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Objective: Prolonged sleep onset latency (PSOL) and age have been linked 
to ischemic stroke (IS) severity and the production of chemokines and 
inflammation, both of which contribute to IS development. This study aimed to 
explore the relationship between chemokines, inflammation, and the interplay 
between sleep onset latency (SOL) and age in influencing stroke severity.

Methods: A cohort of 281 participants with mild to moderate IS was enrolled. 
Stroke severity was assessed using the National Institutes of Health Stroke Scale 
(NIHSS), and SOL was recorded. Serum levels of macrophage inflammatory 
protein-1alpha (MIP-1α), macrophage inflammatory protein-1beta (MIP-1β), 
monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6), and tumor 
necrosis factor-alpha (TNF-α) were measured.

Results: NIHSS scores of middle-aged participants with PSOL were significantly 
higher than those with normal sleep onset latency (NSOL) (p  =  0.046). This 
difference was also observed when compared to both the elderly with NSOL 
(p  =  0.022), and PSOL (p  <  0.001). Among middle-aged adults with PSOL, MIP-
1β exhibited a protective effect on NIHSS scores (β  =  −0.01, t  =  −2.11, p  =  0.039, 
R2  =  0.13). MIP-1α demonstrated a protective effect on NIHSS scores in the 
elderly with NSOL (β  =  −0.03, t  =  −2.27, p  =  0.027, R2  =  0.12).

Conclusion: This study reveals a hitherto undocumented association between 
PSOL and IS severity, along with the potential protective effects of MIP-1β in 
mitigating stroke severity, especially among middle-aged patients.
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1 Introduction

Stroke is considered the second leading cause of death worldwide and remains a significant 
cause of disability in both developed and developing countries (1). Ischemic stroke accounts 
for almost 70% of all stroke cases (1). There is a rich literature available substantiating that 
prolonged sleep onset latency (PSOL) and age can determine stroke severity (2–4). However, 
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the precise mechanisms by which PSOL and age impact the 
development of ischemic stroke (IS) remain incompletely understood.

Sleep onset latency (SOL) is the amount of time it takes a person 
to fall asleep in bed, and represents an important marker for assessing 
sleep quality (5). PSOL is one of the main manifestations of sleep 
structural changes in ischemic stroke (6). Studies have demonstrated 
a positive correlation between PSOL and the prevalence of stroke; 
short SOL was associated with a 36% reduction in the risk of stroke, 
while PSOL was also related to the severity of IS symptoms (7), 
suggesting that shorter SOL may protect against stroke (2). In 
addition, it has been shown that sleep onset latency is prolonged with 
aging (8), and aging is a significant factor affecting stroke (3). Besides, 
stroke tends to occur predominantly in the elderly, and its incidence 
and severity are closely related to age (3, 9, 10). Consistently, a study 
revealed that the severity of strokes tended to increase with increasing 
age (10). In contrast, a growing body of evidence suggests the “younger 
stroke” phenomenon is gaining prominence as a pressing public health 
issue, marked by a rising occurrence of strokes among individuals 
considered “younger” (those under 50 years of age) (11, 12). 
Consequently, SOL and age have been established as risk factors for 
ischemic stroke. Nonetheless, the underlying pathophysiological 
mechanisms governing their interplay in influencing the severity of IS 
remain uncertain.

