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Objectives: This Mendelian randomization (MR) study identified modifiable risk 
factors for isolated rapid eye movement sleep behavior disorder (iRBD).

Methods: Genome-wide association study (GWAS) datasets for 29 modifiable 
risk factors for iRBD in discovery and replication stages were used. GWAS data 
for iRBD cases were obtained from the International RBD Study Group. The 
inverse variance weighted (IVW) method was primarily employed to explore 
causality, with supplementary analyses used to verify the robustness of IVW 
findings. Co-localization analysis further substantiated causal associations 
identified via MR. Genetic correlations between mental illness and iRBD were 
identified using trait covariance, linkage disequilibrium score regression, and 
co-localization analyses.

Results: Our study revealed causal associations between sun exposure-related 
factors and iRBD. Utilizing sun protection (odds ratio [OR]  =  0.31 [0.14, 0.69], 
p  =  0.004), ease of sunburn (OR  =  0.70 [0.57, 0.87], p  =  0.001), childhood 
sunburn occasions (OR  =  0.58 [0.39, 0.87], p  =  0.008), and phototoxic dermatitis 
(OR  =  0.78 [0.66, 0.92], p  =  0.003) decreased iRBD risk. Conversely, a deep 
skin color increased risk (OR  =  1.42 [1.04, 1.93], p  =  0.026). Smoking, alcohol 
consumption, low education levels, and mental illness were not risk factors for 
iRBD. Anxiety disorders and iRBD were genetically correlated.

Conclusion: Our study does not corroborate previous findings that identified 
smoking, alcohol use, low education, and mental illness as risk factors for iRBD. 
Moreover, we  found that excessive sun exposure elevates iRBD risk. These 
findings offer new insights for screening high-risk populations and devising 
preventive measures.
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1 Introduction

Isolated rapid eye movement behavior disorder (iRBD) is defined 
as parasomnia characterized by the absence of muscle atonia during 
rapid eye movement (REM) sleep, often accompanied by dream 
enactment behavior (1, 2). Patients frequently display aggressive 
behaviors such as shouting, punching, or striking during sleep, leading 
to sleep disturbances and potential harm to themselves or their bed 
partners (3–5). Furthermore, previous studies have shown that iRBD 
is most importantly a potential preclinical sign of neurodegenerative 
synucleinopathies, with more than 80% of patients with iRBD 
eventually develop Parkinson’s disease (PD), dementia with Lewy 
bodies (DLB), or multiple system atrophy (MSA), (6–9). Therefore, 
identifying risk factors, especially those amenable to intervention, is 
crucial for screening high-risk populations and reducing the incidence 
of iRBD.

Numerous studies have suggested that increased sun exposure can 
reduce the incidence of PD (10–12), but its effect on iRBD is still 
uncertain. Previous observational studies have identified various risk 
factors for iRBD including lifestyle factors (smoking, alcohol 
consumption, coffee and tea intake, and low physical activity), low 
education levels, agricultural work, pesticide exposure, head injuries, 
mental illness, and antidepressant use (13–20). However, substantial 
contradictions and debates persist regarding these factors. In a 
multicenter case–control study, Postuma et al. found that patients with 
iRBD (diagnosed using polysomnography [PSG]) were more likely to 
report smoking, low educational levels, head injuries history, 
occupational pesticide exposure, and farming work (16). Additionally, 
a Canadian Longitudinal Study on Aging (CLSA) with a sample size 
of 30,097 individuals found mental illness and antidepressant use 
could also serve as risk factors for possible RBD (pRBD, diagnosed via 
an RBD single-questionnaire) (19). However, a study from Beijing 
conducted by Zhang et  al. involving 7,225 individuals found no 
association between education levels, occupation, antidepressant 
treatment, and the incidence of pRBD (diagnosed using the RBD 
Questionnaire-Hong Kong) (20). Furthermore, a community-based 
study led by Jian-Fang Ma involving 3,635 individuals failed to identify 
the relationships between smoking, depression and the risk of pRBD 
(diagnosed by the RBD screening questionnaire) (15). These findings 
demonstrate the complexity and ongoing uncertainty that is 
encountered in the field of iRBD research.

Discrepancies between studies could be attributed to several 
factors. First, prior studies used traditional observational research 
designs, which are susceptible to confounding factors and reverse 
causation. Second, the inadequate sample sizes of some studies limit 
statistical power, increasing the likelihood of false-negative results 
and diminishing the generalizability of study conclusions. Finally, 
the low specificity of questionnaires used may have led to selection 
bias. Therefore, addressing limitations of prior studies and 
conducting further research using more robust study designs and 
larger sample sizes will be  needed to obtain reliable and 
definitive conclusions.

