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Objective: Temporal lobe epilepsy (TLE) predominantly originates from the 
anteromedial basal region of the temporal lobe, and its prognosis is generally 
favorable following surgical intervention. However, TLE often appears negative 
in magnetic resonance imaging (MRI), making it difficult to quantitatively 
diagnose the condition solely based on clinical symptoms. There is a pressing 
need for a quantitative, automated method for detecting TLE.

Methods: This study employed MRI scans and clinical data from 51 
retrospective epilepsy cases, dividing them into two groups: 34 patients in 
TLE group and 17 patients in non-TLE group. The criteria for defining the 
TLE group were successful surgical removal of the epileptogenic zone in the 
temporal lobe and a favorable postoperative prognosis. A standard procedure 
was used for normalization, brain extraction, tissue segmentation, regional 
brain partitioning, and cortical reconstruction of T1 structural MRI images. 
Morphometric features such as gray matter volume, cortical thickness, and 
surface area were extracted from a total of 20 temporal lobe regions in both 
hemispheres. Support vector machine (SVM), extreme learning machine (ELM), 
and cmcRVFL+ classifiers were employed for model training and validated 
using 10-fold cross-validation.

Results: The results demonstrated that employing ELM classifiers in conjunction 
with specific temporal lobe gray matter volume features led to a better 
identification of TLE. The classification accuracy was 92.79%, with an area under 
the curve (AUC) value of 0.8019.

Conclusion: The method proposed in this study can significantly assist in the 
preoperative identification of TLE patients. By employing this method, TLE can 
be  included in surgical criteria, which could alleviate patient symptoms and 
improve prognosis, thereby bearing substantial clinical significance.
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Introduction

Epilepsy is a clinical condition characterized by recurrent 
abnormal neuronal discharges, leading to various symptoms (1, 2). 
Temporal lobe epilepsy (TLE) mainly originates from the anteromedial 
basal region of the temporal lobe and often has a favorable prognosis 
following surgical intervention (3). The epidemiology of TLE involves 
factors such as age, gender, and potential causes. The incidence of TLE 
peaks in early childhood and later in adulthood, with some cases 
linked to head injuries, infections, or structural brain abnormalities 
(4). Identifying TLE patients preoperatively is crucial for tailoring 
treatment strategies, optimizing surgical outcomes, and ultimately 
improving the overall well-being of individuals with epilepsy. For 
precision preoperative planning, identification allows for precise 
localization of the epileptic focus with minimal impact on non-affected 
brain regions (5). For optimizing surgical outcomes, early 
identification aids in optimizing surgical outcomes by ensuring that 
the surgical procedure targets the specific area responsible for seizures, 
improving the likelihood of seizure control and reduce the risk of 
complications (6). For enhancing quality of life, timely identification 
and effective surgical management contribute to improved quality of 
life for individuals with TLE, reducing seizure frequency and better 
cognitive outcomes can positively impact daily functioning and 
overall well-being (7). Therefore, Identifying TLE patients 
preoperatively is an important issue in the clinical diagnosis and 
treatment of epilepsy.

Magnetic resonance imaging (MRI) has been extensively used for 
locating epileptogenic foci due to its high soft tissue resolution and 
absence of radiation exposure, making it a potent tool for studying 
structural abnormalities in epilepsy (8–11). Research has shown that 
MRI has significant diagnostic value for TLE; for instance, the 
amygdala volume is notably reduced in TLE patients (12), and some 
patients also present with low-grade gliomas and peripheral vascular 
lesions (13). MRI also aids in  localizing abnormal brain tissues 
commonly found in TLE, such as cortical dysplasia and hippocampal 
sclerosis (8, 14). However, these structural changes are difficult to 
identify directly by visual inspection of MRI scans.

