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Background: Data on the association between serum alkaline phosphatase (ALP) 
levels and clinical outcomes in patients with ischemic stroke (IS) are inconsistent 
and limited. Therefore, this study aimed to investigate the correlation between 
ALP and prognosis in patients with IS.

Methods: Patients with acute ischemic stroke (AIS) or transient ischemic attack 
(TIA) from the Third China National Stroke Registry were divided into four groups 
according to the quartiles of serum ALP levels on admission. Cox proportional 
hazards and logistic regression models were used to evaluate the correlation 
between ALP and the risk of all-cause mortality, disability (modified Rankin Scale 
(mRS) score 3–5), and poor functional outcomes (mRS score 3–6).

Results: A total of 11,405 patients were included in the study. Higher levels of 
ALP were associated with all-cause mortality at 3  months (adjusted hazard ratio 
[HR] per standard deviation [SD]: 1.16; 95% confidence interval (CI): 1.07–1.27; 
p  =  0.001) and 1  year (adjusted HR: 1.11; 95% CI: 1.03–1.20; p  =  0.010). At the 
3-month follow-up, each SD increase of ALP was associated with a 12 and 
14% higher risk of disability (adjusted odds ratio (OR): 1.12; 95% CI: 1.06–1.18; 
p  <  0.001) and poor functional outcomes (adjusted OR: 1.14; 95% CI: 1.08–1.20; 
p  <  0.001). Similar results were observed at the 1-year follow-up. Higher ALP 
levels were associated with an increased risk of all-cause mortality, disability, 
and poor functional outcomes in patients with “others” subtypes (including 
other determined etiology and undetermined etiology) (p  <  0.05).

Conclusion: Elevated ALP levels were associated with an increased risk of 
all-cause mortality, disability, and poor function outcomes in patients with IS. 
Heterogeneity was observed among the subtypes of different etiologies.
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1 Introduction

Stroke is the second leading cause of death and the third leading 
cause of disability worldwide (1, 2). Globally, China faces the most 
significant stroke burden, with ischemic stroke (IS) accounting for 
over 82% of all stroke cases (3). Therefore, identifying reliable blood 
markers for stroke prognosis is crucial for optimizing healthcare 
resource allocation (4).

Alkaline phosphatase (ALP), a widely expressed enzyme in 
human tissues, has been implicated in vascular calcification and the 
development of atherosclerosis (5–7). Inhibition of ALP has been 
shown to prevent the formation of vascular atherosclerosis (8). 
Traditionally recognized as a marker for skeletal or hepatobiliary 
dysfunction (9, 10), ALP is now considered indicative of 
atherosclerosis and inflammatory responses (6, 11). Studies have 
indicated that elevated serum ALP levels are linked to increased 
atherosclerosis in coronary and peripheral arteries and that higher 
ALP levels are independently associated with the risk of cardiovascular 
disease (CVD) and mortality events (12–14). However, conflicting 
findings exist among epidemiological investigations regarding the 
association between higher serum ALP levels and adverse clinical 
outcomes in stroke patients. Multiple studies have suggested that high 
serum ALP levels are associated with an increased incidence of stroke, 
higher post-stroke mortality rates, and poor functional outcomes 
(15–19). However, other studies have concluded that there was no 
significant association between increased ALP levels and poor 
functional outcomes (18, 20). Therefore, at present, there is no 
research consensus on the association between ALP levels and clinical 
outcomes in patients with stroke, and studies on this topic have been 
limited. Furthermore, the different etiologies of stroke have not yet 
been examined.

Therefore, this study aims to utilize a large sample from the China 
National Stroke Registry III (CNSR-III) to investigate the correlation 
between serum ALP levels and clinical outcomes (mortality, disability, 
and poor functional outcomes) in patients with acute ischemic stroke 
(AIS) and transient ischemic attack (TIA), analyze the association 
between serum ALP levels and stroke subtypes, and further explore 
the underlying mechanism of ALP.

2 Methods

2.1 Study population

CNSR-III is a nationwide prospective registry of consecutive 
patients with AIS or TIA. Patients were enrolled from 201 hospitals 
between August 2015 and March 2018. The detailed design and 
description of the CNSR-III have been published previously (21). The 
inclusion criteria were as follows: (1) age 18 years or older and (2) 
diagnosis of ischemic stroke or TIA within 7 days from the onset of 
symptoms to enrollment. The exclusion criteria were as follows: (1) 
silent cerebral infarction with no manifestation of symptoms and 
signs, and (2) refusal to participate in the registry.

