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Introduction: The complexity of brain signals may hold clues to understand brain-
based disorders. Sample entropy, an index that captures the predictability of a 
signal, is a promising tool to measure signal complexity. However, measurement 
of sample entropy from fMRI signals has its challenges, and numerous questions 
regarding preprocessing and parameter selection require research to advance 
the potential impact of this method. For one example, entropy may be highly 
sensitive to the effects of motion, yet standard approaches to addressing motion 
(e.g., scrubbing) may be unsuitable for entropy measurement. For another, the 
parameters used to calculate entropy need to be defined by the properties of 
data being analyzed, an issue that has frequently been ignored in fMRI research. 
The current work sought to rigorously address these issues and to create 
methods that could be used to advance this field.

Methods: We developed and tested a novel windowing approach to select 
and concatenate (ignoring connecting volumes) low-motion windows in fMRI 
data to reduce the impact of motion on sample entropy estimates. We created 
utilities (implementing autoregressive models and a grid search function) to 
facilitate selection of the matching length m parameter and the error tolerance 
r parameter. We  developed an approach to apply these methods at every 
grayordinate of the brain, creating a whole-brain dense entropy map. These 
methods and tools have been integrated into a publicly available R package 
(“powseR”). We demonstrate these methods using data from the ABCD study. 
After applying the windowing procedure to allow sample entropy calculation 
on the lowest-motion windows from runs 1 and 2 (combined) and those from 
runs 3 and 4 (combined), we identified the optimal m and r parameters for these 
data. To confirm the impact of the windowing procedure, we compared entropy 
values and their relationship with motion when entropy was calculated using 
the full set of data vs. those calculated using the windowing procedure. We then 
assessed reproducibility of sample entropy calculations using the windowed 
procedure by calculating the intraclass correlation between the earlier and later 
entropy measurements at every grayordinate.

Results: When applying these optimized methods to the ABCD data (from 
the subset of individuals who had enough windows of continuous “usable” 
volumes), we found that the novel windowing procedure successfully mitigated 
the large inverse correlation between entropy values and head motion seen 
when using a standard approach. Furthermore, using the windowed approach, 
entropy values calculated early in the scan (runs 1 and 2) are largely reproducible 
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when measured later in the scan (runs 3 and 4), although there is some regional 
variability in reproducibility.

Discussion: We developed an optimized approach to measuring sample entropy 
that addresses concerns about motion and that can be applied across datasets 
through user-identified adaptations that allow the method to be tailored to the 
dataset at hand. We offer preliminary results regarding reproducibility. We also 
include recommendations for fMRI data acquisition to optimize sample entropy 
measurement and considerations for the field.
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Introduction

The complexity of brain signals contains information that may 
have critical importance for neuroscience and psychiatry. Broadly, it 
has been recognized across physiological systems that more complex 
(e.g., irregular) dynamic patterns allow the organism to better adapt 
to unexpected stressors (1–3). A concept born in physics but more 
recently adopted to information theory, entropy is a measure of 
unpredictability of a signal, a measure that indicates complexity. 
Entropy can be calculated from time series such as those from signals 
measured during resting-state functional magnetic resonance imaging 
(fMRI) to quantify the unpredictability and complexity of a brain state.

There are many different ways of measuring entropy in brain 
signals, but many of the classical entropy calculations are not 
appropriate for the relatively short and noisy time series derived from 
physiological measurements (4). One of the first entropy measures 
suited for such a purpose was Approximate Entropy (5). Richman and 

Moorman (4) extended this work to develop sample entropy 
(SampEn) to overcome two main limitations of approximate entropy: 
(1) the strong relationship between approximate entropy and the 
length of the time series and (2) the lack of relative consistency. As 
shown in Figure 1, SampEn compares segments of the time series to a 
template of length m + 1. If the first m timepoints match the template 
(within a tolerance factor r) the segment is listed as an “m match.” If 
all m + 1 timepoints match the template within the tolerance then the 
segment is also listed as an “m + 1 match.” The template-matching 
process is repeated so that each segment is considered a template once, 
and is also assessed for matching the other segments many times. The 
proportion of m + 1 matches to m matches is considered a measure of 
complexity (i.e., if a high proportion of the length m matches are also 
length m + 1 matches, then the time series is predictable and has low 
complexity). SampEn is the negative log of this proportion. As 
described by Lake et al. (6), higher m values and lower r values tend 
to reduce both the number of length m matches (Cm) and the number 