Prolonged sleep onset latency can lead to a series of sleep-related 
issues that exacerbate stroke severity by triggering a systemic 
inflammatory response (13–16). In addition, prior investigations have 
shown that PSOL is exacerbated with age (17). However, recent 
research has indicated prolonged sleep onset latency even among 
middle-aged individuals, indicating a close relationship between SOL 
and age (18). Interestingly, age also impacts stroke severity through its 
influence on inflammation (19). Chemokines, as small molecular 
proteins, play a crucial role in the immune and inflammatory 
responses after stroke, which are involved in the processing of 
neovascularization, neurogenesis, and neural network reconstruction 
(20). Chemokines are cytokines attracting selective leukocyte subsets 
and subgrouping into the four major subfamilies, CC, CXC, C, and 
CX3C. macrophage inflammatory protein-1 alpha (MIP-1α), 
macrophage inflammatory protein 1beta (MIP-1β), and monocyte 
chemoattractant protein-1 (MCP-1) are the three best-known and 
most extensively studied CC chemokines in primary and secondary 
inflammatory responses in humans (21, 22). An increasing body of 
literature suggests that chemokines and cytokines, such as high levels 
of MIP-1α, MIP-1β, MCP-1, interleukin-6 (IL-6) and tumor necrosis 
factor-alpha (TNF-α) are associated with poor subjective sleep quality 
characterized by PSOL (23–27). In this respect, animal experiments 
have demonstrated that older mice exhibit notably higher MIP-1α and 
MIP-1β levels than their younger counterparts (28), which indicate 
that the cytokines and chemokines are also closely related to age. The 
overexpression of chemokines MIP-1α and MCP-1 can promote the 
recruitment of inflammatory cytokines IL-6 and TNF-α (29), and the 
recruitment of pro-inflammatory factors accelerates the development 
of atherosclerotic plaques, which further aggravates blood–brain 
barrier injury (30) and leads to brain injury. The chemokine-induced 
inflammatory response is pivotal in exacerbating stroke outcomes (30, 
31). These cumulative factors collectively contribute to the heightened 
severity of ischemic stroke (32, 33). In essence, the combined influence 
of sleep onset latency and age on these cytokines may provide insights 
into explaining the underlying pathophysiology of ischemic stroke.

As described above, most studies have shown that SOL and age 
are independently correlated with stroke severity (2, 3, 7), and these 
cytokines played roles in the severity of IS. However, the association 
between chemokines, inflammation, and the interaction of SOL and 
age with stroke severity remains elusive, yet it holds crucial significance 
for preventing ischemic stroke. Therefore, this study aimed to examine 
how the interplay between sleep onset latency and age impacts 
chemokine levels and inflammation, with a subsequent exploration of 
their combined role in determining the severity of strokes.

2 Materials and methods

2.1 Participants

A total of 281 participants with mild and moderate ischemic 
stroke admitted to Sinopharm North Hospital from June 2020 to 
December 2021 were recruited.

Sociodemographic data, such as age, years of education, 
occupation, and current body mass index (BMI), were collected. 
Clinical data, such as a history of substance abuse and dependence, 
were obtained according to medical records and self-reports and 
confirmed by the next of kin and family members. Data on SOL in the 
1–3 months before stroke were collected by self-assessment and report.

The following criteria were used for participant inclusion: 
individuals aged 45–80 diagnosed with mild and moderate ischemic 
stroke based on clinical symptoms, physical examination, and imaging 
findings. Participants with a history of working night shifts, diagnosed 
with severe stenosis of the internal carotid artery, external carotid 
artery, subclavian artery, and vertebral artery as evident by cranial 
MRA and vascular color ultrasound, individuals diagnosed with 
tumors, those experiencing significant and persistent sleep problems 
along with diagnosed sleep disorders, or those taking medications and 
healthcare products known to affect sleep patterns were excluded. In 
addition, participants with severe and very severe ischemic stroke 
were excluded due to the high prevalence of altered consciousness, 
such as coma, which would hinder the accurate assessment of sleep 
patterns. The exclusion criteria also included a history of any substance 
abuse or dependence, as well as any neurological and psychiatric 
disorders diagnosed by the Statistical Manual of Mental Disorders-V 
(DSM-V).

The present study was approved by the Institutional Review Board 
of the Sinopharm North Hospital (Approval number: 
GYBFYY-LL-2020006) and was performed in accordance with the 
Declaration of Helsinki, and written informed consent was obtained. 
No financial compensation was provided to the subjects in this study.