The CNSR-III study was approved by the ethics committee of 
Beijing Tiantan Hospital (NO. KY2015-001-01), and written informed 
consent was obtained from patients or their legally authorized 
representatives. The study complied with the principles of the 
Declaration of Helsinki.

2.2 Data collection and management

After admission, the participants were collected by a trained 
neurologist in the hospital and the following baseline data were 
recorded: age, sex, body mass index (BMI, calculated as kg/m2), 
smoking and alcohol consumption status, medical history (previous 
diabetes, hypertension, dyslipidemia, coronary heart disease, and 
stroke), treatment during hospitalization (intravenous thrombolysis, 
mechanical thrombectomy, antiplatelet aggregation therapy, 
anticoagulation therapy, and lipid-lowering therapy), National 
Institutes of Health Stroke Scale (NIHSS) score on admission, and 
pre-stroke modified Rankin Scale (mRS) score. In addition, serum 
ALP, alanine aminotransferase (ALT), and aspartate aminotransferase 
(AST) were obtained through venous puncture within 24 h. Total 
cholesterol (TC), high-density lipoprotein (HDL), low-density 
lipoprotein (LDL), triglyceride (TG), estimated glomerular filtration 
rate (eGFR), and high-sensitivity C-reactive protein (hs-CRP) samples 
were transported to the central laboratory of Beijing Tiantan Hospital 
for centralized testing through the cold chain.

All imaging data were collected on disks in the DICOM format, 
analyzed by two professional neurologists, and classified by etiological 
TOAST (Org10172 trial in the treatment of acute stroke). As there 
were a few patients with a stroke of other determined etiology, these 
patients were combined as a stroke of undetermined etiology and 
defined together as the “others.” Hence, patients in this study were 
classified into four subtypes: large-artery atherosclerosis (LAA), 
cardioembolism, small-vessel occlusion, and others (including other 
determined etiology and undetermined etiology).

2.3 Patient follow-up and clinical outcome 
assessment

The clinical outcomes were obtained by trained research 
coordinators who were unaware of the participants’ baseline 
characteristics, through a face-to-face interview at 3 months and via 
the telephone at 1 year after the onset of symptoms. Clinical outcomes 
included all-cause mortality, disability, and poor functional outcomes 
at the 3-month and 1-year follow-up. All-cause mortality was either 
confirmed by a death certification from the attended hospital or the 
local citizen registry, and the mRS score ranged from 0 (no symptoms) 
to 6 (death); poor functional outcome was determined by an mRS 
score of 3–6, while major disability was determined by an mRS 
score of 3–5.

2.4 Statistical analysis

This study’s population characteristics were presented as medians 
(interquartile ranges, IQRs) or numbers (proportions) by quartiles of 
serum ALP levels. The associations of ALP with all-cause mortality, 
disability, and poor functional outcomes at 3 months and 1 year were 
assessed. For all-cause mortality, we used the Kaplan–Meier method 
to estimate the cumulative incidence in the ALP quartile groups, and 
the difference across groups was compared using the log-rank test. 
Hazard ratios (HRs) and 95% confidence intervals (CIs) were 
estimated using the Cox proportional hazards models. The 
proportional hazards assumption was checked using Schoenfeld 
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residuals over time, and no deviations from the assumption were 
found. For disability and poor functional outcomes, odds ratios (ORs) 
with 95% CIs were estimated using logistic regression models. Serum 
ALP was included in the models, both as a categorized variable (in 
quartiles) and as a continuous variable.

Based on the clinical experience and relevant literature (16–18), 
we selected covariates and fitted three adjusted models. Model 1 was 
adjusted for age and gender. Model 2 was further adjusted for BMI, 
current smoking, heavy drinking, pre-stroke mRS score, TOAST 
classification, hypertension, diabetes, dyslipidemia, coronary heart 
disease, and previous stroke. Model 3 was further adjusted for 
antiplatelet agents, anticoagulant agents, estimated glomerular 
filtration rate, and high-sensitivity C-reactive protein. To visualize the 
potential non-linear associations of serum ALP with death, disability, 
and poor functional outcomes, we constructed restricted cubic splines 
with three knots at the 10th, 50th, and 90th percentiles. Stratified 
analyzes were performed in the subgroups of TOAST types. All 
statistical analyzes were conducted using SAS version 9.4 (SAS 
Institute Inc., Cary, NC, United States) and R software version 4.1.3 (R 
Foundation for Statistical Computing). The statistical significance was 
determined as two-sided p-values of <0.05.