In recent years, machine learning methods have been widely 
applied in the classification and diagnosis of neuropsychiatric 
disorders. Support Vector Machine (SVM), Extreme Learning 
Machine (ELM), and Random Vector Functional Link (RVFL) are 
common classifiers to handle complex relationships in data and make 
predictions, which are widely applied into analysis of neuropsychiatric 
disorders. SVM is a popular supervised learning algorithm for 
classification and regression tasks (15). It aims to find a hyperplane 
that best separates data into different classes while maximizing the 
margin between them. SVMs are effective in high-dimensional spaces 
and are used for various applications, including image classification 
and bioinformatics. Huang et  al. analyzed the increased network 
homogeneity in the TLE patients using support vector machine 
(SVM) with a classification accuracy of 74.12% (16). ELM is a type of 
neural network that simplifies the training process compared to 

traditional neural networks (17). It randomly selects input weights and 
analytically determines the output weights. Wang et al. used discrete 
wavelet transform and the nonlinear sparse ELM for epilepsy and 
epileptic seizure detection (18). RVFL is another type of neural 
network that combines randomization with a feedforward neural 
network structure (19). It randomly assigns input weights and biases, 
and the output weights are calculated through a least squares solution. 
Goel et al. used wavelet transform-based multimodality fusion and 
RVFL classifier to incorporate structural and metabolic information 
for the early detection of the neurodegenerative disease (20). While 
most studies have a TLE diagnosis rate exceeding 80%, approximately 
10–20% of TLE patients are misdiagnosed, and a considerable 
proportion of healthy individuals are falsely identified, indicating the 
need for a more precise auxiliary diagnostic method for TLE.

In this study, we propose a TLE identification method based on 
morphological features of temporal lobe regions and machine learning 
techniques. By analyzing MRI scans of 32 retrospective epilepsy cases 
and using surgical removal of the epileptogenic zone in the temporal 
lobe with a good postoperative prognosis as the criteria for TLE, 
patients were classified into 20 TLE and 12 epilepsy originating from 
other regions. Morphological features were extracted from relevant 
temporal lobe regions, and several machine learning models were 
utilized to evaluate the morphological features as the neuroimaging 
diagnostic biomarkers for TLE. The aim is to develop an automated, 
quantitative, and highly accurate preoperative TLE 
identification method.

Materials and methods

Patients

This study included a cohort of 51 epilepsy patients, all of whom 
were recruited from the First Affiliated Hospital of Suzhou University 
(27 males and 24 females). The sample consisted of 34 patients 
diagnosed with temporal lobe epilepsy (TLE) and 17 with epilepsy 
originating from other brain regions (non-TLE). The inclusion and 
exclusion criteria for the epilepsy patients in this study were as follows: 
(1) The primary basis for the diagnosis of epilepsy was epileptiform 
discharges on electroencephalogram (EEG), coupled with clinical 
seizures and medical history. (2) Patients were excluded with absence 
of visible structural abnormalities or lesions on routine neuroimaging 
studies, that could account for the seizures. (3) Patients lacking 
preoperative T1-weighted images were excluded from the study. (4) 
Patients with MRI scans of poor quality were also excluded. The 
identification of the epileptogenic foci for the patients with epilepsy 
was determined through a combination of postoperative MRI scans 
and surgical records. The surgical records included details about the 
excised regions, such as the frontal lobe, occipital lobe, hippocampus, 
amygdala, middle and inferior temporal gyrus, superior temporal 
gyrus, and other typical areas. Demographic information and MRI 
lesion information of all patients is shown in Table 1.
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MR image acquisition

All participants underwent the clinical standard brain MRI 
protocol, including T1-weighted MRI, T2-weighted MRI, FLAIR, and 
DWI. The brain MR images were acquired at the First Affiliated 
Hospital of Suzhou University using a Siemens MAGNETOM Skyra 
3.0 T ultraquiet MRI system and Philips MR Achieva/Intera 
equipment to obtain T1-weighted MRI scans.

For the Siemens system, the scanning parameters were as follows:
Repetition Time (TR)/Echo Time (TE) = 2300.0/3.0 ms.
Slice Thickness = 1.0 mm.
Flip Angle (FA) = 8°.