2.2 Assessments and laboratory tests

The National Institutes of Health Stroke Scale (NIHSS) contains 
15 items, a reliable, valid, and responsive tool for measuring stroke 
severity (34). The NIHSS includes the following domains: level of 
consciousness, eye movements, integrity of visual fields, facial 
movements, arm and leg muscle strength, sensation, coordination, 
language, speech, and neglect. Each impairment is scored on an 
ordinal scale ranging from 0 to 2, 0 to 3, or 0 to 4. The cumulative 
scores yield a total ranging from 0 to 42, with higher scores indicating 
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more severe strokes (35). Stroke severity was categorized as follows: 
mild (NIHSS score 0–5), moderate (NIHSS score 6–14), severe 
(NIHSS score 15–24), and very severe (NIHSS score 25) (36, 37).

Recognizing that sleep onset latencies exceeding 30 min are 
associated with sleep difficulties in middle-aged and older adults (38), 
the present study categorized participants based on this established 
criterion (38). Participants with a sleep onset latency of more than 
30 min were grouped as the PSOL group (n = 153), and those who had 
an SOL of 30 min or less constituted the normal sleep onset latency 
(NOSL) group (n = 127).

High-density lipoprotein (HDL), low-density lipoprotein (LDL), 
total cholesterol (TC), and triglyceride (TG) levels were obtained from 
routine tests to assess the participants’ physical condition in relation 
to ischemic stroke. SOL data and NIHSS scores were collected after 
peripheral metabolic markers were measured on the first day of 
admission. Participants were admitted to the hospital either on the day 
of the onset of physical symptoms or the next day.

Peripheral blood samples were obtained upon admission. The 
serum was separated and immediately frozen at −80°C. Analyses were 
performed to measure the serum levels of MIP1α, MIP1β, MCP1, 
IL-6, and TNFα using ELISA kits (Shanghai Xinle Biotechnology Co., 
LTD, Shanghai, China). Laboratory technicians conducting the 
analyses were blinded to clinical data.

2.3 Statistical analysis

Data were presented as mean ± standard deviation (SD) for 
continuous variables and as frequencies and percentages for 
categorical variables. The comparison of categorical variables was 
performed by the chi-squared test. The normality of all variables was 
assessed using the Shapiro–Wilk test. Levene’s test verified the 
homoscedasticity of residual variances, confirming the equal 
distribution of residuals (all p > 0.05). As a result, an analysis of 
covariance (ANCOVA) was employed to compare differences in 
inflammatory markers between groups (see Table  1). Partial 
correlation analysis was used to examine the correlation between 
inflammatory markers and NIHSS scores.

In addition, general linear models (GLMs) were applied to test the 
significance of the interaction between SOL and age and their effect 
on NIHSS scores. Current BMI was included as a covariate in all 
models. Model comparisons and testing were carried out using an 
F-statistic.

All statistical analyses were performed using IBM SPSS Statistics 
for Windows, Version 22.0 (IBM Corp., Armonk, NY, United States). 
Figures were generated using GraphPad Prism version 8 (GraphPad 
Software Inc.). All tests were two-sided, and the significance threshold 
was set at p < 0.05.

3 Results

3.1 Demographic and clinical 
characteristics

An ANCOVA was conducted with BMI as the covariate to identify 
disparities in sociodemographic, clinical variables, and inflammatory 
markers across various groups (Table 1). In contrast to participants 

with NSOL, those with PSOL exhibited a higher proportion of females 
(50.7% vs. 27.1%, p < 0.001). Participants in the PSOL group reported 
lower rates of smoking than those in the NSOL group (39.5% vs. 
60.5%, p  < 0.001), while no difference was observed in other 
sociodemographic and clinical characteristics between both groups.

3.2 Analysis of differences between groups

The participants were divided into age groups [Middle-aged (aged 
45–65) and Elderly (aged 65+)] and presence of PSOL/NSOL which 
resulted in four distinct groups:Middle-aged with PSOL (n = 62), 
Middle-aged with NSOL (n = 59), Elderly with PSOL (n = 91), and 
Elderly with NSOL (n = 68).