3 Results

3.1 Baseline characteristics

We excluded 3,761 patients from the initial 15,166 patients due to 
underlying conditions, such as liver disease (n = 100), kidney disease 
(n = 131), arthritis (n = 329), cancer (n = 134), infection within 2 weeks 
before admission (n = 450), or missing ALP values (n = 2,337), as well 
as mRS scores at the 1-year (n = 349) or 3-month (n = 170) follow-up 
(Supplementary Figure S1). The final analysis encompassed 11,405 
patients. The baseline characteristics of both included and excluded 
patients are presented in Supplementary Table S1, demonstrating a 
balanced distribution between the two groups. Table 1 summarizes the 
baseline characteristics of the included patients, with a median age of 
63 (54.0–70.0) years. Among the included patients, 10,525 (92.3%) 
were diagnosed with AIS, 7,784 (68.3%) were male patients, 3,605 
(31.6%) were current smokers, 1,628 (14.3%) were heavy drinkers, 949 
(8.3%) received intravenous thrombolysis, and 32 (0.3%) of them 
underwent mechanical thrombectomy. The median NIHSS score was 
3 (1.0, 6.0). In the higher quartile ALP groups, patients were more 
likely to have a history of hypertension, coronary heart disease, and 
stroke, while they were less likely to have diabetes, be smokers, and 
consume alcohol. In TOAST classification, all ALP quartile groups 
had a relatively higher number of LAA and undetermined etiology 
stroke patients. The levels of hs-CRP increased with the increase in 
serum ALP levels (Table 1).

3.2 All-cause mortality

A total of 160 (1.4%) and 355 (3.1%) patients died during the 
3-month and 1-year follow-up, respectively. The Kaplan–Meier curves 
showed that the cumulative incidence of all-cause mortality increased 
in patients with higher serum ALP levels within 3-month (log-rank 
p = 0.015) and 1-year (log-rank p = 0.058) follow-up (Figure 1). Higher 

levels of ALP were associated with all-cause mortality at 3 months 
(adjusted HR per standard deviation [SD]: 1.16; 95% CI: 1.07–1.27; 
p = 0.001) and 1 year (adjusted HR: 1.11; 95% CI: 1.03–1.20; p = 0.010) 
(Table  2). In addition, there was a linear correlation between the 
increase in ALP and all-cause mortality (p < 0.001; Figures 2A,D).

3.3 Functional outcome

In total, 1,354 patients (12.0%) had an mRS score of 3–5, and 
1,514 patients (13.3%) had an mRS score of 3–6 at 3 months. At the 
1-year assessment, 1,108 patients (10.0%) had an mRS score of 3–5, 
and 1,463 patients (12.8%) had an mRS score of 3–6. The higher the 
level of ALP grouping, the higher the proportion of patients with high 
mRS scores (Supplementary Figure S2).

At the 3-month follow-up, compared with the lowest quartile, 
patients in the highest quartile had a 28 and 33% greater risk of 
disability and poor functional outcomes, respectively (adjusted OR: 
1.28; 95% CI: 1.09–1.52; p = 0.004 and 1.33; 95% CI: 1.13–1.57; 
p = 0.001). Similarly, at the 1-year follow-up, the risk of poor functional 
outcomes was found to increase in the highest quartile compared with 
the lowest quartile, with adjusted OR 1.24 (95% CI: 1.05–1.46; 
p = 0.011) (Table 2).

At the 3-month follow-up, each SD increase of ALP levels was 
associated with 12 and 14% higher risk of disability (adjusted OR: 
1.12; 95% CI: 1.06–1.18; p < 0.001) and poor functional outcomes 
(adjusted OR: 1.14; 95% CI: 1.08–1.20; p < 0.001) in the fully adjusted 
model, respectively. Similar results were found at the 1-year follow-up 
(Table 2). In addition, the restricted cubic spline regression analysis 
showed a linear and positive correlation between serum ALP and 
functional poor outcomes at 3 months and 1 year (Figures 2B,C,E,F).

