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Initial experience with radiomics 
of carotid perivascular adipose 
tissue in identifying symptomatic 
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Background: Carotid atherosclerotic ischemic stroke threatens human health 
and life. The aim of this study is to establish a radiomics model of perivascular 
adipose tissue (PVAT) around carotid plaque for evaluation of the association 
between Peri-carotid Adipose Tissue structural changes with stroke and 
transient ischemic attack.

Methods: A total of 203 patients underwent head and neck computed 
tomography angiography examination in our hospital. All patients were divided 
into a symptomatic group (71 cases) and an asymptomatic group (132 cases) 
according to whether they had acute/subacute stroke or transient ischemic 
attack. The radiomic signature (RS) of carotid plaque PVAT was extracted, and 
the minimum redundancy maximum correlation, recursive feature elimination, 
and linear discriminant analysis algorithms were used for feature screening and 
dimensionality reduction.

Results: It was found that the RS model achieved the best diagnostic performance 
in the Bagging Decision Tree algorithm, and the training set (AUC, 0.837; 95%CI: 
0.775, 0.899), testing set (AUC, 0.834; 95%CI: 0.685, 0.982). Compared with the 
traditional feature model, the RS model significantly improved the diagnostic 
efficacy for identifying symptomatic plaques in the testing set (AUC: 0.834 vs. 
0.593; Z  =  2.114, p  =  0.0345).

Conclusion: The RS model of PVAT of carotid plaque can be used as an objective 
indicator to evaluate the risk of plaque and provide a basis for risk stratification 
of carotid atherosclerotic disease.
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1 Introduction

Carotid atherosclerotic disease is the main cause of ischemic stroke, accounting for 
about 34% of ischemic stroke (1). The guidelines for the prevention and treatment of Stroke 
in China 2021 recommend carotid endarterectomy or carotid artery stenting for patients 
with more than 50% carotid artery stenosis to prevent stroke. However, the degree of carotid 
artery stenosis does not completely match the occurrence of stroke (2), and there is currently 
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a lack of objective indicators to assess the risk of stroke in carotid 
plaque. Head and neck computed tomography angiography (CTA) 
is the first line non-invasive imaging method for carotid 
atherosclerosis (3). Radiomics analysis of carotid plaques based on 
CTA has made some progress in identifying carotid plaques at high 
risk of stroke. However, automatic segmentation of carotid plaques 
is challenging due to the complex composition of plaques and the 
limited number of pixels in CTA images. As a consequence, the 
radiomic signature (RS) model derived from these segmentations 
often exhibits low performance and lacks universality (4). Vascular 
inflammation can drive atherosclerotic plaque rupture and 
thrombosis, leading to the occurrence of adverse cardiovascular and 
cerebrovascular events (5). A considerable body of recent research 
(6–10) has demonstrated that perivascular adipose tissue (PVAT) 
can be automatically segmented by applying a threshold range of 
−190 to -30HU on CTA, enabling the monitoring of vascular 
inflammation and identification of symptomatic plaques. Numerous 
studies (11–14) have also indicated that the pericoronary adipose 
tissue RS model exhibits excellent performance in identifying and 

predicting symptomatic plaques; however, there is limited literature 
available regarding carotid artery investigations.

In this study, we used radiomics analysis combined with machine 
learning methods to establish an RS model based on the PVAT of 
carotid plaques combined with traditional patient characteristics and 
investigated its performance in distinguishing symptomatic and 
asymptomatic carotid plaques.

2 Materials and methods

2.1 Study population

This was a retrospective study involving patients who underwent 
head and neck CTA at our hospital from April 2021 through February 
2023 (Figure 1). All patients were divided into a symptomatic group 
and an asymptomatic group according to whether they had clinical 
symptoms within 2 weeks before CTA examination and/or whether a 
head MRI showed acute/subacute stroke (15). Clinical symptoms 

FIGURE 1

Flowchart. CTA, computed tomography angiography; TIA, transient ischemic attack, RS, radiomic signature.

https://doi.org/10.3389/fneur.2024.1340202
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Nie et al. 10.3389/fneur.2024.1340202