FIGURE 1

Overview of sample entropy. This demonstration of entropy estimation using SampEn was adapted with permission from Richman et al. (16; page 10). 
In this example, m is 2 and the threshold for accepting a match is r multiplied by the standard deviation (see error bars). Note that the template (first 
two points) is matched by the 11th and 12th points (solid box), and that the m + 1st points also match (dashed box). In this case, quantities of A and B 
both increase by 1.
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of length m + 1 matches (Cm1). The main difference between 
approximate entropy and SampEn is that approximate entropy will 
count self-matches whereas SampEn does not. In other words, the 
template is compared to itself in approximate entropy, whereas the 
template is not compared to itself in SampEn. The counting of self-
matches in approximate entropy leads to bias resulting in the 
drawbacks addressed by SampEn. However, not counting self-matches 
could result in either Cm or Cm1 equaling 0; if this happens, SampEn 
is not mathematically defined.

Richman and Moorman (4) applied SampEn to cardiac R-R 
intervals measured on infants (these time series consisted of 4,096 
measurements approximately 0.3 s apart), but these methods can also 
be applied to calculate entropy from time series such as those from 
signals measured during resting-state functional magnetic resonance 
imaging (fMRI) or electroencephalography (EEG) to quantify the 
unpredictability and complexity of a brain state. Much of the brain 
entropy literature has utilized data from electroencephalography 
(EEG), which has the advantage of very dense temporal sampling and 
is more similar to the cardiac signals used by Richman and Moorman. 
The utilization of fMRI data offers the advantage of examining deeper 
regions of the brain, such as the limbic regions implicated in 
depression (7, 8), but also presents additional challenges that need to 
be addressed.

First, the extent to which motion may impact SampEn 
measurement has been largely ignored in the fMRI literature. 
However, some research has suggested that entropy measurements 
(including SampEn) may be highly sensitive to the effects of motion 
(9), underscoring this as an area in need of attention. In calculating 
SampEn, motion events can substantially distort the shape of the time 
series, leading to erroneous assessments of its irregularity in that 
segment. Since the standard deviation of the timeseries is factored into 
the calculation of the tolerance threshold r, motion events can inflate 
the number of “matches” such that fluctuation patterns that in 
actuality are irregular are deemed as similar only because the tolerance 
r is erroneously high. Head motion during scanning is well known to 
influence resting-state fMRI data, and methods have been developed 
to optimize calculations of functional connectivity to minimize the 
impact of head motion on the data. Such methods have included 
scrubbing or de-weighting volumes that have high motion or replacing 
them with interpolated data (10–13). However, scrubbing results in 
problematic discontinuities in the data and procedures involving 
interpolation may distort the SampEn measurement. Dong et al. (14) 
introduced a modified version of SampEn to account for missingness 
in a time series and compared their approach to other existing 
methods for dealing with non-continuous time series. Their proposed 
method resulted in lower percent errors when missingness was 
introduced into example data compared to other methods. 
Quantifying and understanding how to best minimize motion-related 
confounds for calculating SampEn with resting-state fMRI data 
is needed.

Second, calculation of SampEn requires the selection of 
parameters for template length m and error tolerance r. A prior 
resting-state fMRI study tested a range of parameters to identify those 
which minimized the relative error of SampEn that was calculated on 
time series from cerebrospinal fluids, and then applied these 
parameters to calculate SampEn on time series from gray matter 
regions. Their data suggested accuracy of SampEn estimates was 
maintained by a tradeoff between pattern length m and tolerance 

factor r (15). As recommended by the creators of SampEn (4, 16), 
these parameters should be selected based on the input data. However, 
more common practice has been for fMRI researchers to select the 
parameters based on past publications (17). The field would benefit 
from tools that could allow these parameters to be  automatically 
selected based on the input data.