3.4 TOAST classification

As for TOAST etiologies, for each 1 SD increase of ALP in the 
“others” subtype, the risk of death at 3 months increased by 19% 
(adjusted HR: 1.19; 95% CI: 1.04–1.36; p = 0.014). Similarly, the risk of 
death at 1 year increased by 16% (adjusted HR: 1.16; 95% CI: 1.04–
1.30; p = 0.008) (Supplementary Table S2). However, no correlation 
with mortality was found among LAA, SVO, and CE subtypes.

After adjusting for potential confounding factors (Model 3), in 
the “others” subtype, higher levels of ALP were associated with poor 
functional outcomes at 3 months (OR per SD: 1.15 [95% CI: 1.06–
1.24; p = 0.001]) and 1 year (OR per SD: 1.16; 95% CI: 1.07–1.26, 
p < 0.001). Similar results were found for disability. In LAA and SVO 
subtypes, elevated ALP levels were associated with an increased risk 
of poor functional outcomes at 3 months, with ORs were 1.11 (95% 
CI: 1.01–1.22, p = 0.023) and 1.18 (95% CI: 1.04–1.34, p = 0.010), 
respectively. Similar trends were observed for disability. 
Furthermore, compared to the lowest quartile, higher levels of ALP 
were associated with an increased risk of disability and poor 
functional outcomes in patients with LAA at 3 months (p < 0.05), and 
there was also an increased risk of poor functional outcomes in 
patients with the “others” subtype at 3 months and 1 year (p < 0.05) 
(Figure  3; Supplementary Table S2). However, no correlation 
between disability and poor functional prognosis was found in the 
SVO and CE subtypes.
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4 Discussion

This study revealed a positive association between elevated ALP 
levels and an increased risk of mortality, disability, and poor functional 
outcomes in patients with AIS. Specifically, elevated ALP levels were 

linked to adverse clinical outcomes in the others subtype and were 
correlated with an increased risk of disability and poor functional 
outcomes in the LAA and SVO subtypes at 3 months. These findings 
offer new insights into the role of ALP levels in the AIS prediction. The 
Chinese Stroke Registry II and the Xi’an multicenter study reported 

TABLE 1 Baseline characteristics by alkaline phosphatase quartile.

Characteristics Quartiles of ALP p-value

Overall Q1 (<62) Q2 (62–75) Q3 (75–91) Q4 (≥91)

n 11,405 2,794 2,864 2,894 2,853

AIS 10,525 (92.3) 2,531 (90.6) 2,637 (92.1) 2,687 (92.8) 2,670 (93.6) <0.001

Age, years 63.0 [54.0, 70.0] 62.0 [54.0, 71.0] 62.0 [54.0, 69.0] 62.0 [54.0, 70.0] 63.0 [55.0, 70.0] 0.111

Men, n (%) 7,784 (68.3) 2080 (74.4) 2065 (72.1) 1991 (68.8) 1,648 (57.8) <0.001

Body mass index, kg/m2 24.5 [22.6, 26.5] 24.5 [22.6, 26.4] 24.5 [22.6, 26.4] 24.5 [22.6, 26.6] 24.5 [22.5, 26.6] 0.920

Current smoking, n (%) 3,605 (31.6) 863 (30.9) 926 (32.3) 970 (33.5) 846 (29.7) 0.010

Heavy drinking, n (%) 1,628 (14.3) 487 (17.4) 426 (14.9) 417 (14.4) 298 (10.4) <0.001

Prestroke mRS score 0.0 [0.0, 1.0] 0.0 [0.0, 0.0] 0.0 [0.0, 1.0] 0.0 [0.0, 1.0] 0.0 [0.0, 1.0] 0.008

NIHSS score at admission 3.0 [1.0, 6.0] 3.0 [1.0, 5.0] 3.0 [1.0, 5.0] 3.0 [1.0, 6.0] 4.0 [1.0, 6.0] <0.001

TOAST classification, n (%) 0.605

  Large-artery atherosclerosis 2,898 (25.4) 699 (25.0) 701 (24.5) 737 (25.5) 761 (26.7)

  Cardioembolism 691 (6.1) 188 (6.7) 170 (5.9) 168 (5.8) 165 (5.8)

  Small-vessel occlusion 2,392 (21.0) 579 (20.7) 604 (21.1) 628 (21.7) 581 (20.4)

  Other determined etiology 147 (1.3) 38 (1.4) 42 (1.5) 38 (1.3) 29 (1.0)

  Undetermined etiology 5,277 (46.3) 1,290 (46.2) 1,347 (47.0) 1,323 (45.7) 1,317 (46.2)