Frontiers in Neurology 03 frontiersin.org

included classic TIA (transient ischemic attack) and anterior 
circulation (carotid territory) ischemic stroke, as well as monocular 
symptoms ipsilateral (16) to the carotid plaque (amaurosis or retinal 
artery occlusion). Classic TIA is defined as an abnormal focal 
neurological deficit lasting less than 24 h. Complete ischemic stroke 
presents with the sudden onset of a focal neurologic deficit lasting 
>24 h (17). The patient’s age, gender, body mass index (BMI), history 
of hypertension, diabetes, hyperlipidemia, smoking history, history of 
antihypertensive drugs, and history of antiplatelet drugs were collected.

Inclusion criteria: (1) extracranial carotid atherosclerosis; 
Exclusion criteria: (1) ischemic stroke or TIA caused by 
non-extracranial carotid atherosclerosis (intracranial arterial stenosis 
>50%, cardiogenic type, lacunar type, unknown cause, cryptogenic 
type) (18–24); (2) ischemic stroke or TIA occurred more than 2 weeks 
before CTA examination; (3) posterior circulation symptoms; (4) 
history of stenting, stripping or thrombectomy of cervicocerebral 
artery; (5) Cerebral hemorrhage, meningioma, craniotomy, 
arteriovenous fistula, temporal lobectomy, moyamoya disease, 
reversible cerebral vasoconstriction syndrome, arteritis; (6) Carotid 
artery dissection, aneurysm and web; (7) poor image quality, 
incomplete image, image cannot be transmitted; and (8) incomplete 
clinical information of patients. This study has been approved by the 
Ethics Committee of Shunde Hospital, Guangzhou University of 
Traditional Chinese Medicine (Ethics Review approval: KY-2022010).

2.2 CT scanning parameters

Head and neck CTA was performed using a third-generation 
dual-source CT (Somatom Force, Siemens). The patient was placed in 
a supine position with head advanced and calm breathing. The 
scanning direction was the foot–head direction, and the scanning 
range was from the level of the sternal Angle to the skull dome. A 
measure of 50 mL of ioversol (Bayer, Germany, iodine concentration 
370 mg/mL) was injected via the cubital vein with a high pressure 
syringe at a rate of 5 mL/s, and 40 mL of normal saline was injected at 
the same flow rate. The ROI was drawn at the descending aortic arch 
using contrast agent tracking technology. The trigger threshold was 
100HU, and the scan was delayed for 3–4 s after the trigger. The tube 
voltage was 90–100 KVp, and the tube current was adaptive.

2.3 Plaque data analysis

All CTA data were transferred to head and neck CTA AI system 
(Shukun Technology, Beijing, China) for plaque localization and 
analysis on curved planar reconstruction images. The symptomatic 
group selected the narrowest carotid plaque on the symptomatic side, 
and the asymptomatic group selected the narrowest carotid plaque. 
According to the location of the plaque, the plaque was divided into 
left carotid artery plaque and right carotid artery plaque. The degree 
of plaque stenosis was automatically calculated.

Plaque thickness was measured as the maximum axial size of the 
plaque on a single axial slice, representing its maximum thickness. 
Plaque length was defined as the distance from the origin of the plaque 
to the distal end. The remodeling index was calculated by averaging 
the maximum external vessel diameter of the plaque over the normal 
diameter of the proximal and distal regions.

Plaques were classified into three types based on the presence or 
absence of calcification: calcified plaque, non-calcified plaque, and 
mixed plaque. The presence of plaque ulceration was identified by the 
spread of a contrast agent deep into the plaque on multiple slices from 
different imaging perspectives. High-risk plaque is defined as having 
two or more of the following features: positive remodeling index >1.1, 
punctate calcification (with a diameter < 3 mm, occupying <1/4 of the 
lumen’s diameter, and a CT value >130HU), low-density plaque (a 
non-calcified plaque with a CT value <30HU and an area of 1mm2 
within the plaque), and the napkin ring sign (a contrast agent ring 
encircling a low-density plaque component, along with contrast agent 
in the surrounding vascular lumen).