Mendelian randomization (MR) is a statistical method that 
employs genetic variations as instrumental variables in the appraisal 
of causal associations between risk factors and particular diseases. The 
evidence level of MR is second only to randomized controlled trials 
(21–23). As genetic variations are randomly allocated to offspring 

through allelic randomization (24), results of MR studies are less likely 
to be affected by confounding factors and reverse causality, common 
limitations of traditional observational research (25). Furthermore, 
the genome-wide association study (GWAS) data on iRBD utilized in 
our MR analysis included a large sample, with each patient being 
diagnosed through PSG. This significantly enhances the credibility of 
our research findings.

Our study classified 29 potential modifiable risk factors into the 
following eight categories: anthropometric traits, metabolic traits, 
smoking, beverage consumption patterns, physical activity, education 
levels, mental illness, and sun exposure-related factors. We performed 
the MR approach to evaluate the causality between these factors and 
iRBD, providing more perspectives and evidence for screening and 
early intervention in at-risk populations.

2 Materials and methods

2.1 Study design

We conducted a systematic review of articles in the PubMed 
database to identify potential risk factors for iRBD. After selecting 29 
modifiable factors, they were classified into the following eight 
categories: anthropometric traits, metabolic traits, smoking behavior, 
beverage consumption patterns, physical activity, education levels, 
mental illness, and sun exposure-related factors (Figure 1).

MR method employs genetic variations as instruments for exposure, 
so we assessed the causality between 29 modifiable factors and iRBD risk 
based on genetic variants strongly linked to these factors. The design of 
this MR study is illustrated in Figure 1. First, we conducted a two-sample 
MR analysis to evaluate the causality between these factors (as exposure) 
and iRBD (as outcome) in both the discovery and replication stages. 
Second, co-localization analyses of causal associations identified in MR 
study were performed to further explore whether the relationships 
depended on shared driver genes. Subsequently, reverse MR analysis was 
used to evaluate the possibility of reverse causality. Finally, since 
numerous previous studies have supported the connection between 
several common mental illness and iRBD; we explored their genetic 
correlations using trait covariance, linkage disequilibrium score 
regression (LDSC), and co-localization analyses.

MR research must satisfy the following three core assumptions: 
relevance, independence, and exclusivity. First, genetic variants should 
be  highly correlated with an exposure. Second, genetic variation 
should not be associated with confounding factors. Lastly, genetic 
variants should not affect an outcome via a pathway other than that of 
the exposure (26, 27).

The GWAS summary datasets used in this study were derived 
from publicly available databases previously receiving ethical approval 
and all participants of each GWAS data provided informed consent. 
Our research strictly followed Strengthening the Reporting of 
Mendelian Randomization Studies (STROBE-MR) guidelines (28).

2.2 Data sources

The GWAS data for exposure factors in discovery and replication 
cohorts primarily originated from various datasets available on the 
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IEU Open GWAS project website.1 Moreover, data on anxiety 
disorders in the discovery cohort; along with replication cohort data 
including urate levels, strenuous sports or other exercises, and years 
of schooling were sourced from the GWAS catalog.2 Data on PTSD 
(PMID:31594949) in the discovery cohort and schizophrenia 
(PMID:35396580) in the replication cohort were obtained from the 

1 https://gwas.mrcieu.ac.uk

2 https://www.ebi.ac.uk/gwas

Psychiatric Genomic Consortium (PGC).3 Detailed information is 
provided in Tables 1, 2.

Outcome data for iRBD were obtained from the International RBD 
Study Group involving approximately 9,447 individuals of European 
ancestry (1,061 cases and 8,386 controls) (29). This iRBD cohort 
included large cohorts of French, French Canadian, Italian and British 
origins, and smaller cohorts from different European populations. The 
cases were aged 68 +/− 9 years (standard deviation) on average and 

3 https://pgc.unc.edu

FIGURE 1

The figure outlines the steps of the research design. BMI, body mass index; LDL, low density lipoprotein; TC, total cholesterol; PTSD, post-traumatic 
stress disorder; MR, Mendelian randomization; GWAS, genome-wide association studies; MR-PRESSO, Mendelian randomization pleiotropy residual 
sun and outlier.
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TABLE 1 The risk factors for iRBD in the discovery phase.

