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Introduction: In acute ischemic stroke, prediction of the tissue outcome after 
reperfusion can be used to identify patients that might benefit from mechanical 
thrombectomy (MT). The aim of this work was to develop a deep learning model 
that can predict the follow-up infarct location and extent exclusively based 
on acute single-phase computed tomography angiography (CTA) datasets. In 
comparison to CT perfusion (CTP), CTA imaging is more widely available, less 
prone to artifacts, and the established standard of care in acute stroke imaging 
protocols. Furthermore, recent RCTs have shown that also patients with large 
established infarctions benefit from MT, which might not have been selected for 
MT based on CTP core/penumbra mismatch analysis.

Methods: All patients with acute large vessel occlusion of the anterior circulation 
treated at our institution between 12/2015 and 12/2020 were screened (N  =  404) 
and 238 patients undergoing MT with successful reperfusion were included for 
final analysis. Ground truth infarct lesions were segmented on 24  h follow-up 
CT scans. Pre-processed CTA images were used as input for a U-Net-based 
convolutional neural network trained for lesion prediction, enhanced with 
a spatial and channel-wise squeeze-and-excitation block. Post-processing 
was applied to remove small predicted lesion components. The model was 
evaluated using a 5-fold cross-validation and a separate test set with Dice 
similarity coefficient (DSC) as the primary metric and average volume error as 
the secondary metric.

Results: The mean  ±  standard deviation test set DSC over all folds after post-
processing was 0.35  ±  0.2 and the mean test set average volume error was 
11.5  mL. The performance was relatively uniform across models with the best 
model according to the DSC achieved a score of 0.37  ±  0.2 after post-processing 
and the best model in terms of average volume error yielded 3.9  mL.

Conclusion: 24  h follow-up infarct prediction using acute CTA imaging 
exclusively is feasible with DSC measures comparable to results of CTP-based 
algorithms reported in other studies. The proposed method might pave the 
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way to a wider acceptance, feasibility, and applicability of follow-up infarct 
prediction based on artificial intelligence.
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1 Introduction

Acute ischemic stroke is a leading cause of death and disability (1). 
Thrombolysis with recombinant tissue plasminogen activator (rtPA) 
had been the only treatment option for many years until multiple 
randomized controlled trials (2) confirmed high efficacy of mechanical 
thrombectomy (MT) in large vessel occlusions. Timely and accurate 
identification of the severity of the stroke with assessment of tissue 
infarction is critical for identifying patients that might benefit from 
MT. Recent advances in artificial intelligence (AI) and machine 
learning have led to the development of predictive models for stroke 
outcome using computed tomography (CT) image data and other 
imaging modalities (3–17). These models have shown promising 
results in predicting tissue infarction and the likelihood of treatment 
response, with potential implications for patient selection and timing 
of intervention (18, 19).

To date, proposed methods for tissue outcome prediction mainly 
utilize CT perfusion (CTP) datasets (18–20). However, accuracy of 
CTP-based tissue outcome prediction depends on the quality of the 
available CTP datasets. Factors that can influence the accuracy of 
CTP-based tissue outcome prediction include motion artifacts and 
problems related to deconvolution required to calculate the perfusion 
parameter maps (21). Moreover, CTP imaging is not available in all 
centers and not always considered a required standard of care in stroke 
imaging protocols.

Although perfusion imaging with assessment of core and 
penumbra has been established in many centers, growing evidence 
suggests that patient selection for MT using unenhanced CT and CTA 
only might also contribute to improved functional outcome. Recently 
published results of the TENSION RCT show that MT was associated 
with improved functional outcome and lower mortality in patients 
with established large infarct that were selected for MT based on 
non-contrast CT (22). These results are especially interesting as 
enrolled patients with large hypodense lesions at admission (ASPECTS 
3–5) might not have been selected for endovascular therapy based on 
mismatch/perfusion although these patients benefit from MT.