2.4 Segmentation of plaque PVAT

ROI segmentation of the PVAT of extracranial carotid plaques was 
performed using perivascular fat analysis software (Shukun 
Technology, Beijing, China). The measurement was centered on the 
carotid bifurcation, extending 2 cm in the superior and inferior 
directions for a total length of 4 cm. The PVAT width was equivalent 
to the diameter of the carotid artery beyond the outer wall of the 
carotid artery vessel. The software automatically segmented adipose 
tissue with an attenuation value of −190 HU to −30 HU along the 
target length and width of the carotid artery vessel (25, 26) (Figure 2).

2.4.1 Fat attenuation index analysis of plaques
The Fat Attenuation Index (FAI) surrounding atherosclerotic 

plaques was assessed using specialized perivascular fat analysis 
software (Shukun Technology, Beijing, China). The length of “Stenosis 
FAI” is measured on the narrowest cross-sectional slice of the plaque, 
while the length of “Stenosis range FAI” is measured along the entire 
extent of the plaque, from its origin to the distal end. Both FAI 
measurements have a width equivalent to the diameter of the carotid 
artery beyond the outer wall of the carotid artery vessel. The software 
automatically segmented adipose tissue with an attenuation value of 
−190 HU to −30 HU along the target length and width of the carotid 
artery vessel, following which the software automatically computes the 
average density of the perivascular fat encompassing the plaque 
(Figure 2).

2.5 RS extraction and selection of plaque 
PVAT

2.5.1 RS extraction
ROI of all plaque PVAT was imported into Shukun AI Scientific 

Research Platform (Beijing, China) for RS extraction. A total of 1874 
RS were extracted from the ROI of each plaque PVAT. These included 
360 first-order features, 14 shape features, 480 gray level co-occurrence 
matrix (GLCM), 280 gray level dependence matrix (GLDM), 320 gray 
level run length matrix (GLRLM), 320 gray level size zone matrix 
(GLSZM), and 100 neighborhood gray tone difference matrix 
(NGTDM).

2.5.2 RS selection and model construction
All the extracted features were imported into uAI Research Portal 

software (version 1.1, United, China) for feature selection and model 
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construction. (1) The minimum redundancy maximum relevance 
(MRMR) algorithm is utilized to calculate the redundancy and 
relevance between each feature and the target variable, symptomatic 
plaques. Subsequently, 100 features are selected. A recursive feature 
elimination (RFE) algorithm selects feature subset by eliminating 
features with small contributions to prediction ability step by step. It 
determines the most important features for the prediction task by 
recursively training the model and evaluating feature importance. 
The RFE has been applied to select the most important features, 
resulting in 48 features, comprising 16 first-order features, 7 CLCM 
features, 6 GLDM features, 3 GLRLM features, 10 GLSZM features, 
4 NGTDM features, and 2 shape features. (2) Linear discriminant 
analysis (LDA) is employed to reduce the dimensionality of the 
selected imaging features to 20 target dimensions. By using an mRMR 
algorithm, RFE algorithm, and LDA together, we can achieve several 
objectives: improving the effectiveness of feature selection, removing 
redundant and noisy features, extracting features with high 
classification ability, and reducing dimensionality. Through the 
comprehensive application of these methods, more robust and 

superior feature subsets can be obtained, which is helpful for better 
image-based radiomic analysis and model construction. (3) Machine 
learning models, including Bagging DecisionTree, XGBOOST, 
Random Forest, Support Vector Machine (SVM), and Quadratic 
Discriminant Analysis (QDA), are constructed Model 1 (RS model). 
The patients were divided into training set (n = 163) and test set 
(n = 40) according to the ratio of 8:2.

2.6 Statistical analysis

The data analysis was performed using SPSS 25.0, MedCalc 
22.014, and uAI Research Portal software (version 1.1, United, China). 
Kolmogorov–Smirnov was used to test the normality of measurement 
data. Continuous variables were expressed as mean ± SDs or median 
and interquartile range as appropriate. Categorical variables were 
reported as count and percentage. Continuous variables were 
compared with the Student t-test or Mann–Whitney test. Categorical 
variables were compared using χ2 or the Fisher exact test. Univariate 
logistic regression was employed to analyze the correlation between 
the traditional features of each patient and symptomatic plaques. 
Features with p < 0.05  in the univariate logistic regression were 
included in the multivariate logistic regression analysis for 
further analysis.