For the Philips medical equipment, the scanning parameters were 
as follows:

Repetition Time (TR)/Echo Time (TE) = 8.1/3.7 ms.
Slice Thickness = 1.0 mm.
Flip Angle (FA) = 9°.

Image processing

MRI brain images were processed using standard protocols as 
outlined in previous literature (21). Because the brain MR images of 
all patients were derived from two different devices, several 
preprocessing steps are recommended for consistency, including 
intensity normalization and spatial normalization. Intensity 
normalization of MR images from both devices could mitigate 
differences in signal strength and ensure uniform grayscale 
representation. Spatial normalization could transform images into a 
common coordinate space, facilitating anatomical comparisons across 
subjects. After spatial normalization, the intensity of images was 
normalized to 0 ~ 250. After intensity normalization, the raw MRI 
images have uniform dimensions (256 × 256 × 256) and a consistent 
spatial resolution of 1 × 1 × 1 mm3. The N3 algorithm was utilized to 
correct intensity inhomogeneities within the images. Subsequent to 
these corrections, skull stripping was performed to remove the scalp, 
skull, and dura mater. Following this, tissue segmentation was carried 
out to isolate the gray matter, white matter, and cerebrospinal fluid. 
The processed images were then mapped to a prelabeled automated 
anatomical labeling (AAL) template, enabling the segmentation of 90 

regions of interest (ROIs). Last, reconstruction of the cortical surface 
was accomplished. Upon completion of these procedures, metrics 
such as the volume of gray matter, cortical thickness, and cortical 
surface area for each ROI were computable (Figure 1).

TLE morphometric feature extraction from 
MRI

Following the aforementioned image preprocessing steps, 
morphometric features, including the volume of gray matter, cortical 
thickness, and cortical surface area, can be  obtained for 90 brain 
regions in each patient’s MRI image. After consultation with clinical 
experts, 10 brain regions particularly relevant to temporal lobe 
epilepsy (TLE) were selected for analysis. These include the 
hippocampus, parahippocampal gyrus, amygdala, transverse temporal 
gyrus, polar temporal gyrus (superior temporal gyrus), polar temporal 
gyrus (middle temporal gyrus), superior temporal gyrus, middle 
temporal gyrus, inferior temporal gyrus, and fusiform gyrus (as 
shown in Figure 2). Moreover, by cross-referencing the descriptions 
of surgical removal locations in each subject’s medical records, it was 
found that the typical areas excised in TLE patients were included 
among these 10 regions. Concurrently, the literature indicates that the 
temporal pole, originating amygdala, and originating hippocampal 
head can be identified in PET images for the localization of the onset 
of TLE (22). Previous research based on MRI images has confirmed a 
high correlation between the medial temporal lobe and TLE (23). The 
selection of these TLE-relevant brain region features was carried out 
based on this existing research and following discussion 
with neurosurgeons.

Machine learning model

In this study, three classifiers were chosen to serve as auxiliary 
diagnostic models for temporal TLE, including SVM, ELM, and 
cmcRVFL+. SVM is a binary classification model well suited for medium- 
and small-sized data samples and nonlinear and high-dimensional 
classification problems. In this study, we selected the radial basis function 
(RBF) for SVM as the kernel function. ELM is a single-hidden-layer 
neural network model with the number of hidden nodes set to 60. It is 
characterized by high efficiency, accuracy, and strong generalization 

TABLE 1 Demographic information and MRI lesion information of all epilepsy patients.