Singe-phase CT angiography (CTA) is a non-invasive imaging 
modality that is considered standard of care in the evaluation of acute 
stroke patients. CTA imaging allows rapid identification of patients 
with large vessel occlusion (LVO) that may be  amenable to 
endovascular treatment and provides imaging information of the 
collateral circulation, which is associated with patient prognosis (2). 
In comparison to CTP, CTA images can be acquired fast and with low 
technical effort and do not require costly and special licenses for 
acquisition and processing. Within this context, CTA datasets contain 
not only valuable information related to the clot location and collateral 
situation, but also on tissue edema formation visible as hypodense 
regions of the brain tissue. Despite the prognostic information 
available in CTA images, the value of CTA-based tissue outcome 

prediction using deep learning approaches has not been 
evaluated so far.

Thus, the goal of this work was to develop a deep learning-based 
algorithm that can predict the follow-up infarct location and volume 
based on single-phase CTA datasets only acquired acutely after patient 
admission. The proposed method is based on the well-established 
U-Net (23) architecture with several novel modifications such as 
residual blocks with spatial-, and channel-wise squeeze and excitation.

2 Materials and methods

2.1 Data availability

The data and code that support the findings of this study are 
available upon reasonable request from the corresponding author.

2.2 Study guidelines

The analysis was conducted in accordance with the “TRIPOD 
Checklist: Prediction Model Development and Validation.”

2.3 Study population

The study was approved by the ethics committee of the chamber 
of physicians at Hamburg (MC-039/16), in accordance with the 
Declaration of Helsinki. All patients with anterior circulation stroke 
due to large vessel occlusion, age ≥ 18 years, and treated at our 
institution with endovascular procedure between December 2015 and 
December 2020 were retrospectively screened. For this analysis, all 
patients with anterior circulation stroke and successful recanalization 
defined as modified Thrombolysis in Cerebral Infarction (mTICI) 
Scale of 2b or 3 and availability of acute CTA imaging and 24 h 
follow-up non-contrast CT of the brain were included. Patients with 
failed recanalization were excluded to eliminate effects of persistent 
ischemia after MT.

2.4 Clinical and radiologic assessment

All clinical parameters including modified Rankin Scale (mRS), 
vessel occlusion status and location are site reported parameters (24, 
25). Reperfusion success is assessed using the mTICI scoring system 
(26). mTICI scoring was conducted based on the initial occlusion 
location and the reperfusion success within the downstream territory 
of the initially occluded vessel/branch. Clinical assessments and 
reading of baseline imaging, digital subtraction angiograms and 
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follow-up imaging were conducted by local investigators at each 
participating center (single reader). Functional independence was 
defined as 90d mRS 0–2.

2.5 CT image acquisition

CT images at admission were acquired on a 2 × 128 slice scanner 
(SOMATOM Definition Flash, Siemens Healthcare GmbH, Erlangen, 
Germany) with the following imaging parameters: NCCT with 120 kV, 
280 mA, less than 5.0 mm slice reconstruction and less than 0.5 mm 
in-plane; CTA: 100–120 kV, between 260 and 300 mA, 1.0 mm slice 
reconstruction, 0.5 mm collimation, 0.8 pitch, H20f soft kernel, 60 mL 
highly iodinated contrast medium and 30 mL NaCl flush at 4 mL/s; 
scan starts 6 s after bolus tracking at the level of the ascending aorta.

2.6 Infarct core segmentation

Manual segmentation of follow-up infarct volumes was performed 
using ITK-SNAP 3.8.0 (27) on 24 h follow-up CT scans (slice thickness 
4.0 mm) by a senior neuroradiologist with more than 14 years of 
clinical experience (SG), blinded to clinical outcome data. In addition, 
segmentation results were visually verified by a second senior 
neuroradiologist with more than 20 years of clinical experience (JF). 
In case of disagreement, segmentations were reassessed by both 
readers and a consensus segmentation was generated.

2.7 Pre-processing

The segmentation approach uses a two-channel volume composed 
of the standard CTA at admission and a maximum intensity projection 
(MIP) as input. To eliminate uninformative rigid differences and to 
allow training based on the entire brain scans, input volumes were 
registered to a standard space CT brain atlas (28) resampled to 
1x1x5 mm3 voxel size.