In order to investigate if carotid PVAT imaging RS provides 
additional value in diagnosing symptomatic plaques compared to 
traditional plaque analysis, two models were developed. Model 2 
(Traditional model) included different clinical and conventional CTA 
imaging features between symptomatic and asymptomatic patient 
groups in a multivariate logistic regression analysis. Model 3 
(Combined model): Model 2 was enhanced by incorporating the 
Model 1. The machine learning algorithm parameters used in both 
models were identical to those in Model 1. Area Under the Curve 
(AUC) was used to evaluate the ability of the two groups of models to 
identify symptomatic plaques. The deLong test was used to compare 
the differences between AUCs. p < 0.05 was considered statistically 
significant (Figure 3).

3 Results

3.1 Characteristics of the study patients

This study included a total of 203 patients, with an average age of 
71.87 ± 9.63 years and a total of 115 men. Among them, there were 71 
cases in the symptomatic group and 132 cases in the 
asymptomatic group.

In the multivariate logistic regression analysis, it was found that 
the proportion of positive remodeling in the symptomatic group was 
higher than that in the asymptomatic group (97.2% vs. 84.8%, 
p = 0.017). Additionally, the proportion of statin use in the 
symptomatic group was significantly lower than that in the 
asymptomatic group (15.5% vs. 47%, p < 0.001).

Other factors such as age, gender, BMI, history of hypertension, 
diabetes mellitus, hyperlipidemia, smoking history, history of 
antihypertensive drugs, history of antiplatelet drugs, plaque location, 
degree of plaque stenosis, plaque length, plaque thickness, 

FIGURE 2

Carotid Plaque PVAT Segmentation Image. The Carotid Artery 
Straightening Image reveals a calcified plaque located at the 
bifurcation of the carotid artery. The red line was centered on the 
carotid bifurcation, extending 2  cm in the superior and inferior 
directions for a total length of 4  cm (L). The PVAT width of two red 
lines is equivalent to the diameter of the carotid artery beyond the 
outer wall of the carotid artery vessel (d). The software automatically 
segmented adipose tissue with an attenuation value of −190 HU to 
−30 HU along the target length and the width of the carotid artery 
vessel is visualized using a blue-green pseudocolored map.

https://doi.org/10.3389/fneur.2024.1340202
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Nie et al. 10.3389/fneur.2024.1340202

Frontiers in Neurology 05 frontiersin.org

remodeling index, FAI at the most stenosis of the plaque, FAI within 
the stenosis of the plaque, conformal remodeling, low-density 
plaque, punctate calcification, napkin ring sign, and high-risk plaque 
distribution, plaque type, and plaque ulcer did not show statistically 
significant differences in the multivariate regression analysis 
(p > 0.05) (Table 1).

3.2 RS model of carotid PVAT

The RS model showed the highest diagnostic performance in 
identifying symptomatic plaques within the Bagging Decision Tree 
model, achieving an AUC of 0.837 (95%CI: 0.775, 0.899) in the 
training set and an AUC of 0.834 (95%CI: 0.685, 0.982) in the testing 
set. These results were significantly better than the performances of 
the XGBOOST, Random Forest, SVM, and QDA models (p < 0.05) 
(Figure 4; Table 2).

3.3 RS combined with the traditional model

Figure 5 depicts the diagnostic performance of traditional feature 
models and the RS model in identifying symptomatic plaques across 
different sets of data. In the training set, the traditional feature model 
achieved an AUC of 0.725 (95%CI: 0.695, 0.791), while in the testing 
set, the AUC was 0.593 (95%CI: 0.438, 0.749). Upon incorporating the 
RS model into the traditional feature model, the AUC in the training 
set improved to 0.831 (95%CI: 0.765, 0.896), and in the testing set, it 
reached 0.82 (95%CI: 0.675, 0.965).