TLE group Non-TLE group p-value

Participants 34 17 –

Sex (male/female, %)
Female: 16 (47%)

Male: 18 (53%)

Female: 8 (47%)

Male: 9 (53%)
0.50

Age (mean SD, years) 32.29 ± 35.71 25.59 ± 17.59 0.07

Hemisphere(left/right, %)
Left: 16 (47%)

Right: 18 (53%)

Left: 6 (54.5%)

Right: 11 (45.5%)
0.21

Lesion location (lobe, %) Temporal lobe: 34 (100%)

Precentral gyrus: 5(%)

Occipital lobe: 11.8 (%)

Frontal lobe:29.4 (%)

Parietal lobe and Occipital lobe: 52.9 (%)

–

TLE, temporal lobe epilepsy; SD, standard deviation.
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performance and does not require iterative learning, thus offering fast 
training speed. The cmcRVFL+ was an ensemble classifier (cmcRVFL+) 
for small sample classification (19), which combines a series RVFL as 
weak classifier in order to build a more robust final classifier. It formed a 
cascaded model that use the predict label as privileged information, 
which was fed into the next RVFL learner together with morphometric 
features. The construction of RVFL learners prevents excessive learning 
from the training data resulting in a less biased model. The framework for 
constructing these classification models is presented in Figure 3.

Statistical analysis

All patients were randomly split into training and testing 
datasets. During the training phase, all training samples underwent 
image preprocessing and feature extraction before being fed into the 
classifiers for training. To address the issue of a small sample size, 
5-fold cross validation was conducted for each split and the training 
and testing experiments were repeated five times. The average 
results from these experiments were used as the final outcome.  

FIGURE 1

Preprocessed MR images and feature extraction on brain labeled and cortical reconstructed MR images of three different subjects.

FIGURE 2

Visualization of TLE morphometric feature extraction from MR images.
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The classification performance of the models was evaluated by 
accuracy (ACC), specificity (SPE), sensitivity (SEN), and area under 
the curve (AUC) values.

Results

Patient demographic and clinical 
information

The study analyzed 32 epilepsy patients, including 13 males and 
19 females, ranging in age from 7 to 59 years. Fifteen of the patients 
had epileptic foci located in the left hemisphere, and 17 had epileptic 

foci in the right hemisphere. Using t-tests, we analyzed the age, sex, 
and location of the epileptic foci in these 32 patients. The results 
indicate that there were no significant differences between the 
temporal lobe epilepsy (TLE) group and the group with epileptic foci 
in other locations in terms of sex, age, or the lateralization of the 
epileptic foci. The statistically significant differences were assessed 
also for gray matter volume (transverse temporal gyrus with 
p  = 0.005960 and superior temporal gyrus with p  = 0.040157), 
cortical thickness (middle temporal gyrus with p = 0.032215 and 
fusiform gyrus with p  = 0.022513), and cortical surface area 
(amygdala with p = 0.032215 and fusiform gyrus with p = 0.019514). 
Detailed results of the morphometric features were listed in 
Tables 2–4.

FIGURE 3

The framework of the construction of the machine learning model.
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Performance of the machine learning 
model

To validate the efficacy of using the ratio features of 20 selected 
brain regions for distinguishing between TLE and epilepsies of other 
localizations, three classification models were employed, including 
SVM, ELM, and cmcRVFL+. The classification performance was 
evaluated using metrics such as accuracy, sensitivity, specificity, area 

under the curve (AUC), and the receiver operating characteristic 
(ROC) curve. The performance of the three classifiers is shown in 
Table 5, The accuracy of the ELM classifier with gray matter volume 
feature reached the highest accuracy of 92.79%. The classification 
accuracy was higher when using gray matter volume features than 
when using cortical thickness or surface area features.

The ROC curves were illustrated in Figure 4. We compare the AUC 
value of the gray matter volume feature using SVM (AUC = 0.8235), 

TABLE 2 Statistical analysis of gray matter volume features for TLE and non-TLE group in 10 temporal lobe ROIs.

TLE Non-TLE p-value

Hippocampus 1.126985 1.004433 0.352725

Parahippocampal gyrus 1.051014 1.020202 0.373503

Amygdala 1.042755 0.973266 0.404944

Transverse temporal gyrus 1.068617 0.891413 *0.005960

Polar temporal gyrus (superior temporal gyrus) 1.038298 1.072758 0.303673

Polar temporal gyrus (middle temporal gyrus) 1.045428 0.969712 0.411268

Superior temporal gyrus 1.122513 0.919918 *0.040157

Middle temporal gyrus 1.096501 1.083007 0.361202

Inferior temporal gyrus 1.164071 0.988093 0.154616

Fusiform gyrus 1.077072 1.031041 0.388880

*p < 0.05.