The homogeneity of variance for the NIHSS scores variable, 
determined through Levene’s test, yielded a p-value greater than 0.05. 
Thus, ANCOVA was employed to compare differences in NIHSS 
scores between the groups. Taking current BMI as the covariate, the 
impacts of SOL and age on NIHSS scores were found to be significant 
(F = 6.51, p = 0.011). In this regard, the NIHSS scores in the Middle-
aged with PSOL group were notably higher than those in both the 
Elderly with NSOL group and the Elderly with PSOL group (p = 0.015 
and p < 0.001, respectively).

3.3 General linear models analysis

To explore potential interactions between SOL and age in relation 
to stroke severity, GLM analyses of NIHSS scores were performed 
while controlling for current BMI. GLM analysis revealed strong 
interactions for NIHSS scores between SOL and age within the 
dataset. Notably, the NIHSS scores of participants in the Middle-aged 
with PSOL group were significantly higher compared to the Middle-
aged with NSOL group (p = 0.046). Furthermore, the NIHSS scores of 
participants in the Middle-aged with PSOL group were significantly 
elevated compared to those in both the Elderly with NSOL group 
(p = 0.022) and the Elderly with PSOL group (p < 0.001; Table  2, 
Figure 1).

3.4 Correlations analysis

After adjusting for current BMI, a partial correlation analysis was 
conducted to assess the relationship between NIHSS scores and 
inflammatory markers within each group. Notably, a negative 
correlation was observed between MIP-1β levels and NIHSS scores in 
the Middle-aged with PSOL group (r = −0.30, p = 0.020). Similarly, a 
negative correlation was found between MIP-1α levels and NIHSS 
scores in the Elderly with NSOL group (r = −0.27, p = 0.029; Table 3, 
Figure 2).

3.5 Hierarchical stepwise linear regression 
analysis

A hierarchical stepwise linear regression analysis revealed 
noteworthy findings, with BMI as the initial covariate and NIHSS 
score as the dependent variable. MIP-1β levels emerged as a protective 
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factor for NIHSS scores in Middle-aged adults with PSOL (β = −0.01, 
95%CI [−0.01 ~ 0.00], t = −2.11, p = 0.039, R2 = 0.13). Additionally, 
MIP-1α levels were identified as a protective factor for NIHSS scores 
in the Elderly with NSOL group (β = −0.03, 95%CI [−0.05 ~ 0.00], 
t = −2.27, p = 0.027, R2 = 0.12).

4 Discussion

This pioneering study aims to shed light on the hitherto 
underexplored relationship between sleep onset latency, age, and 

stroke severity by investigating the pathophysiological mechanisms 
potentially driving this association. Importantly, we substantiated the 
association between PSOL and the severity in middle-aged IS 
participants, with higher NIHSS scores associated with PSOL and 
lower levels of MIP-1β.

Our findings suggest that middle-aged stroke participants with 
PSOL are at greater risk of experiencing a severe stroke, and MIP-1β 
plays a protective role against IS. Over the years, studies have 
emphasized that high-risk factors for stroke occurrence (39) and 
increased stroke severity (5, 10, 40) include sleep difficulties and 
advanced age. Notably, while stroke has conventionally been linked to 

TABLE 1 The differences in clinical characteristics between groups.