Exposure ID NSNP Sample R2 (%) F Power PMID or 
Consortium

Anthropometric traits

Standing height ukb-b-10787 724 461,950 8.55% 30.9 1.00 MRC-IEU

Weight ukb-b-11842 470 461,632 5.01% 33.6 0.38 MRC-IEU

Body mass index ukb-b-19953 426 461,460 5.33% 41.7 1.00 MRC-IEU

Basal metabolic rate ukb-b-16446 517 454,874 3.51% 20.6 1.00 MRC-IEU

Trunk fat-free mass ukb-a-292 394 331,030 3.38% 19.7 1.00 Neale Lab

Whole body fat-free mass ukb-a-266 391 331,291 3.28% 19.1 1.00 Neale Lab

Trunk fat percentage ukb-b-16407 365 454,613 3.66% 34 0.99 MRC-IEU

Whole body water mass ukb-b-14540 527 454,888 3.36% 18.5 1.00 MRC-IEU

Metabolic traits

HDL-C ebi-a-GCST008035 15 17,751 >100% 9817.4 0.06 31217584

LDL-C ebi-a-GCST90002412 290 431,167 11.00% 46.7 1.00 32493714

Total cholesterol ieu-a-301 81 187,365 8.53% 75.1 0.15 GLGC

Triglycerides ieu-b-111 267 441,016 8.24% 43.3 0.88 UK Biobank

Hypertension ebi-a-GCST008036 7 21,936 2.47% 69.3 0.23 31217584

Urate levels ebi-a-GCST001791 25 110,347 9.04% 123.3 0.99 23263486

Smoking

Current tobacco smoking ukb-a-16 9 337,030 0.04% 12.7 0.30 Neale Lab

Past tobacco smoking ukb-b-2134 93 424,960 1.40% 56.5 1.00 MRC-IEU

Beverage consumption patters

Coffee intake ukb-b-5237 36 428,860 0.36% 21.3 1.00 MRC-IEU

Tea intake ukb-b-6066 39 447,485 0.55% 37.1 1.00 MRC-IEU

Alcohol intake frequency ukb-b-5779 94 462,346 2.32% 76.2 0.21 MRC-IEU

Physical activity

Number of days/week of 

vigorous physical activity 10+ 

minutes

ukb-b-151 11 440,512 0.37% 136.9 1.00 MRC-IEU

Education levels

Years of schooling ieu-a-1239 299 766,345 2.14% 44.6 0.95 SSGAC

Mental illness

Schizophrenia ieu-b-5099 202 320,404 27.12% 201.2 1.00 PGC

Anxiety disorder
GWAS catalog: 

GCST90043712
46 456,348 1.86% 161.5 1.00 UK Biobank

Depression
GWAS catalog: ebi-a-

GCST003769
11 180,866 0.20% 19.8 0.06 NA

PTSD PMID:31594949 4 206,605 1.31% 551.5 1.00 PGC

Sun exposure-related factors

Ease of sunburn ukb-b-533 120 453,065 13.08% 51.4 1.00 MRC-IEU

Childhood sunburn occasions ukb-b-13246 76 346,955 3.52% 36.9 1.00 MRC-IEU

Skin color ukb-b-19560 135 456,692 5.20% 18.9 1.00 MRC-IEU

Use of sun/uv protection ukb-b-7422 47 459,416 0.92% 29.2 1.00 MRC-IEU

NSNPs, number of single nucleotide polymorphism; R2, phenotype variance explained by genetics; F, F statistic; PMID, the publication ID in PubMed; HDL-C, High density lipoprotein 
cholesterol; LDL-C, Low-density lipoprotein cholesterol; PTSD, post-traumatic stress disorder; MRC-IEU, Medical Research Council Integrative Epidemiology Unit; GLGC, Global Lipids 
Genetics Consortium; SSGAC, the Social Science Genetic Association Consortium; PGC, Psychiatric Genomic Consortium; GIANT, Genetic Investigation of Anthropometric Traits; GSCAN, 
the GWAS and Sequencing Consortium of Alcohol and Nicotine use.
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were 81% male, and the controls were aged 58.5 +/− 9 years on average, 
68% male. Isolated RBD cases were diagnosed according to criteria 
outlined in the International Classification of Sleep Disorders (2nd or 
3rd Edition), which includes video polysomnography findings. To 
ensure that case and control groups were comparable, principal 
components were employed to adjust for population substructure, 
taking factors such as sex and age into account.

2.3 Instrumental variable selection

A series of quality control measures were used to select appropriate 
instrumental variables. Single nucleotide polymorphisms (SNPs) were 
selected based on strong associations with the exposure (p < 5 × 10−8) 
and a minor allele frequency (MAF) > 0.01. To eliminate linkage 
disequilibrium (LD), SNPs were clumped based LD threshold 

(r2 < 0.001) and distance (10,000 kb). If SNPs were unavailable, 
high-LD proxies were selected for evaluation based on index SNP 
(r2 > 0. 8) per LD link or SNIPA guidelines (30, 31). Instrument 
strength was evaluated using the F-statistic, with an F-statistic >10 
designated to mitigate potential bias arising from weak instruments 
(32, 33).