In an effort to address the above concerns, we  developed the 
Parameter Optimization and Windowing for Sample Entropy in R 
(“powseR”) toolkit for calculating SampEn entropy in brain data. 
PowseR is an R package that includes functions for performing 
bandpass filtering (with or without the interpolation of high motion 
timepoints), optimizing SampEn parameter selection (m and r), and 
calculating entropy at the grayordinate (dense time series or dtseries) 
or parcel (parcellated time series or ptseries) level in a CIFTI image 
file using a novel windowing method to exclude motion-corrupted 
volumes. PowseR will be made available to the general public via 
Github and was developed using R v4.1.0 (18).

We applied powseR to baseline resting-state fMRI data from 
children (9–10 years old) in the Adolescent Brain and Cognitive 
Development (ABCD) Study (19). We conducted initial testing to 
confirm the impact of the windowing approach on the entropy values 
and their relationship to motion, using both the optimal parameters 
identified by powseR based on the data, and using other commonly-
used parameters. We  applied the methods we  had developed to 
calculate SampEn at every cortical vertex and every subcortical voxel 
in the brain (two measurements per person from two different parts 
of their baseline scanning session) and then conducted statistical 
testing on these data to evaluate reliability across repeated scans as 
well as sensitivity to head motion.

Materials and methods

Overview of powseR functionality

PowseR is an R package that facilitates SampEn calculation in 
modern, grayordinate-space neuroimaging data. Beyond the SampEn 
calculation itself, powseR contains several functions to help users 
avoid motion-driven distortions of SampEn values and select optimal 
parameters (m and r) for their data. This section describes the various 
features available in powseR.

Windowing approach to reduce bias from head 
motion

The windowing procedure in powseR was developed with the goal 
of extracting the best parts of the data (those least influenced by 
motion) prior to calculating SampEn while preserving as much 
naturally-continuous data as possible. We  adopted a procedure 
introduced by Dong et al. (14) to handle missing values in time series 
data from physiological signals, which added a screening condition 
that required nonmissing values in the template matching process 
(14). Their approach had the advantage of avoiding any modification 
of the input data, leaving the natural structure of the data intact. 
However, while SampEn is relatively stable at varying record lengths, 
this approach may introduce bias by censoring differing numbers of 
timepoints from each observation (14, 16, 20). To address this, our 
application of this method adds a novel windowing procedure that 
extracts a predetermined number of fixed-length windows consisting 
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of continuous time points (volumes) that meet a user-defined 
framewise displacement (FD) threshold.

Given a user-defined FD threshold, window length (number of 
volumes) and desired number of windows, powseR’s windowing 
algorithm searches the time series for low motion windows using a 
flexible approach that does not rely on fixed indices. For example, in 
a series of 60 volumes with high motion events at volumes 10 and 55, 
a fixed indices-based windowing procedure might consider three 
20-volume windows (volumes 1–20, 21–40, and 41–60) and only find 
the second window to be usable. PowseR’s procedure would define two 
usable windows out of the data, e.g., volumes 11–31 and 32–52. In the 
event that the number of candidate low-motion windows found 
exceeds the number requested by the user, windows with the highest 
mean FD are discarded.

This approach is intended to minimize the influence of large head 
motion on the final entropy estimate while also harmonizing the 
length and number of censored data points across observations. The 
selected windows are concatenated with a censored time-point 
between each as shown in Figure 2. A censored time point is included 
between all windows even if they were adjoining each other in the 
original time series, so that all time series have the same number of 
censored time points. SampEn is then calculated across the new time 
series using the method provided in Dong et  al. (14) to ignore 
censored time points. Alternatively, the user may opt to forgo the 
windowing approach and instead consider the full, uninterrupted time 
series when calculating SampEn.

Temporal filtering with interpolation
In addition to motion, noise (either physiological or 

equipment-generated) may artificially inflate entropy 
measurements by contributing variability that is not neural in 
origin. A common method of isolating signals of neural origin is 
to apply a bandpass filter. However, applying a bandpass filter to 
data that includes large motion events causes motion-related spikes 
to propagate into low motion volumes (21). To address this, 
powseR includes an option to interpolate high-motion volumes 
prior to filtering. Because these high-motion volumes are excluded 
when using the windowing approach, SampEn calculations will 

never include volumes that had been interpolated. This process is 
demonstrated in Figure 3 which was generated using a function 
available in powseR.