Variables PSOL (>30  min) NSOL (≤30  min) F/χ2 p

Middle-aged 
(n  =  62)

Elderly (n  =  91) Middle-aged 
(n  =  59)

Elderly (n  =  68)

Age (years) 57.29 ± 5.03 72.29 ± 4.65 57.24 ± 4.69 71.93 ± 4.06 283.60 <0.001***

Gender 24.64 <0.001***

Male 37 (59.7%) 39 (42.9%) 49 (83.1%) 44 (63.8%)

Female 25 (40.3%) 52 (57.1%) 10 (16.9%) 25 (36.2%)

BMI (Kg/m2) 25.38 ± 2.76 24.88 ± 3.39 24.90 ± 3.05 25.00 ± 2.75 0.37 0.766

Education (years) 8.97 ± 2.90 6.35 ± 3.26 9.02 ± 3.16 7.06 ± 3.13 13.41 <0.001***

Active drinker 23.54 <0.001***

Yes 22 (35.5%) 15 (16.5%) 30 (50.8%) 15 (21.7%)

No 40 (64.5%) 76 (83.5%) 29 (49.2%) 54 (78.3%)

Active smoker 28.02 <0.001***

Yes 33 (53.2%) 28 (30.8%) 44 (74.6%) 33 (47.8%)

No 29 (46.8%) 63 (69.2%) 15 (25.4%) 36 (52.2%)

Hypertension 6.28 0.100

Yes 43 (69.4%) 65 (71.4%) 40 (67.8%) 36 (52.9%)

No 19 (30.6%) 26 (28.6%) 19 (32.2%) 32 (47.1%)

Diabetes 6.48 0.090

Yes 15 (24.2%) 33 (36.3%) 11 (18.6%) 17 (24.6%)

No 47 (75.8%) 58 (63.7%) 48 (81.4%) 52 (75.4%)

Hyperlipidemia 2.46 0.482

Yes 21 (33.9%) 22 (24.2%) 14 (23.7%) 21 (30.9%)

No 41 (66.1%) 69 (75.8%) 45 (76.3%) 47 (69.1%)

HDL (mmol/L) 1.14 ± 0.23 1.17 ± 0.27 1.16 ± 0.28 1.14 ± 0.26 0.18 0.913

LDL (mmol/L) 3.14 ± 0.74 3.27 ± 2.35 2.96 ± 0.94 2.96 ± 1.00 0.73 0.537

TC (mmol/L) 4.82 ± 1.04 4.61 ± 1.20 4.49 ± 1.22 4.44 ± 1.19 1.26 0.290

TG (mmol/L) 2.37 ± 1.59 1.60 ± 0.75 1.83 ± 0.86 1.88 ± 1.33 5.20 0.002**

MIP-1α (ng/L) 53.86 ± 28.11 49.90 ± 22.26 47.29 ± 19.83 48.80 ± 21.34 0.78 0.511

MIP-1β (ng/L) 158.43 ± 72.09 145.53 ± 66.19 142.80 ± 61.16 133.03 ± 53.19 1.61 0.188

MCP-1 (ng/L) 157.44 ± 69.21 141.55 ± 65.80 138.84 ± 59.92 141.21 ± 75.02 0.89 0.445

IL-6 (ng/L) 111.43 ± 47.92 107.55 ± 50.02 92.60 ± 32.78 99.37 ± 38.38 2.19 0.089

TNFα (ng/L) 97.71 ± 46.36 91.97 ± 41.65 87.96 ± 47.31 96.10 ± 42.04 0.55 0.645

PSOL, prolonged sleep onset latency; NSOL, normal sleep onset latency; BMI, body mass index; HDL, High-density lipoprotein; LDL, Low-density lipoprotein; TC, total cholesterol; TG, 
triacylglycerol; MIP-1α, macrophage inflammatory protein-1alpha; MIP-1β, macrophage inflammatory protein-1beta; MCP-1, monocyte chemoattractant protein-1; IL-6, interleukin-6; TNFα, 
tumor necrosis factor-alpha.
Data were presented as mean ± standard deviation (SD) for continuous variables and as frequencies and percentages for categorical variables. p value for analysis of covariance (ANCOVA) or 
chi-square test, *p < 0.05, **p < 0.01, ***p < 0.001.

https://doi.org/10.3389/fneur.2024.1323878
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Zhou et al. 10.3389/fneur.2024.1323878