2.4 Statistical analysis

For the primary MR analysis, the inverse variance weighted 
(IVW) method (34) was used to evaluate causality. In addition, 
MR-Egger regression (35), weighted-median estimation (36) and 
weighted-mode (37) methods were used to supplement IVW findings. 
IVW analysis is sometimes susceptible to instrumental bias and 
multiple effects. Therefore, sensitivity analyses were used examine the 

TABLE 2 The risk factors for iRBD in the replication phase.

Exposure ID NSNP Sample R2 (%) F Power PMID or 
Consortium

Anthropometric traits

Standing height ieu-a-89 356 253,288 12.10% 59.2 1.00 GIANT

Weight ieu-a-107 10 73,137 0.92% 64.3 0.82 GIANT

Body mass index ieu-b-40 482 681,275 5.05% 52.7 1.00 GIANT

Metabolic traits

HDL-C ieu-b-109 295 403,943 8.24% 40.5 0.05 UK Biobank

LDL-C ieu-b-110 141 440,546 5.42% 59.5 1.00 UK Biobank

Total cholesterol met-c-933 20 21,491 8.46% 63 0.12 27005778

Triglycerides ieu-a-302 53 177,861 5.44% 54.4 0.88 GLGC

Hypertension finn-b-I9_HYPTENS 51 218,734 9.71% 371.6 0.77 NA

Urate levels GWAS catalog: GCST90014015 226 389,404 4.09% 32.7 1.00 UK Biobank

Smoking

Cigarettes smoked 

per day
ieu-b-142 20 249,752 3.31% 152.3 0.95 GSCAN

Beverage consumption patters

Alcoholic drinks 

per week
ieu-b-73 30 335,394 0.61% 39.4 0.46 GSCAN

Physical activity

Strenuous sports or 

other exercises
GWAS catalog: GCST006100 8 350,492 0.42% 109.3 0.31 UK Biobank

Education levels

Years of schooling GWAS catalog: GCST90029013 206 461,457 46.62% 853.5 0.97 UK Biobank

Mental illness

Schizophrenia NA 146 130,644 24.69% 188.8 0.06 35396580

Anxiety disorder finn-b KRA_PSY_ANXIETY 5 218,792 0.70% 379.5 0.84 NA

Major Depressive 

Disorder
ieu-a-1187 30 480,359 1.28% 196.9 1.00 PGC

PTSD finn-b-F5_PTSD 3 199,213 11.56% 6192.1 0.56 NA

Sun exposure-related factors

Sunburn easily finn-b-L12_NONIONRADISKIN 8 218,281 17.00% 377.8 1.00 NA

Phototoxic 

dermatitis

finn-b-L12_

RADIATIONRELATEDSKIN
7 218,792 18.27% 2327.4 1.00 NA
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validity and robustness of IVW results. Cochran’s Q statistic was used 
to assess heterogeneity among estimated IVW values. The MR-Egger 
intercept and MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) 
methods were used to detect horizontal pleiotropy. The MR-PRESSO 
method is useful for detecting outlier values. The analysis was 
conducted after all other MR analyses, after excluding aberrant SNPs 
(38). Leave-one-out sensitivity analysis was performed to validate the 
impact of each SNP loci.

All statistical analyses were performed using two-tailed Student’s 
t-tests. The effect estimates were presented as odds ratios (ORs) to 
more intuitively indicate the relationship between potential risk 
factors and iRBD. Values of p < 0. 05 were considered statistically 
significant. Finally, we  interpreted findings based on statistical 
significance and consistency (via a comparison between discovery and 
validation cohorts). The mRnd was used to calculate the statistical 
power for Mendelian randomization.4 Statistical analyses were 
performed using the R statistical software (version 4. 2. 3) and relevant 
R packages.

2.5 Trait covariance, LDSC and 
co-localization analyses

The bivariate LDSC method was used to assess the genetic 
correlations between mental illness and iRBD (39–42). Trait 
covariance analysis was performed using the metaCCA package (43). 
We  employed co-localization analysis using the Coloc R package 
(version 5.1.0.1) to further probe shared genetic underpinnings (44). 
The variant with the lowest value of p designated via MR analysis was 
most strongly associated with an exposure and selected as a reference. 
We included variants within 50 kb of the reference variant. The 1,000 
Genomes v3 European ancestry dataset was used as an LD reference 
panel. In Bayesian co-localization analysis, five posterior probabilities 
are provided to determine whether two traits share the same variation. 
A posterior probability of hypothesis 4 greater than 0.8 indicates the 
presence of shared causal variants.