TABLE 4 Statistical analysis of cortical surface area features for TLE and non-TLE group in 10 temporal lobe ROIs.

TLE Non-TLE p value

Hippocampus 1.108046 0.981995 0.144710

Parahippocampal gyrus 1.044484 1.030463 0.413864

Amygdala 1.213013 0.933363 *0.022513

Transverse temporal gyrus 0.993532 1.025468 0.359794

Polar temporal gyrus (superior temporal gyrus) 1.052547 1.023747 0.265886

Polar temporal gyrus (middle temporal gyrus) 1.046024 0.958219 0.144412

Superior temporal gyrus 1.017275 0.928433 0.085684

Middle temporal gyrus 1.195681 1.180977 0.465682

Inferior temporal gyrus 0.998218 0.959602 0.250236

Fusiform gyrus 0.946123 1.079781 *0.019514

*p < 0.05.

TABLE 3 Statistical analysis of cortical thickness features for TLE and non-TLE group in 10 temporal lobe ROIs.

TLE Non-TLE p-value

Hippocampus 0.974309 1.001729 0.428301

Parahippocampal gyrus 0.891543 1.008125 0.457773

Amygdala 1.069158 1.042283 0.297765

Transverse temporal gyrus 1.011662 0.983062 0.093153

Polar temporal gyrus (superior temporal gyrus) 0.882260 1.019201 0.482463

Polar temporal gyrus (middle temporal gyrus) 1.102592 0.999387 0.230359

Superior temporal gyrus 0.924386 0.985714 0.070580

Middle temporal gyrus 1.045826 0.982011 *0.032215

Inferior temporal gyrus 1.040525 0.997402 0.223118

Fusiform gyrus 0.707104 0.975444 *0.015641

*p < 0.05.
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ELM (AUC = 0.8019), and cmcRVFL+ (AUC = 0.7667). For cortical 
thickness, the ROC curves of SVM (AUC = 0.7276), ELM 
(AUC = 0.7028), and cmcRVFL+ (AUC = 0.9064) were compared. For 
cortical surface area, the ROC curves of SVM (AUC = 0.7245), ELM 
(AUC = 0.7988), and cmcRVFL+ (AUC = 0.7405) were compared. The 
highest AUC was obtained using cortical thickness with cmcRVFL+ 
classifier.

Performance of the morphometric features

The visualization results of the statistically significant analysis of 
gray matter volume, cortical thickness, cortical surface area in the 
temporal related ROIs between TLE and non-TLE are shown in 
Figure 5. The color of each brain region represents the p-value of the 
statistical T-test for morphological features between two groups, 
where red indicates significant differences and yellow indicates less 
significant differences. The statistically significant brain regions of 
gray matter volume locate at transverse temporal gyrus (p = 0.005960) 
and superior temporal gyrus (p = 0.040157). The statistically 
significant brain regions of cortical thickness locate at middle 
temporal gyrus (p = 0.032215) and fusiform gyrus ( p = 0.015641). 
The statistically significant brain regions of cortical surface area 
locate at amygdala (p = 0.022513) and fusiform gyrus (p = 0.019514). 
Details of the statistical analysis results of gray matter volume, 
cortical thickness, cortical surface area are shown in Tables 2–4.