Parameter (m and r) optimization
While powseR allows for the values of m and r to be manually 

defined by the user, two functions are included to provide data-
informed suggestions for optimal parameters. In the select_m 
function, we follow the methods of (6, 16) to fit an autoregressive 
model to the data, using the optimal order (m) of the model based on 
the AIC to set the matching length m parameter. Because the AR 
model used in select_m does not account for the concept of the r 
parameter, the next step is to find an appropriate r value for the 
suggested m. A second function, search_mr_grid, is used to select the 
error tolerance r parameter using a criterion based on σcp2  which 
minimizes the maximum of the relative error of the SampEn estimate 
and CP (=Cm1/Cm) estimate. The search_mr_grid tool is based on a 
process described in (6), where after determining m, several potential 
r values are explored to find an r value such that the number of 
matches (Cm) is not too small and the conditional probability 
(CP = Cm1/Cm) is not too close to 1. Multiple candidate m values may 
be included when running search_mr_grid to search for optimal m 
and r values simultaneously. However, an important aspect to consider 
in this decision is the computational demand (despite powseR’s 
support for multiprocessing) of considering many possible 
combinations of parameters, so we suggest that users first choose m 
by using the much less computationally intensive AR approach 
(select_m) and then use search_mr_grid to assess various values of r in 
combination with the single chosen m or, if desired, a small range of 
candidate m values (i.e., the suggested m +/− 1).

Calculating sample entropy
Following parameter selection, the calc_entropy function in 

powseR performs the final SampEn calculation, including options to 
apply the temporal filtering and windowing procedures described 
previously. Leveraging the cifti (22) and ciftiTools (23) packages in R, 
this calculation is performed at each grayordinate (surface vertex or 
subcortical voxel) in a dtseries CIFTI file or each parcel in a ptseries 

FIGURE 2

Schematic of the windowing procedure. Low-motion windows are selected and concatenated, with an ignored volume in between windows.
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file. The resulting entropy values can also be written out as CIFTI files, 
allowing the subsequent use of existing tools for visualizing and 
analyzing CIFTI data, such as Connectome Workbench (24) and 
Permutation Analysis of Linear Models (25).

Applying powseR to the ABCD dataset to 
assess reliability and sensitivity to head 
motion

We applied the methods described above to the resting-state data 
fMRI collected at baseline in the ABCD study. The ABCD Study is a 
longitudinal study of over 11,000 children living in the United States 
who were 9–10 years old at study entry and demographically matched 
to the United States population. The fMRI acquisition includes 20 min 
of resting-state data collected across four runs. The ABCD data is 
publicly available through the National Data Archive.1

Prior to analysis, we applied some customizations to the publicly 
available data that we  expected would optimize the data for our 
analysis. Specifically, we  reran the final step of the ABCD-HCP 
pipeline with a broader bandpass filter (0.009 and 0.25 Hz) in order to 
preserve higher frequency fluctuations that may be of interest (26, 27) 
and included zero-padding at the beginning and ends of the scan prior 
to filtering to correct a known “edge effect” artifact in the publicly 
available data. This temporal filtering was performed within the 
ABCD-HCP pipeline (no filtering was performed by powseR). 
Notably, the ABCD-HCP pipeline includes an interpolation step 
before applying the bandpass that is equivalent to powseR’s 
implementation. For this analysis, we used baseline visit resting state 
images from 3,058 subjects who had 20 windows meeting our criteria 
(20 continuous data points with FD < 0.3 mm) in BOTH the earlier 
segment (runs 1 + 2), and the later segment (runs 3 + 4). We utilized 
the windowing procedure to select the 20 best windows across runs 1 
and 2, and separately, the 20 best windows across runs 3 and 4. (The 

1 https://nda.nih.gov/abcd/

first 10 volumes of each run were always excluded from consideration.) 
Thus we had two SampEn measures for each person, one taken early 
in the scanning session, and one taken later on in the same scanning 
session (there was typically a gap of approximately 20 min in between 
rest run 2 and run 3, during which other types of neuroimaging data 
was collected). After the windowing procedure, the select_m tool was 
applied to identify the optimal value for m followed by the search_mr_
grid tool to determine the best r across all brain regions and across all 
subjects. Finally, we used these optimized parameters to calculate 
SampEn at every grayordinate for the 3,058 study participants for both 
the early (run 1 and 2) and later (run 3 and 4) datasets. Group mean 
entropy maps averaged across the 3,058 sessions were computed for 
the earlier and later resting state pairs. The results were inspected to 
appreciate the distribution of entropy values across the brain.