3 Results

Following the exclusion of SNPs in linkage disequilibrium, the 
number of SNPs analyzed in our study ranged from 3 to 724, with 
corresponding explained variances with diverse distributions ranging 
from 0.04 to 100% (Tables 1, 2). Notably, all included SNPs had 
F-statistics that surpassed the empirically determined threshold of 10, 
indicating the absence of any potential bias arising from weak 
instrumental variables, which confirms the credibility of our findings.

3.1 Results based on the discovery cohort

In the discovery phase, we identified seven genetically determined 
factors across two categories that were causally associated with iRBD 
(Figure 2A). Their impacts on iRBD incidence were presented as odds 

4 https://cnsgenomics.shinyapps.io/mRnd/

ratios (ORs) with their corresponding 95% confidence intervals 
(95%CIs). Specifically, among anthropometric traits, trunk fat-free 
mass (OR: 1.54 [1.03, 2.31]; p = 0.036), whole-body fat-free mass (OR: 
1.60 [1.06, 2.42]; p = 0.027), and whole-body water mass (OR: 1.61 
[1.06, 2.45]; p = 0.025) emerged as risk factors. Within the category 
pertaining to sunlight exposure, factors such as ease of sunburn (OR: 
0.70, 95% CI: 0.57–0.87; p = 0.001), childhood sunburn occasions (OR: 
0.58, 95% CI: 0.39–0.87; p = 0.008), use of sun protection (OR: 0.31, 
95% CI: 0.14–0.69; p = 0.004) were associated with a reduced risk of 
iRBD, while a deeper skin color (OR: 1.42, 95% CI: 1. 04–1. 93; 
p = 0.026) was linked to an increased incidence. Our study did not find 
evidence supporting causal associations between other factors and 
iRBD. Reverse MR analyses revealed that iRBD significantly increased 
drinking risk (Supplementary Figure S13).

Study conclusions were supported by weighted-median 
estimation, weighted-mode, and MR-Egger methods 
(Supplementary Table S2). Cochran’s Q statistic indicated no 
significant heterogeneity in SNP effects (p > 0.05). No evidence of 
potential horizontal pleiotropy was detected for the seven factors 
identified (p > 0. 05). To further assess the robustness of the results, 
we  conducted MR-PRESSO tests on the included SNP loci. In 
addition, a leave-one-out sensitivity analysis was conducted to assess 
the influence of each SNP on the overall causal relationship. The 
results demonstrated that systematically removing individual SNPs 
and repeating the MR analysis did not reveal significant differences in 
the observed causal relationships (Supplementary Tables S3–S5).

3.2 Results based on the replication cohort

Sunburn easily (OR: 0.82 [0.70, 0.96]; p = 0.015) and phototoxic 
dermatitis (OR: 0.78 [0.66, 0.92]; p = 0.026) were confirmed to 
be protective factors for iRBD using replication phase data (Figure 2B). 
Furthermore, similar effect estimates were observed after applying 
weighted-median, weighted-mode, and MR-Egger methods 
(Supplementary Table S7). In sensitivity analyses, no heterogeneity or 
pleiotropy was observed, indicating the robustness of results 
(Supplementary Tables S8, S9). However, given that the data used 
regarding trunk and whole-body fat-free mass, and whole-body water 
mass were originated from a single source, we were unable to confirm 
the causal relationship between these factors and iRBD in the 
replication stage.

3.3 Co-localization analysis

To further investigate whether causal associations identified in 
discovery and validation phases were driven by shared genes, 
we conducted co-localization analysis. The results were as follows 
(Figure  3; Supplementary Table S17): ease of sunburn [coloc. 
Abf-posterior probability of hypothesis 4 (PPH4) = 0.057], childhood 
sunburn occasions (coloc. Abf-PPH4 = 0. 441), sun/ultraviolet (UV) 
protection (coloc. Abf-PPH4 = 0.426), and a deeper skin color (coloc. 
Abf-PPH4 = 0.039), sunburn easily (coloc. Abf-PPH4 = 0.301), and 
phototoxic dermatitis (coloc. Abf-PPH4 = 0.437). In general, a PPH4 
exceeding 80% is considered indicative of robust colocalization 
evidence. However, in our research, the PPH4 values ranged from 3 
to 44%. Additionally, there was no observed genetic overlap between 
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three exposure factors (trunk fat-free mass, whole-body fat-free mass, 
and whole-body water mass) and iRBD occurring within a range of 
50 kb of their respective lead SNPs.