Discussion

Machine learning model for TLE detection

Some patients with temporal lobe epilepsy (TLE) exhibit no 
discernible lesions on MRI, termed MRI-negative TLE. The 
diagnosis of TLE relies on imaging studies, requiring the exclusion 
of hippocampal sclerosis and other structural anomalies. Previous 
research typically utilized 1.5 T MRI scans for case selection, 
which risks overlooking subtle lesions and consequently 
misclassifying them as MRI-negative patients. The widespread 
use of 3.0 T high-resolution cranial MRI in recent years has 
increased the detection rate of epileptogenic foci in TLE patients 
by approximately 20–48%. While some MRI-negative cases can 
be accurately diagnosed with a structural abnormality using 3.0 T 
MRI, 20–30% of TLE patients still do not show any obvious 
lesions on MRI and are considered to be strictly MRI-negative 
TLE. The debate continues as to whether TLE is a distinct 
spectrum of the disease; some scholars suggest the possible 
presence of minor hippocampal sclerosis, visible only on a 
histopathological level. Studies have found that certain brain 
regions in TLE patients show a reduced volume of white matter 
compared to the control group, while other studies indicate 
atrophy in the ipsilateral entorhinal cortex in MRI-negative TLE 
patients. Therefore, the clinical and morphometric characteristics 
of TLE remain ambiguous.

FIGURE 4

The ROC curve of the gray matter volume, cortical thickness, and cortical thickness using three different classidier. (A) The ROC curve using gray 
matter volume. (B) The ROC curve using cortical thickness. (C) The ROC curve using cortical surface area.

TABLE 5 Classification performance of the SVM, ELM and cmcRVFL+ classifiers with different features.

Classifier Feature type ACC% SEN% SPC% AUC

SVM

Gray matter volume 86.79 97.65 95.00 0.8235

Cortical thickness 74.29 98.23 73.00 0.7276

Cortical surface 77.50 98.75 77.54 0.7245

ELM

Gray matter volume 92.79 93.67 93.00 0.8019

Cortical thickness 83.07 80.67 85.33 0.7028

Cortical surface 81.86 82.67 81.33 0.7988

cmcRVFL+

Gray matter volume 78.04 77.30 88.45 0.7667

Cortical thickness 90.07 86.03 98.33 0.9064

Cortical surface 79.14 82.22 72.22 0.7405
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To address these challenges, this study proposes a TLE 
identification method based on morphological features of temporal 
lobe regions and machine learning. Three machine learning models, 
namely, SVM, ELM, and cmcRVFL+ were employed for 
classification experiments. SVM is a supervised learning model 
commonly used for pattern recognition, classification, and 
regression analysis. It is well suited for binary classification tasks 
involving medium-to-small size datasets, nonlinearity, and high 
dimensionality. Compared with SVM, the ELM consists of a simple 
three-layer architecture comprising input, hidden, and output 
layers, forming a single-hidden-layer feedforward neural network. 
It only requires setting the number of hidden layer nodes, obviating 
the need to adjust the input weights and thresholds of the hidden 
layer, eventually producing an optimal solution. ELM thus 
demonstrates better adaptability using gray matter volume 
(ACC = 92.79%, AUC = 0.8019). The cmcRVFL+ is an ensemble 
classifier for small sample classification, which combines a series 
RVFL as weak classifier in order to build a more robust final 
classifier. It formed a cascaded model that use the predict label as 
privileged information, which was fed into the next RVFL learner 
together with morphometric features. The construction of RVFL 
learners prevents excessive learning from the training data resulting 
in a less biased model. The classification performance of cmcRVFL+ 
were improved (ACC = 90.07%, AUC = 0.9064) using cortical 
thickness. All these classification models were used to evaluated the 
effectiveness of morphometric features for MRI-negative TLE 
detection, the classifier based on ELM outperformed in 
distinguishing TLE from epilepsies using temporal lobe gray matter 
volume features.

Analysis of gray matter volume alterations 
in the temporal lobe ROIs of TLE patients

The t test method was utilized to analyze the statistical 
significance of volumetric features of gray matter and cortical 
surface area in the bilateral brain regions of three clinically 
TLE-relevant areas: the hippocampus, the transverse temporal 
gyrus, and the middle temporal gyrus. As indicated in Table 4, the 
gray matter volume features in the bilateral regions of the 

hippocampus showed a significant difference with a p value of 
0.0086. Additionally, the gray matter volume features in the 
transverse temporal gyrus displayed a significant difference between 
the TLE group and the group with epilepsies originating in other 
brain regions, with a p-value of 0.045. Ultimately, we selected the 
ratio of three features in the bilateral brain regions of 10 areas within 
the surgical zone as features for machine learning classification, and 
this yielded the most effective results.