Assessing the performance of the windowing 
method in reducing sensitivity to head motion

To assess whether powseR’s windowing function mitigates the 
impact of head motion on entropy values, we correlated mean SampEn 
values (across grayordinates) with mean FD (across runs 1 and 2). To 
compare our windowing method with a more conventional approach, 
we then repeated these steps on the same set of participants but using 
a SampEn calculation that was based on the full, uninterrupted time 
series (except the initial 10 volumes). For this conventional approach, 
SampEn values were calculated separately for runs 1 and 2 and 
averaged across runs. The resulting mean SampEn values were then 
correlated with mean FD (across runs 1 and 2).

Assessing reliability across repeated 
measurements

Grayordinate-wise intraclass correlation coefficients (ICC) were 
used to assess reliability of the SampEn measurement across the brain. 
We calculated the ICC by first fitting the following random effects 
ANOVA model: μij = μ + αi + eij, where μij is the j-th entropy 
measurement from person i, αi is a random intercept to capture the 
variation across individuals, and eij is noise. From here, the ICC can 
be calculated as the ratio of the variance attributed to the individuals, 
as measured by the variance of the random intercept, to the total 

FIGURE 3

Time series processing for a single subject. Panel (A) illustrates the variation in Framewise Displacement for a single participant over the course of the 
scan. Red circles indicate the volumes where FD values exceeded the acceptable threshold of 0.2  mm. These windows were masked out prior to 
application of the bandpass, and were never included in the “best” windows that were selected for analysis (indicated with purple lines). Panels (B) and 
(C) illustrate BOLD signal patterns from a single subject in the left nucleus accumbens (B) and left anterior cingulate cortex (C). The gray line shows the 
raw BOLD signal time series; the blue line shows the time series after applying the bandpass filter. Red x marks indicate volumes that were masked out 
prior to bandpass application because of excessive motion (FD  >  0.2  mm).
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variability in the measurements, as measured by the sum of the 
variance of the random intercept and noise. This is an approach 
previously used in the neuroimaging literature [e.g., (28, 29)]. For 
estimating the variance components of this model, we used the lme4 
package in R.

Results

Characterizing whole-brain dense entropy 
in the ABCD study data

In the ABCD data, select_m identified m = 2 as optimal using the 
windowed approach. We then used search_mr_grid to consider several 
r values for m = 2. Figure 4 shows the resulting median error criterion 
maps, which suggested that for cortical regions, the optimal r = 0.3, 
while for subcortical regions, the optimal r = 0.35. For the purposes of 
simplicity, we utilized m = 2 and r = 0.3 to calculate SampEn at every 
grayordinate. Notably, these parameters have been frequently used for 
fMRI in prior literature (30–32). Figure 5 shows group mean maps for 
runs 1 + 2 and runs 3 + 4. As shown, entropy values are higher in 
medial cortical regions including dorsal cingulate cortex, 
supplementary motor area, temporal lobe, insula, and along the 
central sulcus. Entropy values in subcortical regions were higher than 
those in cortical regions.

Sensitivity to head motion: windowed 
method vs. conventional approach

As expected, the conventional (“full”) approach, using parameters 
matching those used in the windowed approach (m = 2, r = 0.3), 
resulted in SampEn values that were highly correlated with motion. In 
contrast, SampEn values produced using the windowing approach had 
a negligible relationship with motion. Scatterplots and correlation 
coefficients are provided in Figures 6A,B.

Despite the stark differences in relationship with head motion, the 
windowing approach produced SampEn values that were strongly 
correlated with results from the traditional “full” approach. Figure 6C 
illustrates the strong linear correspondence, particularly among 
participants with low head motion. Participants with higher levels of 
head motion tended to have markedly lower SampEn in the “full” 
approach compared to the windowing approach, suggesting that these 
artifactually lower SampEn values were corrected via powseR’s 
windowing method.