3.4 Genetic correlation between common 
mental illness and iRBD

In this study, we identified a genetic correlation between iRBD 
and anxiety disorders using the LDSC method (r = 0.2719, p = 0.0098) 
and trait covariance analysis (covariance = 0.0096). Moreover, 

co-localization analysis of iRBD (exposure) and anxiety disorders 
(outcome) identified a shared driver gene located within 50 kb of 
rs7822441 (Figure  4). However, no evidence supported a genetic 
correlation between schizophrenia, depression, PTSD, and iRBD.

4 Discussion

Considering the prevailing ambiguity surrounding risk factors for 
iRBD, our investigation marks the pioneering utilization of MR 
analysis to systematically assess the causality between 29 potential 

FIGURE 2

Forest plot illustrates the causal estimates of modifiable risk factors on iRBD using the inverse variance-weighted method. (A) Results from the 
discovery cohort. (B) Results from the replication cohort. SNP, singlenucleotide polymorphism; IVW: Inverse variance weighted; OR, odds ratio; 
95%LCI, lower limit of 95% CI; 95%UCI, upper limit of 95% CI. Statistics significant. *p  <  0.05.
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determinants and iRBD. Our study identified a causal relationship 
between sunlight exposure the incidence of iRBD. Specifically, 
utilizing sun protection, and ease of sunburn, childhood sunburn 
occasions, and phototoxic dermatitis may reduce risk of iRBD. In 
contrast, individuals with a deep skin color are at increased iRBD risk. 
Furthermore, our research revealed no causal associations between 
smoking, coffee consumption, alcohol intake, educational attainment, 
mental illness, and other risk factors previously identified through 
observational studies and iRBD. A genetic correlation between anxiety 
disorders and iRBD was observed.

Previous researches have demonstrated that increasing exposure 
to sunlight can diminish risk of PD by elevating levels of 
25-hydroxyvitamin D (10, 11, 45–47). IRBD, as a prodromal stage of 
α-synucleinopathies, is also the strongest predictor of PD onset. 
However, there is currently a lack of research exploring the relationship 
between sunlight exposure and iRBD. Therefore, we selected several 
factors related to sun exposure to investigate whether they were 
causally associated with iRBD. Surprisingly, we found that individuals 
who were prone to sunburn, had a childhood history of sunburn and 
phototoxic dermatitis, and took sun protection measures tended to 
have a reduced risk of developing iRBD. Conversely, individuals with 
a deep skin color were at increased risk of developing the disease. At 
first glance, these results seem to contradict each other. However, 
upon closer examination, intriguing connections emerge.

In our discovery cohort, four consistent MR methods initially 
demonstrated that sun protection measures decrease iRBD incidence, 

underscoring the reliability of our findings. It is well-documented that 
personal protective behaviors play a significant role in moderating UV 
exposure (48), suggesting that excessive sun exposure could pose a risk for 
iRBD. Deep skin color emerged as an iRBD risk factor, a conclusion 
reinforced by both IVW and MR-Egger methods. Prior researches have 
indicated that individuals with deeper skin tones often exhibit reduced 
sunlight sensitivity, possibly leading to less frequent use of sun protection 
and heightened sun exposure (49–53). Data from both our discovery and 
replication cohorts, sourced from FinnGen and the UK Biobank, revealed 
that those more prone to sunburn experience a lower iRBD incidence. 
According to Fitzpatrick’s photo-type classification, sunburn-susceptible 
individuals are viewed as UV-sensitive and typically limit their sun 
exposure (48, 54–58). Moreover, our research identified childhood 
sunburn history and photosensitive dermatitis as protective factors against 
iRBD. As phototoxic dermatitis is UV radiation-related, those afflicted 
often adopt enhanced sun protection, thereby reducing their overall sun 
exposure relative to the general population (59). Earlier studies also 
highlight that childhood sunburn experiences can prompt increased sun 
protection use (60). Collectively, our data indicate that excessive sun 
exposure elevates iRBD risk, but vigilant sun protection can diminish this 
risk (Figure 5). This insight is notable, especially given past findings linking 
farmers, who typically have heightened sunlight exposure (61–63) with a 
higher iRBD risk (13, 16, 17, 20). Identifying this ubiquitous and 
modifiable iRBD risk factor carries profound public health significance.