Recent research indicates that subtle structural changes in 
subregions of the hippocampus could lead to neurological and 
psychiatric disorders, including epilepsy, Alzheimer’s disease, major 
depressive disorder, posttraumatic stress disorder, and schizophrenia 
(24). Temporal lobe epilepsy with hippocampal sclerosis (TLE-HS) 
is a common subtype of temporal lobe epilepsy and a classical focal 
epilepsy syndrome. Epileptic seizures in these patients generally 
originate from the medial temporal lobe or simultaneously involve 
limbic structures and are accompanied by hippocampal sclerosis 
(25). For patients with temporal lobe epilepsy where the 
hippocampus is the frequent epileptogenic zone, 75% ultimately 
progress to drug-resistant epilepsy. The seizure types in TLE-HS 
patients are diverse, with causes ranging from perinatal hypoxia-
ischemia-induced brain damage, brain malformations, cerebral 
vascular malformations, trauma, and infection-induced scar tissue, 
leading to hippocampal degenerative sclerosis and forming a new 
epileptogenic focus. Reports indicate that hippocampal sclerosis is 
also a significant cause of epilepsy, ultimately resulting in a “dual-
source” epileptogenic focus (26).

Studies have found that MRI-negative TLE patients exhibit atrophy 
in the transverse temporal gyrus area. The possible mechanism 
involves the reduction of output neurons in the epileptogenic zone, 
resulting in diminished afferent input and consequently reduced 
volume in brain regions that are synaptically connected to the 
epileptogenic zone (27). Epileptic discharges are not confined to the 
epileptogenic focus but propagate widely to other brain areas. Local 
neurotoxins can cause damage to neurons not only in the epileptogenic 
zone but also in remote areas, leading to neuronal loss. Furthermore, 
there may be  subtle cortical developmental anomalies and other 
pathological changes in brain tissue. The collective impact of these 
multiple factors is likely the pathophysiological mechanism underlying 
the reduction in gray matter volume seen in epilepsy patients (28).

FIGURE 5

Visualization of the statistical analysis results of the gray matter volume, cortical thickness, cortical surface area in temporal related ROIs between TLE 
and non-TLE.
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Limitation

Despite achieving promising research results, this study has 
several limitations: (1) The small sample size is a main concern for 
overfitting. We  have taken actions to deal with this issue that an 
ensemble classifier was used. The cmcRVFL+ combines multiple 
RVFL classifiers to build a more robust classifier. It formed a cascaded 
model that use the predict label as privileged information, which was 
fed into the next RVFL learner together with features. The construction 
of RVFL learners prevents excessive learning from the training data 
resulting in a less biased model. The overfitting issue was further 
ensured by the use of 5-fold cross validation and repeated experiment. 
Future studies will include additional samples for validation, 
addressing the overfitting limitations. (2) We only used imaging data 
from a single modality. If data from multiple modalities were available, 
it would be possible to extract features from more dimensions for 
more accurate classification. Future experiments could be conducted 
using data from multiple modalities, and other types of information 
will be used to improve the model’s classification accuracy, such as 
neuropsychological assessments.

Conclusion

In this paper, we addressed the problem of low identification 
rates of MRI-negative TLE in clinical settings by using machine 
learning methods. We classified patients based on three types of 
features within 20 bilateral brain regions associated with the 
temporal lobe, as identified by the automated anatomical labeling 
(AAL) template within the surgical resection area. The results 
showed that the use of an extreme learning machine (ELM) 
classifier, combined with features such as cortical thickness in 
specific brain regions, yielded good results in identifying temporal 
lobe epilepsy as distinct from epilepsy originating from other 
brain areas.
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