Reproducibility of entropy measures in the 
ABCD study data

Whole-brain maps of the dense intraclass correlation (ICC) 
values representing the similarity of SampEn measurements from 
the data in runs 1 + 2 vs. the data in runs 3 + 4 are shown in 
Figure  7. ICC values varied across the brain. Median ICCs 
demonstrated moderately high reliability, though values were 
somewhat lower in subcortical regions. For cortical surface 
vertices, the ICC minimum, maximum, median, first, and third 
quartiles, respectively, were 0.178, 0.735, 0.579, 0.497, and 0.727. 

For voxels in the subcortex, these values were 0.075, 0.865, 0.421, 
0.332, and 0.505, respectively.

Discussion

We developed a new approach to measuring sample entropy that 
minimizes the impact of motion and that could be applied across 
datasets through user-identified adaptations that allow the method to 
be  tailored to the dataset at hand. We  compiled these tools into 
powseR, a publicly available R package and applied them to a large 
dataset as a demonstration and an opportunity to illuminate some 
interesting patterns in the whole-brain dense entropy maps that 
suggest new questions for the field.

The first key takeaway from this work is the association between 
participant head motion and measures of sample entropy, which likely 
introduce an unacceptable confound to the analysis if not appropriately 
addressed. Adding to prior work (9), our results show that SampEn 
measures correlate with head motion. Notably, these correlations are 
present even after traditional reprocessing steps designed to remove 
motion effects (motion correction, motion regression, white matter/
CSF/whole brain regression, bandpass filtering) are applied prior to 
computation of SampEn. While it is critical to extract the best parts of 
the data (those least influenced by motion) prior to calculating 
SampEn, it is also a priority to preserve as much naturally-continuous 
data as possible. This stubborn issue cannot be handled using standard 
approaches such as traditional scrubbing, because such approaches 
introduce bias and can worsen motion effects, as both time-series 
length and number of censored time-points may bias SampEn 
measures (14, 16, 20). Thus, to avoid confounds related to motion, 
we adopted a procedure that Dong and colleagues (14) developed to 
handle missing values in time series data reflecting physiological 
signals. In this adaptation, we select low motion, continuous excerpts 
of the time series and combine them to arrive at entropy estimates that 
are no longer correlated with motion.

The second key takeaway from the work is that we created a tool 
to allow researchers to automatically determine the optimal m 
parameter, and to use that m to test several r values to help select the 
one that best minimizes the relative error. This will advance the field 
by avoiding the problem of relying on previously-published values for 
m and r, and rather allowing researchers to optimize their parameters 
based on their own data. Identifying the optimal parameters for m and 
r may in some cases shed light on the constraints for the reliable 
application of SampEn methods to fMRI data, which generally has 
relatively fewer available time points than other kinds of biological 
signal measurements. For example, if the optimal value for m is large, 
there will be fewer opportunities within the time series for possible 
matches, so that entropy may not be defined. Also, prior research has 
shown that time series with shorter lengths tend to require larger r 
values (29) which further highlights the need for caution when using 
short time series, an issue that becomes exacerbated when all the data 
cannot be used due to motion confounds.

Third, we created an R package that implements these innovations 
to allow researchers to (1) identify the best parameters and (2) 
calculate SampEn using the windowing approach, simultaneously at 
every vertex and voxel in the brain, creating a whole-brain dense 
entropy map in CIFTI space. While powseR is focused on SampEn, 
we envision it becoming just one module in a larger package that will 
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facilitate other promising approaches to analyzing complexity of fMRI 
data in R, including multiscale entropy, fuzzy, and wavelet-based 
methods, which would provide a complimentary package in R to the 
Complexity Toolbox available in MATLAB.2

2 https://www.fil.ion.ucl.ac.uk/spm/ext/#Complexity

Fourth, the whole-brain dense entropy maps reveal region-
specific variation in SampEn values. In similar prior work, we found 
that subcortical regions had higher entropy values than cortical 
regions (17, 33). We  also found variability across the brain in 
reproducibility of SampEn measurement, which will be important for 
researchers in designing studies that would depend on these values 
(e.g., to conduct brain-behavior analyses.)