Frontiers in Neurology 05 frontiersin.org

older age, recent years have witnessed a substantial decline in the 
average age of stroke onset, coupled with a rise in stroke incidence and 
hospitalization rates among middle-aged individuals. This 
phenomenon of “younger-age stroke” has emerged as a significant 
public health challenge (12, 41–43), consistent with the results of this 
study. Indeed, middle-aged people with PSOL face an elevated risk of 
more severe strokes, possibly attributable to several factors. Firstly, 
compared to older individuals, middle-aged individuals necessitate 
efficient and higher sleep quality to sustain bodily functions and 
metabolism (44–46). Hence, when middle-aged stroke patients with 
PSOL experience a range of sleep-related issues such as diminished 
sleep quality, insomnia, and inadequate sleep (15), their sleep 
requirements are unmet, significantly impeding the recovery from 
cerebral ischemia-induced reversible or irreversible synaptic and 
membrane failures, which, influences neuroplasticity and post-stroke 
recovery (47). Secondly, older individuals usually have more flexible 
morning routines due to retirement, alleviating the impact of PSOL-
related sleep shortage (18). Conversely, middle-aged individuals 
contend with heightened work pressures, constrained wake-up times 
and are more prone to insufficient sleep and subpar sleep quality (18). 
Moreover, middle-aged individuals tend to engage in more social 
activities, potentially adopting unhealthy lifestyles like high-calorie 
diets, smoking, and alcohol consumption (48). Besides, the 
compounded effects of sleep deprivation, stress, and unhealthy habits 
are widely acknowledged to exacerbate stroke severity (49–51).

In addition, this study found that MIP-1β was negatively 
associated with NIHSS scores in the middle-aged group with PSOL, 
indicating that elevated levels of MIP-1β could protect against severe 
strokes in this cohort. Previous research has indicated the potential 
involvement of MIP-1β in monocyte recruitment within 
atherosclerotic plaques, where heightened serum MIP-1β levels have 
been associated with the progression of IS (52). Despite the established 
association between PSOL and stroke severity, our study suggests that 
elevated serum MIP-1β levels could potentially mitigate the severity 
of stroke events in middle-aged patients with PSOL. Several 
underlying mechanisms could account for this phenomenon. First, the 
mRNA and protein expression of the chemokine MIP-1β has been 
reported to be inhibited by prostaglandin E2 (PGE2) (53). PGE2, a 
pivotal endogenous anti-inflammatory mediator linked to sleep 
regulation, demonstrates wakefulness-promoting properties (53). 
Notably, its concentration is markedly higher during wakefulness 
compared to slow-wave sleep (54). In this context, participants 
grappling with PSOL are prone to extended periods of wakefulness 
(15), leading to heightened PGE2 levels and diminished MIP-1β levels. 
Intriguingly, PGE2’s impact extends further, potentially playing a dual 
role. PGE2 has been identified as a disruptor of Na(+)-Ca(2+) 
exchange and Ca(2+) homeostasis through the EP1 receptor, thereby 
contributing to excessive Ca(2+) accumulation. This effect also 
extends to the induction of neuronal cell death and the augmentation 
of ischemic-induced neurodegeneration (55), ultimately amplifying 

TABLE 2 The interaction of SOL and age on NIHSS scores.

Variables PSOL (>30  min) NSOL (≤30  min) MD p

Middle-aged (n = 62) Elderly (n = 91) Middle-aged (n = 59) Elderly (n = 68)

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

NIHSS scores 1.95 ± 0.21 – 1.31 ± 0.23 – 0.64 0.046*

1.95 ± 0.21 – – 1.26 ± 0.20 0.69 0.022*

1.95 ± 0.21 0.90 ± 0.17 – – 1.05 <0.001***

PSOL, prolonged sleep onset latency; NSOL, normal sleep onset latency; NIHSS, National Institutes of Health Stroke Scale; GLM, general linear models; MD, Mean differences; SD, standard 
deviation.
GLM was used to calculate the differences in levels between four groups with BMI as the covariate. The simple effect was calculated using GLM. Data were reported as mean ± SD, *p < 0.05, 
**p < 0.01, ***p < 0.001.