In detail, the pre-processing procedure consisted of the following 
steps: (1) Automatic cropping of CTA datasets to the head region 
using the robustFOV FSL tool (29, 30); (2) Thresholding between 0 
and 400 Hounsfield units; (3) Skull stripping; (4) Deriving 5 mm MIP 
reconstructions of the original CTA images; (5) Registration of the 
non-MIP images to the CT brain standard atlas (28), application of 
transformation to MIP-images, registration was performed using the 
antsRegistrationSyNQuick command from the ANTs toolbox (31) 
with rigid and affine transformations; (6) Registration of the scull-
stripped 24 h FU CT scan to the CT brain standard atlas using the 
same toolbox with rigid and affine transformations, transformation of 
the ground truth infarct lesion labels to standard space.

All registration outcomes were visually verified. Cases were 
excluded if registration failed or image quality was inadequate 
for evaluation.

After pre-processing, the convolutional neural network (CNN) input 
volume was generated by combining the registered non-MIP and MIP 
images into a two-channel 4D volume. The final size of this volume was 
192 × 224 × 32 × 2 voxels, with spatial dimensions divisible by 24, in line 
with the U-Net model’s encoder stages described subsequently.

2.8 Model architecture

Figure  1 shows the architecture of our proposed lesion 
prediction model. It uses the well-established U-Net framework 
(23) as the basis, featuring a distinct encoder-decoder design with 
interspersed skip connections. The encoder handles feature 
extraction, while the decoder translates these extracted features 
back to the image domain. The architecture spans four stages, with 
each stage comprising a residual block (32). Notably, this block 
integrates two convolutional layers followed by a spatial and 
channel-wise squeeze and excite block (33) (SE block). The SE block 
is composed of parallel branches of spatial-and channel-wise SE 
blocks as shown in the lower right corner of Figure 1. The spatial 
part (upper branch) modulates the input feature map employing a 
learnable 1 × 1 × 1 convolutional layer followed by a sigmoid 
activation to ensure output values are scaled between [0, 1]. The 
weights are arranged such that each output spatial element is a 
linear combination of all the different channels of the input feature 
map for this spatial location. Therefore, the output feature map is a 
spatially weighted version of the input feature map, where these 
weights are learned during training.

The channel-wise branch modulates the weights of the separate 
channels of the input feature map by passing it through a global 
average pooling layer followed by a dense layer with an output 
dimension that is half the number of channels, followed by ReLU 
activation and another dense layer with a dimension equal to the 
original number of channels. Finally, a sigmoid layer ensures that the 
output is scaled between [0, 1]. This weight tensor is then multiplied 
with the input feature map to obtain an output feature map with the 
individual channels scaled by the learned weights. The final output of 
the SE block is the sum of the outputs of the spatial- and channel-
wise branches.

2.9 Model parameters

In medical image segmentation, the region of interest is often only 
a small part of the total area or volume, which is also the case for tissue 
outcome prediction tasks. This means that the ratio of foreground 
voxels to background voxels can be very small and, therefore, may lead 
to an imbalanced problem. To address this, we used a loss function 
based on the Dice similarity coefficient (DSC) (34), which is a popular 
choice for semantic segmentation as it enables efficient training 
despite class imbalance.

Another important function in neural network models is the 
activation function, which can impact the performance and training 
dynamics of the model. In this work, the recently proposed Mish 
activation function (35) was used, which is a self-regulating, 
non-monotonic activation function that has been shown to improve 
performance compared to other popular choices such as Rectified 
Linear Units (ReLU).

All models were trained for a total of 300 epochs and the 
validation DSC was used to select the best performing model 
based on a check-point system. The rectified ADAM optimizer 
(36) with an initial learning rate of 0.001 and exponential decay 
with the learning rate decaying by a factor of 0.25 every 50 epochs 
was used.
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2.10 Post-processing

To improve accuracy of the predicted lesion segmentation, 
we  included a post-processing step that retained only the largest 
connected component of the predicted lesion. This decision is in line 
with the observation that most ground truth lesions consist of a single 
connected component. Since our model trains on entire images, its 
predictions predominantly reflect this characteristic. Nonetheless, 
occasionally, the model introduced secondary components in its 
predictions, which were usually inaccurate. By focusing on the largest 
connected component, we eliminated these erroneous predictions.