Medical history, n (%)

  Hypertension 7,123 (62.5) 1,695 (60.7) 1778 (62.1) 1810 (62.5) 1840 (64.5) 0.029

  Diabetes mellitus 2,662 (23.3) 661 (23.7) 659 (23.0) 687 (23.7) 655 (23.0) 0.844

  Dyslipidemia 861 (7.5) 233 (8.3) 184 (6.4) 230 (7.9) 214 (7.5) 0.039

  Previous stroke 2,527 (22.2) 592 (21.2) 643 (22.5) 636 (22.0) 656 (23.0) 0.411

  Coronary heart disease 1,189 (10.4) 283 (10.1) 281 (9.8) 290 (10.0) 335 (11.7) 0.065

Treatment in hospital, n (%)

  Intravenous thrombolysis 949 (8.3) 296 (10.6) 229 (8.0) 231 (8.0) 193 (6.8) <0.001

  Mechanical thrombectomy 32 (0.3) 12 (0.4) 9 (0.3) 5 (0.2) 6 (0.2) 0.258

  Antiplatelet agents 11,002 (96.5) 2,682 (96.0) 2,743 (95.8) 2,804 (96.9) 2,773 (97.2) 0.010

  Anticoagulant agents 1,191 (10.4) 307 (11.0) 275 (9.6) 289 (10.0) 320 (11.2) 0.138

  Lipid-lowering agents 10,889 (95.5) 2,663 (95.3) 2,726 (95.2) 2,760 (95.4) 2,740 (96.0) 0.434

Laboratory tests

  TC, mmol/L 4.2 [3.4, 4.9] 4.1 [3.4, 4.8] 4.1 [3.4, 4.8] 4.2 [3.4, 5.0] 4.2 [3.5, 5.0] <0.001

  HDL-C, mmol/L 1.1 [0.9, 1.3] 1.1 [0.9, 1.3] 1.1 [0.9, 1.3] 1.1 [0.9, 1.3] 1.1 [0.9, 1.3] 0.006

  LDL-C, mmol/L 2.5 [1.9, 3.1] 2.4 [1.8, 3.1] 2.4 [1.9, 3.1] 2.5 [1.9, 3.1] 2.5 [1.9, 3.2] 0.004

  TG, mmol/L 1.4 [1.0, 1.9] 1.3 [1.0, 1.8] 1.4 [1.0, 1.9] 1.4 [1.0, 2.0] 1.4 [1.1, 2.0] <0.001

  ALT, U/L 18.0 [13.0, 25.0] 17.0 [12.0, 23.0] 17.7 [13.0, 25.0] 18.0 [13.0, 25.0] 19.0 [14.0, 28.0] <0.001

  AST, U/L 19.0 [16.0, 24.0] 18.0 [15.0, 22.6] 19.0 [15.3, 23.9] 19.0 [16.0, 24.0] 20.0 [16.0, 26.0] <0.001

  eGFR, mL/min/1.73 m2 93.2 [82.0, 101.8] 93.0 [81.4, 102.0] 93.5 [82.8, 102.0] 93.5 [82.5, 101.7] 93.0 [81.4, 101.8] 0.465

  hs-CRP, mg/L 1.8 [0.8, 4.6] 1.3 [0.7, 3.5] 1.6 [0.8, 4.2] 1.9 [0.9, 4.7] 2.3 [1.0, 5.7] <0.001

Continuous variables are expressed as median (interquartile range). Categorical variables are expressed as frequency (%). AIS, acute ischemic stroke; ALP, alkaline phosphatase; ALT, alanine 
aminotransferase; AST, aspartate aminotransferase; eGFR, estimated glomerular filtration rate; HDL-C, high-density lipoprotein cholesterol; hs-CRP, high-sensitivity C-reactive protein; LDL, 
low-density lipoprotein cholesterol; mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; TC, total cholesterol; TG, triglycerides; TOAST, Trial of ORG 10172 in 
Acute Stroke Treatment.
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that higher ALP levels were associated with increased patient 
mortality, without identifying a linear correlation (17, 18). Conversely, 
a Korean single-center study indicated a positive linear correlation 
between elevated ALP levels and mortality (16). In line with these 
findings, our study indicated that elevated ALP levels were associated 
with an increased risk of all-cause mortality, with a linear correlation 
observed. The differences in the studies primarily resulted from the 
included populations. The linear correlation study focused on IS 
patients, while the non-linear correlation studies included mixed 
stroke (including ischemic stroke and hemorrhagic stroke) patients. 
Ryu et al. also revealed that hemorrhagic stroke patients in the elevated 
ALP group had a higher risk of death than ischemic patients, which 
may affect the linear and non-linear relationships (16). Furthermore, 
Zhong et  al. (22) observed similar results in their study of 2,944 
enrolled AIS patients. We  also performed an analysis of poor 
functional outcomes, and similar to Zhu et al. and Kim et al., we found 
that higher ALP levels were associated with an increased risk of poor 
functional outcomes (11, 19). However, Guo et al. and Liu et al. found 
that elevated ALP levels were not associated with poor functional 
outcomes in stroke patients (18, 20). The difference in conclusions 
may be  related to the participant characteristics and sample size. 
Furthermore, we analyzed the disability and discovered that elevated 
levels of ALP could serve as a predictor for disability in patients with 
AIS and TIA.