FIGURE 1

The difference in National Institutes of Health Stroke Scale (NIHSS) scores between groups. (A) The differences among the NIHSS scores of the 
participants in Middle-aged with prolonged sleep onset latency (PSOL) and Middle-aged with normal sleep onset latency (NSOL); (B) The differences 
among the NIHSS scores of the participants in Middle-aged with PSOL and Elderly with NSOL; (C) The differences among the NIHSS scores of the 
participants in Middle-aged with PSOL and Elderly with PSOL. *p  <  0.05.
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stroke severity. Indeed, it is highly conceivable that the deleterious 
influence of MIP-1β on stroke severity in middle-aged individuals 
with PSOL might be attenuated by PGE2, potentially even manifesting 
as a protective function. However, this study did not observe a 
correlation between serum MIP-1β levels and NIHSS scores in older 
adults with PSOL, attributed to the confounding impact of age. In this 
regard, one animal study unveiled heightened expression of MIP-1β 
levels in older mice (28), while another investigation highlighted an 
accelerated decline in serum MIP-1β levels with aging (56). 
Consequently, aging appears to disrupt the relationship between 
MIP-1β and NIHSS scores in older individuals with PSOL. In essence, 
the protective role of MIP-1β against stroke severity seems to 
be confined to middle-aged patients with PSOL.

Besides, the NSOL group displayed a potential protective effect 
against stroke in the elderly, as evidenced by the negative association 
between MIP-1α and NIHSS scores. Previous studies have shown that, 
compared to middle-aged mice, chemokine MIP-1α levels are highly 
expressed in older mice (28). Interestingly, it has been found that 
MIP-1α levels were significantly reduced in the brain tissue of older 
patients with IS (57), and MIP-1α tended to decline with age in this 
patient population (56). At the same time, the NIHSS score at 
admission increased significantly with age (58). Therefore, the 
negative correlation between serum MIP-1α level and NIHSS score in 
senile stroke patients with NSOL may be due to aging. However, our 

study did not observe the correlation between serum MIP-1α and 
NIHSS score in elderly patients with PSOL, attributed to the fact that 
individuals suffering from PSOL exhibited suboptimal sleep quality, 
consequently experiencing extended periods of wakefulness, which 
led to an increase in PGE2. The increased PGE2 led to a decline in the 
chemokine MIP-1α level (59), thus disrupting the age-related negative 
correlation typically observed between serum MIP-1α levels and 
NIHSS scores.

Besides, we  found no association between MCP-1, IL-6, and 
TNF-α and NIHSS scores across the four groups. However, prior 
research on individuals with severe IS demonstrated a correlation 
between elevated levels of these factors and the severity of IS (60–62). 
Discrepancies in outcomes might stem from the inclusion of subjects 
with mild to moderate IS in this current study. Moreover, a prior 
investigation examining stroke severity 7 days after admission 
demonstrated a positive association between elevated MCP-1 levels 
and heightened stroke severity at the same time point (61), 
Conversely, the present study did not reveal a connection between 
MCP-1 and stroke severity. This discrepancy may be attributable to 
the timing of MCP-1 measurement; in this study, samples were 
collected on day one after admission, whereas the previous study 
assessed MCP-1 levels 7 days post-stroke. The temporal dynamics of 
ischemic brain cell damage likely influence the correlation between 
MCP-1 and stroke severity. In cases where initial ischemic attack 

TABLE 3 Correlation between NIHSS scores and inflammatory cytokines in different groups.