Through the Delong test, it was determined that the combination 
of the RS model with the traditional feature model yielded a 
significantly higher AUC for distinguishing symptomatic plaques 
compared to using the traditional model alone (AUC: 0.82 vs. AUC: 
0.593; Z = 2.822, p = 0.0048). Furthermore, when used independently, 
the RS model demonstrated a superior AUC in differentiating 
symptomatic plaques compared to the traditional model (AUC: 0.834 
vs. AUC: 0.593; Z = 2.114, p = 0.0345).

4 Discussion

This study confirms that the RS model, based on carotid PVAT, 
has demonstrated significant improvement over the current traditional 
models in distinguishing symptomatic plaques. The RS model, relying 
on carotid PVAT, exhibited a higher AUC in the discrimination of 
symptomatic plaques (AUC: 0.834; 95% CI: 0.685, 0.982), compared 
to the traditional model (AUC: 0.593; 95% CI: 0.438, 0.749).

CT-based radiomics has been shown to be  able to accurately 
classify diseases by extracting a large number of quantitative radiomics 
features that are invisible to the human eye (27). In this study, the 
diagnostic performance of the RS model, based on carotid PVAT, in 
distinguishing symptomatic plaques was evaluated in both the training 
set (AUC: 0.837; 95% CI: 0.775, 0.899) and the testing set (AUC: 0.834; 
95% CI: 0.685, 0.982). In a study conducted by Chen et al. (4), which 
included 60 symptomatic and 84 asymptomatic individuals based on 
the occurrence of ischemic stroke or TIA within a 2 week period, the 
RS model based on carotid plaque PVAT demonstrated an AUC of 
0.740 (95% CI: 0.644, 0.835) in the training set and 0.618 (95% CI: 

FIGURE 3

A flow chart of the model development process. Collect clinical and radiological information of patients, analyze and extract traditional features of 
carotid artery plaques. Based on head and neck CTA, segment the PVAT of carotid artery plaques, extract radiomics features, and use algorithms such 
as minimal redundancy maximal relevance, recursive feature elimination, and linear discriminant analysis for feature selection and dimensionality 
reduction. Construct a machine learning model for identifying symptomatic plaques using radiomics features, traditional features (clinical + traditional 
radiological features), and a combination of radiomics and traditional features. CTA, computed tomography angiography; PVAT, perivascular adipose 
tissue.
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0.440, 0.794) in the testing set (4). The relatively higher ROC 
performance observed in our study compared to Chen et al. may 
be attributed to the fact that Chen et al. extracted PVAT pixel values 
from the surrounding adipose tissue around the maximum stenosis 
level of the carotid plaque, resulting in fewer PVAT pixel values and a 

2D image. Consequently, the performance of their RS model was 
relatively lower.

Recently, progress has been made in utilizing carotid plaque RS 
to differentiate symptomatic plaques. Xia et al. conducted a study 
on 179 patients with 219 carotid plaques, stratifying them into a 

TABLE 1 Traditional characteristics of the patient.

Characteristic
ALL 

patients
Symptomatic Asymptomatic

Univariate 
analysis

Multivariate

OR (95% CI) p value

Clinical characteristics

Age, y, mean ± SD 71.87 ± 9.63 72.38 ± 9.54 71.59 ± 9.7 0.579

No. of men, n (%) 115 (56.7) 39 (54.9) 76 (57.6) 0.717

BMI, kg/m2, mean ± SD 23.34 ± 3.12 22.8 ± 2.83 23.63 ± 3.24 0.073

Risk factors

Hypertension, n (%) 155 (76.4) 55 (77.5) 100 (75.8) 0.785

Diabetes mellitus, n (%) 72 (35.5) 28 (39.4) 44 (33.3) 0.386

Hyperlipidemia, n (%) 50 (24.6) 19 (26.8) 31 (23.5) 0.605

Smoking, n (%) 55 (27.1) 24 (33.8) 31 (23.5) 0.115

History of medications

Antihypertension 

use, n (%)