In CVD studies, the elevated mortality associated with increased 
ALP levels was related to atherosclerosis (23). Unlike CVD, IS is a 
heterogeneous disease with a distinct pathogenesis. The mechanism 
between elevated serum ALP and prognosis in patients with IS 
remains unclear; no studies have investigated the role of ALP in 
different subtypes of IS. However, in this study, an increase in ALP was 

not found to be associated with all-cause mortality in patients with the 
LAA subtype, and only LAA and SVO subtypes were associated with 
poor functional outcomes and disability during the short-term 
follow-up. Kim et  al. also found that higher ALP levels were not 
associated with cerebral atherosclerosis (19). Therefore, the association 
between higher ALP levels and an increased risk of adverse outcomes 
in stroke patients might be  unrelated to the mechanism of 
atherosclerosis. This study discovered a significant association 
between elevated levels of ALP and the prognosis of patients with an 
undetermined etiology stroke subtype. Furthermore, it revealed that 
patients with a history of coronary heart disease exhibited elevated 
serum ALP levels. The occurrence of adverse clinical outcomes may 
be related to unstable and easy detachment of calcified plaques or 
cardioembolism (24, 25), which requires further research.

Systemic inflammation has been recognized as a significant factor 
influencing the short-term and long-term outcomes of patients with 
stroke (26, 27). The pathophysiological mechanisms underlying the 
adverse clinical outcomes in patients with elevated ALP levels may 
be  associated with the interplay between elevated ALP, 
neuroinflammation, blood–brain barrier (BBB) permeability, and 
vascular homeostasis (28). The immune rescue mechanism of 
neuroinflammation was reported to be  activated after cerebral 
ischemia (29), resulting in an increase in ALP (7, 30, 31), which was 
consistent with the current proposal that peripheral immunity is 
involved in complex brain immune networks (32). Furthermore, 
tissue-non-specific alkaline phosphatase (TNAP), the isoenzyme of 
ALP, is abundant in brain endothelial cells and neurons (33) and 
regulates neuroinflammatory responses (34, 35). After the breakdown 
of the BBB, TNAP is lost to the periphery, and the decrease in TNAP 
levels further exacerbates brain damage (36, 37). Thus, 

FIGURE 1

Kaplan–Meier curves for all-cause mortality. (A) Kaplan–Meier curves for all-cause mortality within 3  months (log-rank test; p =  0.015). (B) Kaplan–
Meier curves for all-cause mortality within 1  year (log-rank test; p =  0.058).
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we hypothesized that elevated serum ALP levels in the acute phase 
could indicate a significant depletion of ALP in the brain, reflecting 
the extent of neurological impairment and ultimately leading to a poor 

prognosis. The potential of oral ALP or TNAP administration for the 
treatment of nerve damage following IS presents a compelling area for 
future investigation.

TABLE 2 Associations of alkaline phosphatase with all-cause mortality, disability, and poor functional outcomes.