2.11 Experiment setup and evaluation 
metrics

A 5-fold nested cross-validation (CV) scheme was used for 
training, validation (i.e., hyper-parameter optimization) and testing. 

The available data (n = 238) was randomly split into five training/
validation sets (80%, n = 191) and five separate test sets (20%, n = 47). 
Each training/validation set was again randomly split into 5 training 
sets (80% of each outer CV training/validation set, n = 152) and 5 
validation sets (20% of each outer CV training/validation set, n = 39) 
for hyperparameter tuning. Random splits were conducted using a 
stratified approach based on the lesion size. This ensures a similar 
lesion size distribution in both sets. For each outer CV run (models 1 
to 5) the average DSC of the corresponding test set was used as the 
primary evaluation metric while the average absolute lesion volume 
difference of the corresponding test set was used as a secondary 
evaluation metric.

2.12 Multivariable regression analysis

The association of segmented vs. predicted volumes with 
functional independence (90 day mRS 0–2) was analyzed using 
multivariable logistic regression. For initial neurological status 
(NIHSS at admission), a linearized association was assumed. 
Regression models were adjusted for age and pre-stroke mRS, adjusted 
odds ratios (aOR), coefficients, 95% confidence intervals and p-values 
were reported. p-values <0.05 were defined as statistically significant. 
Regression analysis was conducted with Stata/MP 18.0.

3 Results

A total of 404 patients were screened, and 238 patients were 
included in the analysis (Figure 2). Included patients had a median age 
of 76 years (IQR: 64; 81), a median NIHSS at admission of 16 (IQR: 
11; 19), median ASPECTS of 7 (IQR: 6; 9), median infarct volume of 
25 mL (IQR: 8; 114) and median 90-days mRS of 4 (IQR: 1; 5; Table 1). 
Table  2 displays the test performance of the five cross-validation 
models, including DSC and volume error (ml) for each outer fold test 

FIGURE 1

The U-Net-based 4-stage model architecture. Each stage is composed of a residual block (dotted box), which integrates two convolutional layers 
followed by a spatial and channel-wise squeeze and excite block (SE block, dashed box).

FIGURE 2

Patient inclusion flowchart.
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set. The results are presented without and with post-processing. 
Figure  3 shows Bland–Altman plots comparing the true vs. the 
predicted lesion volumes in ml for each model.

Results suggest that all models perform similarly with rather small 
quantitative differences regarding the test set metrics with average 
DSC values ranging between 0.33 and 0.37 (SD: ±0.20). Likewise, the 
standard deviation of the DSC is similar for all models. Post-
processing only slightly improved the average DSC but considerably 
reduced the average volume error (11.5 mL (SD: ±79.4 mL) after 
post-processing).

Bland–Altman plots in Figure 3 revealed that all models tend to 
overestimate the true infarct volume, which was also supported by the 

volume error (2). Furthermore, data indicated a trend for 
underestimating the volume of very large infarcts.

Figure 4 shows a visualization of the results obtained using the 
model with the highest average DSC compared to the ground truth 
for four exemplified patients. In these examples, the lesion was 
correctly located in all cases. However, the shape of predictions and 
ground truth do not fully align. It can be also seen that post-processing 
was primarily helpful to remove false lesions, especially those located 
in the contralateral hemisphere.

Table 3 shows the association of segmented in comparison to 
predicted volumes with initial neurological status (NIHSS at 
admission) and functional independence (90 day mRS 0–2). Results 
suggest that higher follow-up infarct volumes are associated with 
lower probability of functional independence at day 90 for segmented 
volumes (aOR: 0.98 [95% CI, 0.97–1.00], p < 0.05) and predicted 
volumes (aOR: 0.98 [95% CI, 0.96–0.99], p < 0.01). Both coefficients 
were not statistically significantly different. For NIHSS at admission a 
correlation with the predicted volume (Coeff: 0.07 [95% CI, 0.04–
0.09], p < 0.001) was observed, however, for segmented volumes, the 
coefficient was not statistically significant (p = 0.112).