155 (76.4) 55 (77.5) 100 (75.8) 0.785

Statin use, n (%) 73 (36) 11 (15.5) 62 (47) < 0.001 4.950 (2.336, 10.492) <0.001

Antiplatelet use, n (%) 90 (44.3) 32 (45.1) 58 (43.9) 0.877

Quantitative plaque characteristics

Diameter stenosis, %, 

mean ± SD

34.31 ± 22.95 32.08 ± 21.55 35.51 ± 23.67 0.31

Lesion length, mm, mean ± 

SD

1.08 ± 7.68 1.02 ± 7.53 11.07 ± 7.78 0.462

Plaque thickness, mm, 

mean ± SD

3.45 ± 1.47 3.25 ± 1.28 3.56 ± 1.56 0.154

Remodeling index, 

mean ± SD

1.40 ± 0.25 1.43 ± 0.25 1.39 ± 0.25 0.224

Stenosis FAI, HU, 

mean ± SD

−65.29 ± 13.83 −63.02 ± 14.31 −66.51 ± 13.46 0.087

Stenosis range FAI, HU, 

mean ± SD

−66.06 ± 0.89 −63.99 ± 12.87 −67.18 ± 12.41 0.086

Quantitative plaque characteristics

Positive remodeling, n (%) 181 (89.2) 69 (97.2) 112 (84.8) 0.016 0.102 (0.016, 0.671) 0.017

Low-attenuation 

plaque, n (%)

23 (11.3) 10 (14.1) 13 (9.8) 0.366

Spotty calcification, n (%) 129 (63.5) 54 (76.1) 75 (56.8) 0.007 0.220 (0.040, 1.205) 0.081

Napkin-ring sign, n (%) 10 (4.9) 3 (4.2) 7 (5.3) 0.736

High-risk plaque, n (%) 126 (62.1) 54 (76.1) 72 (54.5) 0.003 1.839 (0.328, 10.308) 0.488

Plaque ulcer, n (%) 39 (19.2) 13 (18.3) 26 (19.7) 0.811

Plaque location(L), n (%) 100 (49.3) 40 (56.3) 60 (45.5) 0.139

Plaque Type, n (%) 0.773

Calcified plaque, n (%) 114 (56.2) 42 (59.2) 72 (54.5)

Non-calcified plaque, n (%) 14 (6.9) 4 (5.6) 10 (7.6)

Mixed plaque, n (%) 75 (36.9) 25 (35.2) 50 (37.9)

BMI, body mass index. Data are displayed as mean (SD) or number (percent).
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FIGURE 4

Receiver operating characteristic (ROC) curves of radiomic signature in identifying symptomatic plaques in different models.

TABLE 2 Predictive ability of all radiomics models.

Model
Training cohort Testing cohort

AUC (95% CI) SPE SEN ACC AUC (95% CI) SPE SEN ACC

Bagging decision-tree 0.837 (0.775, 0.899) 0.811 0.702 0.773 0.834 (0.685, 0.982) 0.731 0.714 0.725

XGBOOST 0.79 (0.717, 0.863) 0.821 0.596 0.742 0.816 (0.675, 0.957) 0.808 0.643 0.75

Random forest 0.897 (0.85, 0.944) 0.849 0.754 0.816 0.79 (0.64, 0.94) 0.808 0.643 0.75

SVM 0.762 (0.685, 0.839) 0.774 0.614 0.718 0.83 (0.694, 0.965) 0.643 0.769 0.725

QDA 0.765 (0.686, 0.843) 0.821 0.698 0.687 0.819 (0.665, 0.972) 0.714 0.692 0.7

AUC, area under the curve.

FIGURE 5

Receiver Operating Characteristic (ROC) curves demonstrate the diagnostic performance of symptomatic plaques in different feature sets.
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TIA group and a non-TIA group according to the presence or 
absence of TIA after CTA examination (28). Their RS model for 
distinguishing the TIA group yielded a maximum AUC of 0.746 in 
the testing set. Our study shows an RS model based on carotid 
PVAT with a testing set AUC of 0.834, thus indicating superior 
diagnostic performance compared to Xia et al.’s study on a carotid 
plaque RS model. This suggests that the carotid PVAT-based RS 
model has the potential to provide additional benefits in identifying 
symptomatic plaques.

