misdiagnosis could differ from that reported in this 
analysis, and future comparisons of this cohort to new patient cases 
and/or clinical trial data may be necessary for broader generalizability.

In conclusion, despite the application of diagnostic criteria to 
distinguish ALSP from other disorders that present similarly and the 
development of a genetic test for the CSF1R mutation, diagnosis of 
ALSP remains challenging. Previous studies have estimated a 
prevalence of at least 10,000 cases of ALSP in the United States (61, 
108, 109); however, only a small number of patients with confirmed 
ALSP have been currently identified (3, 109), which may be due, at 
least in part, to the high rate of initial misdiagnosis. Therefore, 
increased awareness of ALSP and further investigation and 
characterization into its presenting symptoms are needed to improve 
diagnostic accuracy of this debilitating disorder.

Trial registration

This review of published ALSP case reports was registered in the 
Research Registry Database under unique identification number 1251.T
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