4 Discussion

In this analysis, we sought to evaluate if CTA datasets can be used 
for tissue outcome prediction in patients with ischemic stroke. The 
most important finding of this work is that a prediction of tissue 
outcome using exclusively CTA datasets is generally feasible using 

TABLE 1 Baseline clinical characteristics of study cohort.

Variable Median | n (%) Q1; Q3 Range

Age (median) 76 64; 81 29–97

Sex (f) 121 (51%)

Pre-stroke mRS (median) 0 0; 1 0–5

NIHSS at admission (median) 16 11; 19 0–42

Comorbidity hypertonus 158 (66%)

Comorbidity diabetes 39 (16%)

Comorbidity dyslipidemia 33 (14%)

Comorbidity atrial fibrillation 88 (37%)

ASPECTS at admission (median) 7 6; 9 1–10

i.v. thrombolysis 135 (57%)

# of passes (median) 2 1; 2 0–8

AE vasospasm 5 (2%)

AE clot migration/embolization 6 (3%)

AE dissection/perforation 3 (1%)

AE ICH 3 (1%)

Final TICI

-2b 115 (48%)

−3 123 (52%)

Follow-up infarct volume 24 h CT (ml) 24.8 8.3; 114.2 0–516.1

90-days mRS (median) 4 1; 5 0–6

AE, Adverse event; ASPECTS, Alberta Stroke Program Early CT Score; ICH, Intracranial hemorrhage; mRS, modified Rankin Scale; NIHSS, National Institute of Health Stroke Scale; Q1, 1st 
quartile; Q3, 3rd quartile; TICI, Thrombolysis in cerebral infarction.

TABLE 2 Test set results as mean  ±  standard deviation for each outer loop 
of the 5-fold cross-validation models without and with post-processing.

Without post-processing With post-
processing

Model DSC Volume 
Error [ml]

DSC Volume 
Error [ml]

1 0.36 ± 0.2 11.4 ± 79 0.37 ± 0.2 6.2 ± 79

2 0.33 ± 0.2 13.5 ± 83 0.33 ± 0.2 8.4 ± 83

3 0.34 ± 0.2 29.6 ± 78 0.34 ± 0.2 22.6 ± 78

4 0.34 ± 0.2 9.9 ± 78 0.34 ± 0.2 3.9 ± 80

5 0.35 ± 0.2 25.1 ± 77 0.36 ± 0.2 16.3 ± 77

Mean 0.34 ± 0.2 17.9 ± 79 0.35 ± 0.2 11.5 ± 79.4

DSC, Dice similarity coefficient.
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deep convolutional neural networks. Test set performance of our 
models reached an average DSC of 0.35 with mean volume error of 
11.5 mL.

Overall, the predictive performance achieved in this work is 
within the range of previously described tissue outcome prediction 
models using more complex 4D CT perfusion datasets. For example, 
Amador et  al. achieved an average DSC of 0.45 using a very 
advanced temporal convolutional neural network and 4D CTP 
datasets as input (20), while Qiu et al. achieved mean volume error 
of 21.7 mL using multiphase CTA images (4). It might be argued 

that a deep learning model using a single time-point CTA cannot 
outperform an advanced method having access to the complete 
hemodynamic perfusion information from a 4D CTP scan. 
However, CTP datasets typically used for lesion outcome prediction 
are often highly curated by excluding datasets with severe motion 
or other artifacts, which they are very sensitive to. This is one of the 
main benefits of the here proposed method, which uses simple 
single time-point CTA images that are less prone to motion and 
other artifacts and are widely available without any costly licenses 
for acquisition and processing.