Sunlight exposure has opposite effects on the incidence rates of iRBD 
and PD, indicating that despite the tendency of iRBD patients to progress 

FIGURE 3

Genetic correlation of sun exposure-related factors with iRBD. Results were derived from co-localization analysis. chr, chromosome. The presented 
data are available in Supplementary Table 2.
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to PD, there are still differences in the pathogenesis of the two diseases. The 
decline in melatonin levels may explain the increased incidence of iRBD 
caused by excessive sun exposure. Melatonin, known as the chemical 
expression of darkness, is a sunlight-dependent indole compound 
primarily released by the pineal gland, which is crucial for regulating the 
human biological clock and sleep cycle (64, 65). Sun exposure significantly 
influences melatonin levels. Previous observational studies have noted that 

during sunnier summer months, melatonin levels are lower and last for 
shorter periods compared to winter (66, 67). From the poles to the equator, 
with increasing sunlight intensity and duration, melatonin secretion 
decreases (68, 69). This phenomenon is biochemically explained by 
excessive sunlight suppressing the activity of key enzymes in the synthesis 
pathway (70, 71), while also activating melanopsin produced by retinal 
ganglion cells, thereby suppressing the synthesis and release of melatonin 

FIGURE 4

Genetic correlation of psychiatric disorders with iRBD. The specific analysis method, calculation process and final result have been shown in the 
picture.
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in the pineal gland (70, 72, 73). Experimental researches have also 
confirmed the negative correlation between light exposure duration and 
intensity and melatonin production (74–78).

Melatonin might have a protective effect against the onset of 
iRBD. Firstly, impaired glycine and GABA neurotransmission could 
be  potential mechanisms underlying iRBD (79–81). Studies have 
demonstrated that melatonin can potentiate the action of GABA on 
GABAA receptors located on motoneurons, directly augmenting tonic 
GABAA transmission (80, 82, 83). This action ultimately triggers REM 
sleep atonia, thereby improving iRBD symptoms. Secondly, the 
α-synuclein accumulation in the brainstem is also a mechanism 
contributing to the pathogenesis of iRBD. Melatonin can reduce the 
aggregation of α-synuclein and exerts neuroprotective effects by 
scavenging free radicals (84, 85), stimulating glutathione synthesis (86, 
87), enhancing antioxidant enzyme synthesis, and inhibiting the 
production of pro-oxidant enzymes (88, 89), thus alleviating α-synuclein’s 
mitochondrial toxicity (90, 91). Thirdly, studies have reported that 
inflammation plays a role in the pathogenesis of iRBD (92, 93). Melatonin 
can exert anti-inflammatory effects by acting as an antioxidant, 
modulating the expression of inducible nitric oxide synthase, and 
influencing inflammatory signaling pathways and the production of 

inflammation-related cytokines (94–97). Finally, previous case–control 
and randomized controlled trials have confirmed that melatonin can 
improve symptoms of RBD (75, 98–107). Thus, excessive sun exposure 
may lead to melatonin levels reduction in patients, consequently 
diminishing its neuroprotective, antioxidant, and anti-inflammatory 
effects. This could potentially explain the correlation between increased 
sun exposure and a higher incidence of iRBD.

A community-based study demonstrated that having a low BMI 
may increase risk of iRBD (17). This study did not identify a causal 
relationship between BMI and iRBD risk. However, we found that 
increased trunk and whole-body fat-free mass were associated with in 
increased risk of iRBD. Compared to BMI, Fat-free mass, which 
represents trunk non-adipose tissue mass (trunk mass after 
subtracting the mass of fat tissue), provides an accurate depiction of 
body composition and serves as a valuable diagnostic tool for obesity 
(108–110). Although the mechanisms underlying these indicators 
remain unclear, they offer valuable guidance for identifying 
populations at high risk of developing iRBD.

Previous studies of the relationship between lifestyle factors (such 
as smoking and alcohol consumption) and iRBD have been fraught 
with contradictions and controversies. Studies have suggested that 

FIGURE 5

The figure depicts the relationships among various sun exposure-related factors and their associated risks for iRBD. Red arrows accompanied by a “+” 
indicate a promoting effect, while blue arrows paired with a “-” signify an inhibitory effect.
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smoking (13, 14, 19, 20, 111, 112), alcohol consumption (19, 20), and 
tea consumption (20) increase risk of iRBD. However, other researches 
have failed to establish causal associations between the factors and 
iRBD (15–17). Our study did not support the notion that smoking, 
coffee consumption, or tea consumption are risk factors for 
iRBD. With a statistical power of 1, these findings are highly robust. 
Inconsistency in results of observational studies may arise from the 
possible presence of confounding factors such as socioeconomic 
status, which may have obscured the true relationship between 
lifestyle factors and iRBD. Furthermore, our reverse MR analysis 
indicated that iRBD increased alcohol consumption, suggesting that 
the relationship between alcohol use and iRBD that was identified in 
previous observational studies may have been due to reverse causation.