FIGURE 4

Results from search_mr_grid. Violin plots showing the distribution of median error criterion for m  =  2 and various r values across subjects. The top 
panel shows median error criterion across all grayordinates. The lower three panels show each of the cortical hemispheres and the subcortex 
separately.
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While the work presented here includes some key strengths, such 
as the use of a large, publicly available dataset, the robust consideration 
of motion effects, and the careful examination of both reliability and 
change over time in a large sample, it is also important to note several 
key limitations. First, the windowing approach can only include 
datasets which contain at least a minimum number of windows 
(which themselves contain a certain number of continuous 
“acceptable” time points). Participants who do not have enough total 
“usable” volumes will necessarily need to be excluded because of the 
requirement of continuous “usable” volumes in each of the windows. 
We have found that this limitation is acceptable given the significant 
benefit of removing/reducing motion-related effects in the entropy 
calculation. However, this limitation will be particularly relevant to 
studies with shorter scanning times. Second, our selection of 20 
windows of length 20 volumes is somewhat arbitrary and may not 
be optimal for all datasets. This selection was based on the goal of 
including enough time points to accurately measure sample entropy 
while including the maximum number of study participants, given a 

dataset with substantial head motion contamination. Future work is 
needed to investigate more quantitative methods for determining 
what window length and/or number of windows are necessary to 
achieve accurate and reliable SampEn calculations for a given dataset. 
Third, in selecting the m and r parameters, our approach allows the 
user to find the optimal parameters across participants and across 
brain grayordinates, but ultimately we have recommended using this 
information to select a single m and r parameter to apply across 
participants and brain regions in creating the whole-brain dense 
entropy maps. However, it may be  that SampEn could be  further 
optimized by allowing individual-specific and/or region-specific 
parameter selection. This question requires further research. Fourth, 
there is a need to identify best practices for temporal filtering prior to 
entropy measurement. For example, prior resting-state fMRI research 
has shown higher mean frequency signaling in limbic regions (27), 
suggesting that the impact of different approaches for temporal 
filtering on region-specific entropy measurement requires additional 
study. Fifth, the impact of other noise sources, such as respiratory and 

FIGURE 5

Whole-brain sample entropy in the ABCD Study data. Top: Average sample entropy across 3,058 participants for runs 1  +  2. Bottom: Average for runs 
3  +  4.

FIGURE 6

Relationship between SampEn and FD in “full” and “windowed” methods. Panel (A) shows the relationship between SampEn values and head motion 
after using powseR’s windowing approach. Panel (B) shows the same relationship, using a conventional approach (where the full, uninterrupted time 
series is used to calculate SampEn). Panel (C) shows the relationship between SampEn values derived from these two approaches, with a color scale 
applied to indicate the mean FD of each observation.
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cardiac, scanner instability, and thermal noise variability between 
study participants may also affect SampEn. Additional studies 
investigating how these noise sources impact SampEn values 
are warranted.

Finally, we acknowledge that there are many different ways to 
measure the entropy of a brain signal, and SampEn is just one of 
these methods. We have focused on SampEn because it is both a 
commonly used method for assessing entropy in BOLD signals but 
also because of the simplicity of windowing the fMRI data, i.e. For 
excluding time points with excessive head motion. of approach. 
However, a potential limitation to using SampEn on such data is that 
the native sampling rate for the ABCD data (800 ms) is higher than 
the timescale (0.01–0.08 Hz) usually associated with neuronal 
contributions to the fMRI signal. For this reason our method may 
not fully capture the neural information in the fMRI data. Multiscale 
entropy (MSE) (34), in which the input time series are downsampling 
the temporal resolution of the time series by averaging adjacent 
timepoints, is an entropy method that better matches the input 
temporal resolution of the data to the expected fMRI timescales. A 
future direction for this approach could be to apply the windowing 
idea to the MSE approach. The challenge will be that by averaging 
multiple timepoints together the fraction of MSE timepoints with at 
least one motion contaminated volume will increase, reducing the 
number and number of contiguous time points. To our knowledge, 
the windowing approach we have proposed here has not yet been 
implemented for multiscale entropy.

In conclusion, we present a suite of tools for optimized calculation 
of SampEn using automated, data-driven parameter selection and a 
windowing procedure to minimize the impact of motion while 
maintaining the natural data structure and avoiding the bias of 
different time series lengths, that is publicly available in the powseR 
package. We showed that application of these tools to a large, publicly 
available dataset reveals reliable SampEn measurement that is resistant 

to motion-driven distortions. This set of tools has the potential for 
broad application to advance understanding of brain signal complexity 
and its role in human development as well as disease processes.
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