FIGURE 3

Bland–Altman plots comparing the true and predicted lesion volumes in ml for trained models on each loop of the 5-fold cross-validation after 
applying post-processing. Each plot is a scatterplot of the difference of the true and predicted volume vs. the mean of the predicted and true volume. 
The mean bias and regression based 95% limits of agreement are shown using dotted horizontal lines.
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Another benefit of the proposed method is that the input images are 
used en bloc in the model instead of splitting them into smaller patches 
during training and inference. In this way, the network sees the whole 
image at once, which might result in better learning of typical infarct 
locations and lesion distributions with regards to the entire brain. Within 
this context, better lesion outcome predictions may be possible with 

multi-phase CTA images or by combining CTA and CTP images (5). 
However, this would also require a more complex deep learning model 
that is capable of making use of the temporal information available in 
multi-phase CTA images and CTP images. Also, this approach would 
be more prone to movement artifacts and require more complex data 
leading to decreased feasibility and generalizability.

The quantitative results show that the proposed model leads to an 
underestimation of large lesions and overestimation of small lesions. 
This is a common problem of many segmentation methods (regression 
to the mean (37)). A potential solution to this problem may be a 
modification of the loss function to also include the volume error or 
to train multiple models for different lesion sizes (6). However, the 
second option would also reduce the number of datasets available for 
training of the lesion prediction model.

Furthermore, an overestimation of infarct volume in CTA source 
images has also been noted in previous studies (7) where it is 
postulated that a possible reason for this is that modern rapid-
acquisition CT scanners may produce CTA images that are more 
strongly CBF- than CBV weighted (38), and therefore overestimate the 
true infarct volume. For example, in a study of 105 patients (8), it was 
found that follow-up infarct volume predictions based on CTA source 
images significantly overestimated the infarct size in many cases.

In line with results from previous studies, multivariable regression 
analysis suggest that follow-up infarct volume is associated with 
functional outcome (39–41). Furthermore, no statistically significant 
difference in association with functional outcome was observed for 
ground-truth follow-up volume segmentations and model predictions, 
suggesting that predicted infarct volumes might serve as additional 
surrogate marker for functional outcome. For NIHSS at admission a 
significant association with predicted infarct volumes was observed, 
however, segmented volumes were not significantly associated with 
NIHSS at admission. One explanation could be that predicted volumes 
are derived from CTA imaging at admission and might therefore 
better reflect neurological status at admission.

This work has multiple limitations that should be discussed. First, 
no comparison to CTP-based lesion outcome prediction methods was 
conducted as corresponding CTP datasets were not available for all 

FIGURE 4

Visualization of lesion outcome prediction results obtained using the 
best model in terms of the average test set dice similarity coefficient 
for four exemplified patients. (A) Ground truth; (B) Prediction 
including small components red, ground truth white; (C) Prediction 
excluding small components red, ground truth white.

TABLE 3 (A) Multivariable logistic regression with functional independence (mRS 0–2 at 90  days) as dependent variable; (B) Multivariable linear 
regression with NIHSS at admission as dependent variable.

A: 90  days mRS 0–2 (Multivariable logistic regression)

Segmented volumes Predicted volumes

aOR p value 95% Conf. interval aOR p value 95% Conf. interval

Volume (ml) 0.98 0.013 0.97 1.00 0.98 0.003 0.96 0.99

Age (years) 0.94 0.064 0.89 1.00 0.94 0.059 0.88 1.00

Pre-stroke mRS 0.82 0.681 0.33 2.07 0.96 0.939 0.36 2.54

Constant 109.89 0.025 1.78 6,780 376.34 0.011 3.87 36,605

B: NIHSS admission (Multivariable linear regression)