Events, n 
(%)

Unadjusted p Model 1 p Model 2 p Model 3 p

At 3 months

Death

  Per SD increase 160 (1.4) 1.19 (1.10, 1.28) <0.001 1.16 (1.07, 1.26) <0.001 1.16 (1.07, 1.25) <0.001 1.16 (1.07, 1.27) 0.001

   Q1 30 (1.1) Reference Reference Reference Reference

   Q2 34 (1.2) 1.11 (0.68, 1.81) 0.690 1.16 (0.71, 1.89) 0.564 1.10 (0.67, 1.80) 0.697 1.10 (0.67, 1.80) 0.699

   Q3 39 (1.4) 1.25 (0.78, 2.02) 0.350 1.27 (0.79, 2.04) 0.334 1.23 (0.76, 1.98) 0.403 1.23 (0.77, 1.99) 0.388

   Q4 57 (2.0) 1.87 (1.20, 2.91) 0.006 1.83 (1.17, 2.87) 0.008 1.73 (1.11, 2.72) 0.016 1.63 (1.03, 2.56) 0.036

mRS score 3–5

  Per SD increase 1,354 (12.0) 1.15 (1.10, 1.21) <0.001 1.13 (1.07, 1.19) <0.001 1.13 (1.07, 1.19) <0.001 1.12 (1.06, 1.18) <0.001

   Q1 290 (10.5) Reference Reference Reference Reference

   Q2 316 (11.2) 1.07 (0.91, 1.27) 0.418 1.08 (0.91, 1.28) 0.374 1.06 (0.89, 1.26) 0.504 1.06 (0.89, 1.26) 0.495

   Q3 351 (12.3) 1.20 (1.01, 1.41) 0.034 1.19 (1.00, 1.40) 0.046 1.16 (0.98, 1.37) 0.086 1.17 (0.99, 1.39) 0.067

   Q4 397 (14.2) 1.41 (1.20, 1.66) <0.001 1.35 (1.14, 1.59) <0.001 1.29 (1.09, 1.53) 0.003 1.28 (1.09, 1.52) 0.004

mRS score 3–6

  Per SD increase 1,514 (13.3) 1.17 (1.11, 1.23) <0.001 1.14 (1.09, 1.2) <0.001 1.14 (1.09, 1.20) <0.001 1.14 (1.08, 1.20) <0.001

   Q1 320 (11.5) Reference Reference Reference Reference

   Q2 350 (12.2) 1.08 (0.92, 1.26) 0.372 1.09 (0.92, 1.28) 0.316 1.06 (0.90, 1.26) 0.469 1.06 (0.90, 1.26) 0.482

   Q3 390 (13.5) 1.20 (1.03, 1.41) 0.021 1.19 (1.02, 1.40) 0.032 1.16 (0.99, 1.37) 0.067 1.18 (1.00, 1.39) 0.052

   Q4 454 (15.9) 1.46 (1.25, 1.71) <0.001 1.40 (1.20, 1.64) <0.001 1.34 (1.14, 1.58) <0.001 1.33 (1.13, 1.57) 0.001

At 1 year

Death

   Per SD 

increase

355 (3.1) 1.13 (1.05, 1.21) 0.001 1.11 (1.04, 1.20) 0.003 1.11 (1.03, 1.19) 0.005 1.11 (1.03, 1.20) 0.010

   Q1 73 (2.6) Reference Reference Reference Reference

   Q2 84 (2.9) 1.12 (0.82, 1.54) 0.469 1.18 (0.86, 1.62) 0.297 1.12 (0.82, 1.54) 0.473 1.13 (0.82, 1.55) 0.448

   Q3 89 (3.1) 1.18 (0.87, 1.61) 0.296 1.21 (0.89, 1.65) 0.230 1.15 (0.85, 1.57) 0.367 1.17 (0.86, 1.60) 0.312

   Q4 109 (3.8) 1.47 (1.10, 1.98) 0.010 1.50 (1.11, 2.03) 0.008 1.39 (1.03, 1.88) 0.033 1.33 (0.98, 1.80) 0.069

mRS score 3–5

  Per SD increase 1,108 (10.0) 1.13 (1.07, 1.19) <0.001 1.11 (1.05, 1.17) <0.001 1.11 (1.05, 1.17) 0.001 1.11 (1.05, 1.17) 0.001

   Q1 261 (9.6) Reference Reference Reference Reference

   Q2 239 (8.6) 0.89 (0.74, 1.07) 0.200 0.90 (0.75, 1.08) 0.265 0.88 (0.73, 1.06) 0.188 0.88 (0.73, 1.07) 0.200

   Q3 282 (10.1) 1.05 (0.88, 1.26) 0.565 1.05 (0.88, 1.26) 0.580 1.03 (0.86, 1.23) 0.767 1.04 (0.87, 1.25) 0.680

   Q4 326 (11.9) 1.27 (1.07, 1.51) 0.006 1.24 (1.04, 1.48) 0.018 1.19 (0.99, 1.42) 0.057 1.19 (0.99, 1.42) 0.061

mRS score 3–6

  Per SD increase 1,463 (12.8) 1.14 (1.08, 1.20) <0.001 1.12 (1.07, 1.18) <0.001 1.12 (1.06, 1.18) <0.001 1.11 (1.06, 1.17) <0.001