A large study showed (29) that long-term achievement of low 
LDL-C levels, as low as less than 20 mg per deciliter (<0.5 mmol 
per liter), was associated with a reduced risk of cardiovascular 
outcomes without significant safety concerns in patients with 
atherosclerotic cardiovascular and cerebrovascular disease. The 
lower proportion of statin use in the symptomatic group than in 
the asymptomatic group in this study may be due to the higher 
incidence of ischemic stroke or TIA in patients who do not receive 
statin therapy.

There was no significant difference in FAI at the narrowest 
point of the plaque and within the stenosis of the plaque between 
the two groups, which may be related to the fact that most of the 
patients in this study were elderly with an average age of 
71.87 ± 9.63 years. FAI is used to dynamically monitor vascular 
inflammation (5) by measuring the mean density of adipose tissue 
on CT to reflect the change in lipid content. The patients in this 
study have a long history of atherosclerosis, PVAT of carotid 
plaque has gone into the chronic phase, lipid fibrosis and 
microvascular remodeling occur, and the dynamic change of lipid 
content is small (11, 30), so the ability of FAI to dynamically 
monitor vascular inflammation is limited (11). At the same time, 
Serum C reactive protein (CRP) is a marker of systemic 
inflammation and is associated with an increased risk of stroke and 
unstable carotid atherosclerotic plaques (31). However, high-
sensitivity CRP is usually driven by other inflammatory conditions 
such as infection, arthritis, etc., and cannot specifically reflect the 
local inflammation of carotid atherosclerosis. PET is considered to 
be the most reliable non-invasive imaging modality for vascular 
inflammation. However, its clinical application is limited due to its 
low spatial resolution, high radiation exposure, and high cost. In 
our study, the RS of carotid PVAT was available, and the diagnostic 
efficacy of the RS model of carotid PVAT in identifying 
symptomatic plaques was 0.745. RS analysis can accurately 
capture the texture changes of PVAT and reflect the level of 
vascular inflammation.

The carotid plaque PVAT extracted in this study was extended 
2 cm above and below the center of the carotid segment bifurcation, 
with a total of 4 cm as the longitudinal measurement distance. Because 
of the vascular shear stress (32), the vast majority of extracranial 
carotid plaques were distributed at the carotid bifurcation, and the 
plaques of the cases included in this study were distributed within 
2 cm above and below the carotid bifurcation. Second, there was little 
fat distribution around the carotid artery, and the plaques of the cases 
included in this study were distributed in the range of 2 cm above and 
below the carotid bifurcation. This study referred to the method of 
extracting the proximal 4 cm PVAT of the coronary artery with peri-
coronary fat and appropriately increased the collection range of the 
PVAT of carotid plaques to ensure the accuracy of RS extraction in 
PVAT. Third, Oikonomou et al. (25) showed that perivascular FAI at 

4 cm proximal to the right coronary artery can reflect global coronary 
inflammation and predict cardiac mortality. In our study, PVAT at 
4 cm of the carotid bifurcation also has the potential to represent the 
risk of vascular inflammation at the carotid bifurcation plaque and the 
whole carotid artery segment.

This paper has the following limitations: (1) This paper adopts 
the mainstream method used in current related research to identify 
symptomatic plaques, but it lacks a gold standard. In the future, 
we aim to collect plaque samples through carotid artery stripping and 
other procedures to accurately identify culprit plaques; (2) The lack 
of external validation datasets to evaluate the diagnostic efficacy of 
machine learning models; and (3) As symptomatic and asymptomatic 
determination of plaques happens before CTA exams, it would have 
selection bias towards the model performance in the real clinical 
settings. In the next step of our research, we will conduct a prospective 
study on patients undergoing head and neck CTA to explore the 
association between PVAT imaging-based radiomics of carotid 
plaques and the occurrence of acute ischemic cerebrovascular events.

5 Conclusion

The RS model of carotid plaque PVAT, when combined with the 
traditional feature model, demonstrates a significant improvement in 
the diagnostic performance for identifying symptomatic plaques 
compared to the traditional feature model alone. This indicates that 
the RS model of carotid plaque PVAT can serve as an objective 
indicator for evaluating plaque risk, providing a basis for risk 
stratification, as well as the diagnosis and treatment of carotid 
atherosclerotic diseases.
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