Some studies have suggested that individuals low education levels 
are at increased risk of iRBD development (13, 15, 18, 113). However, 
in our study, we did not find a causal association between years of 
schooling and iRBD. Socioeconomic status can influence educational 
experiences, living conditions, and medical services accessed by 
individuals. These factors may affect the incidence of various diseases. 
This suggests that socioeconomic status may confound the relationship 
between education and iRBD in observational studies. This was 
supported by findings of a CLSA population-based cohort study that 
demonstrated that the association between education and iRBD was 
diminished after adjusting for socioeconomic level (19). In addition, 
we should not overlook the influence of education levels on a patient’s 
willingness to seek medical care, a phenomenon that may contribute 
to selection bias in observational studies.

Previous studies have reported a close association between some 
mental illnesses and iRBD, indicating that anxiety, depression, 
psychological stress, and PTSD may be risk factors for iRBD (13, 14, 19, 
113–116). Nevertheless, we found no causality between mental illness 
and iRBD in both discovery and replication phases of our study. The 
discrepancies between prior studies and our findings can be elucidated 
from several perspectives: (1) overexposure: individuals with mental 
illness are more likely to report sleep problems (117, 118), leading to an 
increased frequency of sleep evaluations, which could inflate the 
detection rate of sleep disorders. Such overexposure may result in an 
overestimation of the association between mental illness and iRBD. (2) 
Misdiagnosis: depression and anxiety disorders often coexist with 
obstructive sleep apnea (OSA) (119, 120), a condition that shares many 
clinical presentations with iRBD. Distinguishing between the two without 
PSG is challenging (2). Observational studies using scales to screen for 
iRBD patients may overstate its association with mental illness. (3) 
Genetic Correlation: our research identified a genetic correlation between 
anxiety disorders and iRBD. This makes the concurrent occurrence of 
both conditions more probable, potentially obscuring their genuine 
relationship. It is worth noting that while our study does not support a 
causal relationship between depression and iRBD, the limited statistical 
power (0.06) of the instrumental variable for depression may lead to 
false-negative results. Further studies are needed to better understand the 
link between depression and iRBD. Conducting additional family-based, 
genetic association, and molecular genetic studies are essential for 
exploring genetic links between mental illness and iRBD.

Our MR study had several strengths. First, it is the first MR study 
to investigate modifiable risk factors associated with iRBD, aiming to 
substantially reduce bias due to the presence of confounding factors 
and reverse causality commonly encountered in observational studies. 
Second, to evaluate the relationships between exposure factors and 

iRBD, we utilized the most extensive GWAS datasets available. In both 
the discovery and replication stages, separate exposure datasets were 
leveraged to ensure result consistency. Our analysis incorporated a 
range of methods, including MR, LDSC, trait covariance, and 
colocalization analyses, to probe potential associations. When MR 
failed to pinpoint a connection, we assessed the power to ensure result 
reliability. These strategies significantly bolstered the reliability and 
validity of our conclusions. Third, our findings revealed that excessive 
sun exposure increases the risk of iRBD, while sun protection acts as 
a potent preventive measure. Identifying this prevalent and modifiable 
risk factor in daily life is pivotal for devising effective preventive 
strategies, holding substantial public health significance.

Despite its strengths, our study has several limitations. First, our 
study showed discrepancies with past observational studies, possibly due 
to potential confounding bias and reverse causality in previous researches, 
or our limited iRBD data sample size, restricting the wide applicability of 
our findings. Thus, we advocate for stricter observational study designs 
and the application of larger GWAS data in MR analyses to clarify these 
issues more distinctly. Second, although our discovery cohort identified 
potential causality among trunk fat-free mass, whole-body fat-free mass, 
whole-body water mass and iRBD, the GWAS data for these exposure 
factors were exclusively sourced from the UK Biobank. Future research 
utilizing different datasets is warranted to validate our findings. Third, 
we  identified the causal associations between sun exposure-related 
factors and iRBD using MR analysis. However, further observational 
studies will be needed to confirm our findings. Furthermore, as the 
statistical power of the depression data is insufficient, higher quality 
GWAS data are required. In addition, there is a lack of GWAS datasets on 
antipsychotic drugs to further investigate the causality between 
antipsychotic medications and iRBD.

5 Conclusion

In this study, we discovered that excessive sun exposure increase 
the risk of iRBD. However, Our research does not corroborate the 
findings from previous observational studies that identified alcohol 
consumption, smoking, mental illness, and low education levels as risk 
factors for iRBD. Interestingly, we did observe a genetic correlation 
between anxiety disorders and iRBD. These insights offer fresh 
perspectives for screening high-risk populations and devising 
preventive measures.
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