Segmented volumes Predicted volumes

Coeff P > t 95% Conf. interval Coeff p-value 95% Conf. interval

Volume (ml) 0.02 0.112 0.00 0.04 0.07 <0.001 0.04 0.09

Age (years) −0.07 0.373 −0.21 0.08 −0.06 0.321 −0.18 0.06

Pre-stroke mRS 0.13 0.906 −2.08 2.34 −0.78 0.398 −2.63 1.07

Constant 18.97 <0.001 9.33 28.62 14.93 0.001 6.85 23.01

mRS, Modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; aOR, Adjusted odds ratio; Coeff, Coefficient; CI, Confidence interval.
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patients. Also, no comparison to non-enhanced CT-based methods was 
conducted. However, it can be assumed that tissue density information 
from non-enhanced CT is also included in CTA scans. Second, the 
proposed method did not include any clinical parameters in the model 
although they may improve the prediction accuracy. To date, there is no 
consensus regarding the optimal way to integrate clinical information 
in segmentation methods. Therefore, we restricted the proposed model 
to imaging information only to test the general feasibility of using only 
CTA datasets for this purpose. Third, the proposed method was only 
trained and tested using datasets from patients with a large vessel 
occlusion of the anterior circulation treated with MT. Thus, it remains 
unclear how well the proposed method can predict lesion outcomes in 
patients with an occlusion in the posterior circulation. Fourth, ground 
truth segmentation of the infarct core was conducted manually based 
on 24 h follow-up CT images. Interrater variability of manual 
segmentation processes might reduce the generalizability of results. 
However, the conducted visual verification of segmentations by a 
second reader and reassessment in case of disagreement increased 
validity of segmentation results. Fifth, model training and testing was 
conducted based on single-center data. However, besides external 
testing, the conducted nested cross validation is currently considered as 
gold standard for machine learning approaches. Although model 
training and testing was conducted based on single center data, it can 
be argued that CT imaging data of current state-of-the-art CT scanners 
has a high degree of standardization. Even if a certain center-specific 
bias cannot be  excluded, it needs to be  discussed if center-specific 
training and models on the other hand might allow higher predictive 
performance. In fact, several FDA-approved machine learning-based 
tools for acute stroke diagnostics require center-specific training of their 
algorithms. Sixth, the CNN was trained using 4D volumes generated 
from CTA images and MIP reconstruction resampled to 1 mm x 1 mm 
x 5 mm voxel size. Resampling to 5 mm slice thickness might reduce 
predictive precision especially for small infarcts.

5 Conclusion

24 h follow-up infarct prediction exclusively using acute single-
phase CTA datasets is feasible and can be successfully achieved with 
good accuracy. In comparison to CTP data, CTA data is technically 
more widely available, in general incorporated into standard basic 
acute stroke protocols in clinical routine practice, and less prone to 
movement artifacts. The method proposed in this work based on 
single-phase CTA might pave the way to a wider acceptance, feasibility, 
and applicability of follow-up infarct prediction employing artificial 
intelligence methods.
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Glossary

AE Adverse event

AI Artificial intelligence

aOR Adjusted odds ratio

ASPECTS Alberta Stroke Program Early CT Score

CI Confidence interval

CNN Convolutional neural network

Coeff Coefficient

CTA Computed Tomography Angiography

CTP Computed Tomography Perfusion

CV Cross validation

DSC Dice similarity coefficient

ICH Intracranial hemorrhage

LVO Large vessel occlusion

mRS Modified Rankin scale

MIP Maximum intensity projection

MT Mechanical thrombectomy

NIHSS National Institutes of Health Stroke Scale

Q1 1st quartile

Q3 3rd quartile

rtPA recombinant tissue plasminogen activator

SD Standard deviation

SE Block Squeeze and excite block

sICH Symptomatic intracranial hemorrhage

mTICI modified Thrombolysis in cerebral infarction scale

https://doi.org/10.3389/fneur.2024.1330497
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

	Prediction of tissue outcome in acute ischemic stroke based on single-phase CT angiography at admission
	1 Introduction
	2 Materials and methods
	2.1 Data availability
	2.2 Study guidelines
	2.3 Study population
	2.4 Clinical and radiologic assessment
	2.5 CT image acquisition
	2.6 Infarct core segmentation
	2.7 Pre-processing
	2.8 Model architecture
	2.9 Model parameters
	2.10 Post-processing
	2.11 Experiment setup and evaluation metrics
	2.12 Multivariable regression analysis

	3 Results
	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Glossary

	References