   Q1 334 (12.0) Reference Reference Reference Reference

   Q2 323 (11.3) 0.94 (0.80, 1.10) 0.427 0.95 (0.81, 1.13) 0.580 0.93 (0.78, 1.10) 0.371 0.92 (0.78, 1.09) 0.340

   Q3 371 (12.8) 1.08 (0.92, 1.27) 0.322 1.08 (0.92, 1.27) 0.325 1.06 (0.90, 1.24) 0.518 1.06 (0.90, 1.26) 0.458

   Q4 435 (15.3) 1.33 (1.14, 1.54) <0.001 1.30 (1.11, 1.53) 0.001 1.24 (1.06, 1.46) 0.008 1.24 (1.05, 1.46) 0.011

Hazard ratios were used for death; Odds ratios were used for an mRS score of 3–5 and an mRS score of 3–6. Model 1 was adjusted for age and sex. Model 2 was further adjusted for body mass 
index, current smoking, heavy drinking, pre-stroke mRS score, TOAST classification, and hypertension, diabetes mellitus, dyslipidemia, previous stroke, and coronary heart disease. Model 3 
was further adjusted for antiplatelet agents, anticoagulant agents, estimated glomerular filtration rate, and high-sensitivity C-reactive protein. mRS, modified Rankin Scale. SD, standard 
deviation; TOAST, Trial of ORG 10172 in Acute Stroke Treatment.
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This study is a large-scale, multicenter prospective study with 
a substantial sample size, including patients from 201 hospitals, 
which enhances the generalizability of the research findings. This 
study explores, for the first time, the impact of ALP on various 
TOAST subtypes. However, the study also has some limitations. 
First, this was an observational study, controlling for some 
important potential confounding factors in the multivariable 
adjustment model; however, it is still difficult to entirely eliminate 
the possibility of residual confounding. Second, we did not collect 
information on vitamin D deficiency in our study, despite the 
known impact of vitamin D on serum ALP levels. To minimize the 

potential confounding effects, we  collected blood samples at a 
predetermined time (the next morning after the admission with 
overnight fasting). Third, our study only examined ALP levels in 
the acute phase and did not assess their continuity over time. 
Therefore, it remains unclear whether changes in ALP levels may 
in turn impact the outcomes of IS. Fourth, the types of ALP 
isoenzymes have not been evaluated, and it was not possible to 
assess which types of ALP are associated with adverse stroke 
outcomes. Further studies are needed to confirm the role of 
isoenzymes in AIS and TIA, which might provide more valuable 
information for understanding the mechanism of ALP on clinical 

FIGURE 2

Restricted cubic spline for associations between ALP and clinical outcomes. (A) Death within 3  months; (B) an mRS score of 3–5 at 3  months; (C) an 
mRS score of 3–6 at 3  months; (D) Death within 1  year; (E) an mRS score of 3–5 at 1  year; (F) an mRS score of 3–6 at 1  year. ALP, alkaline phosphatase; 
mRS, modified Rankin Scale.

FIGURE 3

Multivariable analysis of disability and poor functional outcomes according to TOAST classification. *Model 3 is adjusted for age, sex, body mass index, 
current smoking, heavy drinking, pre-stroke mRS score, TOAST classification, hypertension, diabetes, dyslipidemia, coronary heart disease, previous 
stroke, antiplatelet agents, anticoagulant agents, estimated glomerular filtration rate, and high-sensitivity C-reactive protein. CE, cardioembolism; LAA, 
large-artery atherosclerosis; mRS, modified Rankin Scale; others, other determined etiology and undetermined etiology; SVO, small-vessel occlusion; 
TOAST, Trial of ORG 10172 in Acute Stroke Treatment.
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outcomes. Additionally, since all participants in the study were 
Chinese, the generalizability to other races and ethnicities may 
be limited.

5 Conclusion

In summary, this study showed that elevated ALP levels were 
associated with an increased risk of all-cause mortality, disability, and 
poor function outcomes in patients with IS. Furthermore, heterogeneity 
was observed among the subtypes of different stroke etiologies.
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