Groups correlation MIP-1α (ng/L) MIP-1β (ng/L) MCP-1 (ng/L) IL-6 (ng/L) TNFα (ng/L)

Middle-aged with NSOL r −0.15 −0.20 −0.05 0.13 0.06

p 0.290 0.143 0.735 0.343 0.691

Middle-aged with PSOL r −0.22 −0.30 −0.09 −0.06 0.02

p 0.096 0.020* 0.494 0.678 0.860

Elderly with NSOL r −0.27 −0.18 −0.22 0.08 0.07

p 0.029* 0.152 0.087 0.525 0.609

Elderly with PSOL r −0.01 −0.14 0.05 0.07 0.18

p 0.895 0.203 0.667 0.547 0.099

PSOL, prolonged sleep onset latency; NSOL, normal sleep onset latency; MIP-1α, macrophage inflammatory protein-1alpha; MIP-1β, macrophage inflammatory protein-1beta; MCP-1, 
monocyte chemoattractant protein-1; IL-6, interleukin-6; TNFα, tumor necrosis factor-alpha.
Correlations between MIP-1α, MIP-1β, MCP-1, IL-6, TNFα levels and NIHSS scores were calculated using Partial correlation. *p < 0.05, **p < 0.01.

FIGURE 2

The correlation of MIP-1β levels and MIP-1α levels with NIHSS scores. (A) The negative correlation of macrophage inflammatory protein 1beta (MIP-1β) 
levels with the NIHSS scores (r  =  −0.30, p  =  0.020) in group of middle-aged with PSOL; (B) The negative correlation of macrophage inflammatory 
protein-1 alpha (MIP-1α) levels with the NIHSS Scores (r  =  −0.27, p  =  0.029) in the group of Elderly with NSOL.
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results in more severe injury, cytokine and chemokine production 
may be suppressed. This offers a potential explanation for the absence 
of a correlation between MCP-1 and NIHSS scores in the current 
study (61).

Several limitations need consideration within this study. Firstly, 
the participant pool only comprised Chinese individuals residing in 
the northern inland region, regardless of whether they were 
experiencing their first episode or recurrence. Future research should 
prioritize geographically diverse recruitment and larger sample sizes 
to improve generalizability of results. Additionally, it is essential to 
differentiate between first-episode patients and those with recurrent 
episodes and to conduct stratification analyses based on the number 
of episodes to bolster result accuracy. Secondly, since sleep patterns 
influence IS over an extended duration, this study only retrospectively 
gathered SOL data from 1 to 3 months preceding the IS onset. While 
data from this brief interval might not comprehensively capture the 
impact, collecting recent-stage sleep data retrospectively was more 
feasible, and patient cooperation was facilitated. Lastly, most IS 
participants in this study exhibited mild to moderate stroke. 
Consequently, it is important to acknowledge that the generalizability 
of our study findings may be limited to cases of milder stroke severity. 
Nevertheless, the presented results provide valuable guidance for the 
development of targeted preventive interventions for individuals at 
risk of such strokes.

5 Conclusion

The present study provides strong evidence of the association 
between PSOL and the severity of IS and the potential protective 
effects of MIP-1β in reducing stroke severity, especially in middle-
aged patients, suggesting that falling asleep quickly might contribute 
to low ischemic stroke severity. In the future, the role of other 
subfamilies of chemokines in the interaction of sleep onset latency and 
age on IS severity should be  further explored to improve and 
supplement this study.
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Glossary

BMI Body mass index

GLM General linear models

HDL High-density lipoprotein

IL-6 Interleukin-6

IS Ischemic stroke

LDL Low-density lipoprotein

MIP-1α Macrophage inflammatory protein-1alpha

MIP-1β Macrophage inflammatory protein-1beta

MCP-1 Monocyte chemoattractant protein-1

MD Mean differences

NIHSS National Institutes of Health Stroke Scale

NSOL Normal sleep onset latency

PSOL Prolonged sleep onset latency

SOL Sleep onset latency

SD Standard deviation

TNFα Tumor necrosis factor-alpha

TC Total cholesterol

TG Triacylglycerol
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